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ABSTRACT. In the same vein as the classical Stone—Cech compactification, we
prove in this work that the maximal spectra of the rings of semialgebraic and
bounded semialgebraic functions on a semialgebraic set M C R™, which are
homeomorphic topological spaces, provide the smallest Hausdorff compactifi-
cation of M such that each bounded R-valued semialgebraic function on M
extends continuously to it. Such compactification 85 M, which can be charac-
terized as the smallest compactification that dominates all semialgebraic com-
pactifications of M, is called the semialgebraic Stone—Cech compactification
of M, although it is very rarely a semialgebraic set. We are also interested in
determining the main topological properties of the remainder OM = XM\ M
and we prove that it has finitely many connected components and that this
number equals the number of connected components of the remainder of a suit-
able semialgebraic compactification of M. Moreover, M is locally connected
and its local compactness can be characterized just in terms of the topology
of M.

1. INTRODUCTION

A subset M C R" is said to be basic semialgebraic if it can be written as
M={zeR": f(z) =0, gi(z) >0,...,gn(z) >0}

for some polynomials f,¢g1,...,gm € R[x1,...,%,]. The finite unions of basic semi-
algebraic sets are called semialgebraic sets. A continuous function f : M — R is
said to be semialgebraic if its graph is a semialgebraic subset of R"*!. Usually,
semialgebraic function just means a function, not necessarily continuous, whose
graph is semialgebraic. However, since all semialgebraic functions occurring in this
article are continuous we will omit for simplicity the continuity condition when we
refer to them.

The sum and product of functions, defined pointwise, endow the set S(M) of
semialgebraic functions on M with a natural structure of commutative ring whose
unity is the function with constant value 1. In fact, S(M) is an R-algebra if we
identify each real number 7 with the constant function which just attains this value.
The most simple examples of semialgebraic functions on M are the restrictions to
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M of polynomials in n variables. Other relevant ones are the absolute value of
a semialgebraic function, the maximum and the minimum of a finite family of
semialgebraic functions, and the inverse and the k-root of a semialgebraic function
whenever these operations are well defined.

It is obvious that the subset $*(M) of bounded semialgebraic functions on M is
a real subalgebra of S(M). For the time being we denote by S°(M), indistinctly,
either S(M) or S*(M) in case the involved statements or arguments are valid for
both rings.

The first remarkable fact concerning the maximal spectra of these rings is that the
respective maximal spectra S;M and B.M of S(M) and S*(M) are homeomorphic
(seeBAl). This phenomenon occurs identically for rings of continuous functions on a
completely regular topological space, although the techniques involved to prove such
facts are substantially different (see for instance [GJ, §6-§7]). The homeomorphism
between BsM and ﬁ:M constructed in allows us to characterize algebraically
those maximal ideals of the rings S°(M) corresponding to a point in M (see B.1]
and BII) and the compactness of M in terms of the equality of the rings S(M)
and S*(M).

In the same vein as the classical Stone-Cech compactification, we prove (see 4]
and A7) that .M is the smallest compactification of M such that each bounded R-
valued semialgebraic function on M extends continuously to B:M . This is why we
will call B:M the semialgebraic Stone—Cech compactification of M, although B:M
is very rarely (homeomorphic to) a semialgebraic set. In fact, we characterize in
.17 the semialgebraic sets M such that B:M is a semialgebraic set, as those whose
subset of points of local dimension > 2 is compact. Note that for a 1-dimensional
M the compactification B:M is obtained by adding to M an ending point at each
open half-branch (see E20). For instance, if M = [0,1) or (0,1), then S.M = [0,1]
(see D).

Furthermore, the semialgebraic Stone-Cech compactification of M is the small-
est compactification that dominates each semialgebraic compactification of M and,
in fact, it is decisive to realize that B.M is the “inverse limit” of the collection of
such semialgebraic compactifications of M (see dGl). These results suggest that the
topology of B:M can be recovered from the semialgebraic compactifications of M.
We are interested in determining the main topological properties of the remainder
OM = B:M\ M, and we prove (see[5.8) that it has finitely many connected compo-
nents and that in fact this number equals the number of connected components of
the remainder of a suitable semialgebraic compactification of M. In any case, the
number of connected components of 0M upperly bounds the number of connected
components of the remainder X \ M of any semialgebraic compactification X of M
(see[2]). Other remarkable properties of OM are its local connectedness (see B13)
and that the topology of M determines its local compactness (see [B.14]).

This article is organized as follows. In Section 2] we collect most of the prelim-
inary definitions, notation and results that will be used freely in the sequel. It is
worthwhile mentioning which is a technical refinement of the classical theorem
[BCRI, 9.2.1] concerning triangulations of compact semialgebraic subsets of R™, and
this will be crucial for the proof of Next, in Section [l we develop the algebraic
approach to the homeomorphism between S;M and B:M mentioned above, while
in Section @ we analyze this space 3.M from the topological point of view. Finally,
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Section [Blis devoted to the study of some of the most remarkable topological prop-
erties of the remainder OM. Also in this section, we prove that the space B:M is
rarely (homeomorphic to) a semialgebraic set and we study under what conditions
the operator (3, commutes with finite products.

To finish this Introduction, we point out that our guideline to initially approach
this work has been [GJ], and many statements have been proposed after properly
adapting the corresponding ones for rings of continuous functions on a completely
regular topological space. However, the advantageous conditions of rings of semial-
gebraic functions on a semialgebraic set allow us to achieve sharper results by using
specific techniques of semialgebraic geometry.

2. PRELIMINARIES ON SEMIALGEBRAIC SETS AND SEMIALGEBRAIC FUNCTIONS

To begin this section we introduce some terminology, notation and preliminary
results that will be used systematically in this work. For each f € S°(M) and
each semialgebraic subset N C M, we denote Zn(f) = {z € N : f(x) = 0} and
Dn(f) =N\ Zn(f). In case N = M, we say that Zp(f) is the zeroset of f. We
respectively denote by B, (z, <) and B, (z, €) the open and closed balls of R” of center
x and radius &, while their common boundary is denoted by S"~!(x, ). Sometimes
it will be useful to assume that the semialgebraic set M we are working with is
bounded. Such an assumption can be done without loss of generality. Namely,

Remark 2.1. Let M C R" be a semialgebraic set. The semialgebraic homeomor-

phism
x

V1= ]

induces a ring isomorphism S(M) — S(N), f +— f o ¢, where N = ¢~ 1(M), that
maps S*(M) onto S*(N). Hence, if necessary, we may always assume that M is
bounded.

v:B,(0,1) > R", z—

The next result, which concerns the representation of closed semialgebraic sub-
sets of a semialgebraic set as zerosets of semialgebraic functions, is well known and
will be used freely in this work (see for instance [FGI, 2.2]).

Lemma 2.2. Let Z be a closed semialgebraic subset of a semialgebraic set M C R™.
Then, there exists h € S*(M) such that Z = Zpr(h).

As a crucial ingredient in many proofs of this work, here we recall the following
semialgebraic version of the Tietze—Urysohn Lemma due to Delfs and Knebusch
(see [DK]) that will be used freely in what follows.

Theorem 2.3. Let N C M C R" be semialgebraic sets such that N is closed in
M. Then, the homomorphism S®(M) — S°(N), F — F|y is surjective.

As a straightforward consequence, we have the following:

Corollary 2.4. Let C7,Cy C M C R™ be semialgebraic sets such that Cy and Cy
are closed disjoint subsets of M. Then, there exists f € S*(M) such that f|c, =0
and flc, = 1.

Next, we present the triangulability of semialgebraic sets, which is one of the most
powerful tools to approach topological properties of this kind of sets. Moreover,
we include some results about triangulations that will be needed in forthcoming
sections.
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(2.5) Triangulations of semialgebraic sets. Let Py,..., P be k + 1 affinely
independent points in R™. The k-simplex [Py, ..., P] is the set of those z € R"
such that there exist nonnegative real numbers A, ..., A\; with Zf:o A; = 1 and
T = Zf:o A P;. Of course, the k-simplex [Py,..., Py] is a compact semialgebraic
manifold with boundary, semialgebraically homeomorphic to the closed ball B (0, 1)
of R¥. Next, if {P;,,...,P;,} is a nonempty subset of {P,..., P}, then the (-
simplex [P, ..., P;,] is called an (-face of [Py, ..., P]. If o is a simplex, then the
open simplex o° is the subset of points of & not belonging to any proper face of o.
Note that Clgs(0") = o and that o = ¢ just in case o is a point.

A finite simplicial complez of R™ is a finite collection of simplices K = (0;)?_;

such that the faces of every o; belong to K and such that, for every 1 < 4,5 < p, the
intersection o;No; is either empty or a common face of 0; and 0. A straightforward
computation shows that oY N o; is either empty or o?. The realization of the
complex K is |K| = J_, 0; = U_; o; in fact, the open simplices o constitute
a partition of |K|. A semialgebraic triangulation of a compact semialgebraic set
X C R™ is a pair (K, ®), where K is a finite simplicial complex and @ : |[K| — X
is a semialgebraic homeomorphism. The triangulation (K, ®) of X is said to be
compatible with a finite family F of semialgebraic subsets of X if each set S € F is
the union of some ®(o) with o € K.
@231) We recall a well-known procedure to triangulate a d-dimensional simplex
o from a triangulation of one of its (d — 1)-dimensional faces 7. Observe that
there exists a unique vertex P of ¢ which is not contained in 7. This way, each
triangulation K of 7 induces a triangulation K of o defined as follows. For each
simplex n € K denote by 7 the simplex generated by n and P. Then, K is the
triangulation of o whose simplices are the simplices 77 generated by n and P, the
simplices of K and {P}.

The fundamental result about semialgebraic triangulations of compact semial-
gebraic sets is the following theorem (see [BCR] 9.2.1)).

Theorem 2.6 (Semialgebraic triangulation). Let X C R™ be a compact semialge-
braic set and let F be a finite family of semialgebraic subsets of X. Then, there
exists a semialgebraic triangulation of X compatible with F.

A particular case to be considered consists of a semialgebraic set X C R™ which is
itself a simplex, and whose trivial triangulation is the one whose simplices are X and
all its faces. For later purposes (see[(.8]), we need more sophisticated triangulations
of a compact semialgebraic set than the one provided in 2.6l More precisely,

Lemma 2.7. Let M C X C R" be semialgebraic sets such that X is compact.
Let F be a finite family of semialgebraic subsets of X containing M. Then, there
exists a semialgebraic triangulation (K, ®) of X compatible with F such that for
each simplex o € K either o C ® (M) or there exists a face T of o satisfying
Mco\e (M) cCr.

Before proving 2.7} we need a preliminary technical result. Namely,

Lemma 2.8. Let X C R" be an n-dimensional simplex and let M be a union of
some open faces of X such that for each face o of X either o C M or there exists
a face 7 of o such that 7° C o \ M C 7. Let K be a triangulation of X compatible
with the open faces of X. Then, for all 8 € K, either 8 C M or there exists a face
¢ of 0 such that ° C 6\ M C (.
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Proof. We proceed by induction on the dimension d of #. If dim# = 0, then 6 is
a singleton, and so, either § € M or §° = 0\ M = 0 if 6 ¢ M. Assume that for
each k-dimensional simplex § € K with k£ < d — 1, either § C M or there exists a
face ¢ of 6 such that ¢° € #\ M C ¢, and let us check that the same holds for the
d-dimensional simplices of the complex K.

Indeed, let # € K be a d-dimensional simplex such that 6 ¢ M. Let o be the
unique face of X such that #° C ¢°. Since § ¢ M, also 0 ¢ M, and so there exists a
face 7 of o such that 7° C o\ M C 7. Observe that 0\ M = 0N (c\ M) C (6N7)\ M.
Since K is compatible with 7 and 6 \ M # &, the intersection # N7 is the union of
the relative interiors of some faces of §. Since 6 and 7 are compact and convex, so
is its intersection @ N 7. Thus, # N 7 is the union of some faces of 6; let Py,..., P,
be all the vertices of 8 which belong to 7. Since 6 N7 is the union of some faces of
0 and it is convex, we deduce that o = 6 N7 is the simplex [Py, ..., Ps] € K. Now,
we distinguish two cases:

Case 1. If dimp = d, then o = § and so § C 7. Hence, @ # #° C 7N oY and
therefore 7 = 0. Thus, ¢ C o\ M and we deduce

0 =0"ne’coHn(c\M)=0\MC0,
which implies §° C §\ M C 6.

Case 2. If dim o < d, then, by induction hypothesis, there exists a face ¢ of g,
which is also a face of 6, such that (° C ¢\ M C ¢. Hence,

Cco\M=0n)\M=0n(r\M)cod\Mc @n7T)\M=p\MCC,
that is, ¢° C 8\ M C ¢, as wanted. O

Proof of Lemma 271 We first study the fundamental case in which M is a finite
union of open faces of a simplex X of dimension d and F = {M}. We proceed by
induction on the dimension of X, the case dim X = 0 being trivial. If dim X = 1,
it is enough to choose as K a barycentric subdivision of the trivial triangulation of
X. Suppose the result is true for dim X = d — 1 and let us see that it is also true
for dim X = d.
Z71) First, we choose an initial triangulation Ky of X as follows. If X" ¢ M
we consider in X its trivial triangulation K. On the other hand, if X° C M,
we choose a barycentric subdivision of X which provides a triangulation Ky of X
whose simplices are:

(a) all the proper faces of X,

(b) the barycenter G of X, and

(c) those simplices 5 generated by G and a proper face § of X.
Observe that in this second case in which X° C M, each d-dimensional simplex o
of Ky satisfies one of the following conditions:

(1) o C M.

(2) There exists a (d — 1)-dimensional (proper) face e of o, which is also a

proper face of X, such that o \ M C e and o = € is the simplex generated
by G and e.

Of course, 0 € X C M and the barycenter of X is a point of X°. Moreover, each
proper face of the simplex X is a face of some of the (d — 1)-dimensional faces of
the simplex X.
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[@212) TFor each simplex ¢ € Ky, we denote My = M N¥. For each (d — 1)-
dimensional simplex v € Kj there exists, by induction hypothesis, a triangulation
K, of v such that for each simplex ¢ € K, either ¢ C M, or there exists a face ¢ of
¢ satisfying (° C ¢\ M,, C . Next, we distinguish two cases:

Case 1. X° ¢ M. Since M is a finite union of open faces of the simplex X, we
have XN M = @. By 20 there exists a triangulation K; of X compatible with
XY and all the open faces of all the simplices in the triangulations K, of all the
(d — 1)-dimensional simplices v of Ky. Fix a simplex # € K; such that 6§ ¢ M.
If N X% = &, then 6 is contained in a (d — 1)-dimensional face v of X and, by
28 there exists a face ¢ of § such that (° € #\ M C ¢. On the other hand, if
0N X0 £ &, then also 1N X° # @ and, since K is compatible with X°, we deduce
0° ¢ X°. Hence, °\ M =60°N (X°\ M) =6° and so §° C 0\ M C 0. Thus, K;
has the desired property that for each simplex 6 € K; either § C M or there exists
a face ¢ of @ satisfying ¢° C 6\ M C .

Case 2. X° C M. If 0 € Ky is a d-dimensional simplex satisfying condition (1) in
27 that is, ¢ € M, we choose the trivial triangulation K, of o. On the other
hand, if o satisfies condition (2) in 270 we proceed as follows. Recall that o =€
is the simplex generated by the barycenter G' and a (d — 1)-dimensional face e of
X such that o \ M C e. Let K. be a triangulation of e given by the inductive
hypothesis. Now, we construct the triangulation K, = K < of o = € induced by K;
see Let us check that for each simplex 6 of K,:

ZT3) Either § C M, or there exists a proper face ¢ of 0 such that (° C 0\ M, C (.

Indeed, by the properties of K, the claim of is true if # C e because
M. = M, Ne. Moreover, since G € X°No C M No = M,, then {G} C M,.
Thus, we may assume that § ¢ M, and 6 = p for some ¢ € K.. In this case, since
Ge X wehave 0\ o C X°No C MNo = M,. Thus, §\ M, C g and, since
0 ¢ M,, we deduce that o ¢ M,. By the properties of K, there exists a face ( of
o such that (Y C o\ M, C (. Observe that since o C €, we have

COCQ\ME:Q\(MOG):Q\MCH\MZQ\MUCQ\MUZQ\Mecc

and so (° € #\ M, C ¢, which proves the claim of

Now, let K7 be a triangulation of X compatible with all the open faces of all the
simplices in the triangulations K, of all the d-dimensional simplices of K. Notice
that, by 28] for all # € K7, either # C M or there exists a face ¢ of 6 such that
C°co\M cc.
@14) We now study the general case. Byl there exist a finite simplicial complex
K’ = {s;}!_, in R" and a semialgebraic triangulation (K’, ¥) of X compatible
with {M}. Proceeding as above with each simplex s;, we get a triangulation K
of s; satisfying the conditions in the statement for s; and W=1(M) N s;. Let H
be the union of F and the family of all open faces of all simplices occurring in
all triangulations K;. By [Z0] there exists a semialgebraic triangulation (K", ®)
of X compatible with #; by this triangulation satisfies the conditions in the
statement. O

Corollary 2.9. Let M C X C R" be semialgebraic sets such that X is compact
and M is dense in X. Let F be a finite family of semialgebraic subsets of X con-
taining M. Then, there exists a semialgebraic triangulation (K, ®) of X compatible
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with F such that, for each simplex o € K which is not a face of other simplex of
the triangulation (K, ®), either o C ®~1(M) or there exists a proper face T of o
satisfying T° C o \ @Y (M) C 7.

Proof. First, by [Z7 there exists a semialgebraic triangulation (K,®) of X com-
patible with the family F such that for each simplex o € K either o C ®~(M)
or there exists a face T of o satisfying 7° C o \ @~ 1(M) C 7. Let us check that if
o € K is not a face of other simplex of the triangulation (K, ®) and o ¢ ®~1(M),
then 7 is a proper face of o.

Indeed, let oq,...,0, be the collection of all simplices of K different from o.
Since o is not a face of other simplex of the triangulation (K, ®), we deduce that
0% = |K|\ Uj_, i, and so ®(c”) is a nonempty open subset of X. Now, since

M is dense in X, the intersection ®(¢®) N M is nonempty. This implies, since
(K, ®) is compatible with M, that ®(¢”) C M. This, together with the inclusion
70 C 0\ ® 1 (M), implies that 7 # o, that is, 7 is a proper face of o, as wanted. [

3. MAXIMAL SPECTRA OF RINGS OF SEMIALGEBRAIC FUNCTIONS

The purpose of this section is to study the maximal spectra of rings of semial-
gebraic and bounded semialgebraic functions on a semialgebraic set M C R™. As
we will see in this section both maximal spectra of S(M) and S*(M) are Hausdorff
compactifications of M with nice properties, which are in fact homeomorphic. We
refer the reader to §1, §7] for more details about real or orderable fields and
the real spectrum of a commutative ring with unity.

(3.1) Maximal spectra. We will denote by SM the collection of all maximal
ideals of §°(M). As usual, we consider in S¢M the Zariski topology, having the
family of sets Dgens(f) = {m € BIM : f & m}, where f € S°(M), as a basis of open
sets. We will denote ZﬂgM(f) = B3M \ DggM(f).
BI11) We recall that: for each maximal ideal m of S°(M), the field S°(M)/m
admits a unique ordering whose positive elements are the squares. Indeed, it is
enough to check that modulo m each function f € S°(M) is either a square or
the opposite of a square. Since (f — |f|)(f + |f]) = f*> —|f|* = 0 € m, we have
f4+m==£(f] +m) = £(/]f] +m)?, where \/|f| € S°(M).
B112) Hence, the map m — (m, <) defines a bijection between S¢M and the real
mazimal spectrum of S°(M). Thus, in what follows we will denote both spectra by
BM. Recall that a basis of the usual spectral topology for SSM is the family of
sets
Ugons (f1, -5 fr) ={me M @ fi +m > 0in §°(M)/m},
for f1,..., fr € S°(M). As one can check straightforwardly, for each f € S°(M),
Dgons (f) = Upens (f) Ulgens (= f)  and - Ugons (f) = Dgons (f + | 1),
and so, as is well known, the spectral and the Zariski topologies of SM coincide.
BI13) At this point we also recall that M (endowed with the Euclidean topology)
can be embedded in S¢M as a dense subspace via the embedding
¢ M — BIM, pr— my,
where mj, denotes the maximal ideal of all functions of S°(M) vanishing at p. Thus,

we identify M with ¢(M) and this provides the equalities Dy (f) = Dgens(f) N M
and ZM(f) = ZggM(f) NM.
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The operator 32 enjoys the expected functorial behaviour (see for instance [FG3|
§6] for further details). In fact, given a semialgebraic map ¢ : N — M between
semialgebraic sets N C R™ and M C R™, there exists a unique continuous extension
Bep s BN — BIM of ¢.

I14) Moreover, in [FG3l 6.3-5] we prove that $¢enjoys a natural behaviour
with respect to the closed semialgebraic subsets of a given semialgebraic set. More
precisely, let C, C,Cy be closed semialgebraic subsets of M. Then,

(i) The space 35C' is homeomorphic to Clgers (C) C BIM via B35 : B3C — BIM,
where j : C'— M is the inclusion map.
(ll) Clg;ﬁyj(Cl n CQ) = ClggM(Cl) M CIBSJV[(CQ)'

(B115) Concerning the connected components of the maximal spectrum of S°(M),
the situation is the one we desire (see [FG3, 6.6]). Let My, ..., M}, be the connected
components of a semialgebraic set M C R™. Then, their closures Clgons(M;) =
BSM; are the connected components of SSM. In particular, SSM has a finite number
of connected components, and it is connected if and only if M is connected too.

I16) On the other hand, by [BCRL 7.1.25(ii)], 8¢M is a compact, Hausdorff
space and, by BJIB| it contains M as a dense subspace, that is, SSM is a Hausdorff
compactification of M. Now let us see that, as it happens for rings of continuous
functions (see [G], §7]), the respective maximal spectra S, M and S:M of S(M) and
S*(M) are homeomorphic. We recall at this point that S°(M) is a Gelfand ring
(see [FGZ, 3.1(iii)]). Hence, a natural map from ;M to B.M associates to each
maximal ideal m of S(M) the unique maximal ideal m* of §*(M) that contains
the prime ideal mNS*(M). Before proving that this map is a homeomorphism, we
need some preliminary results.

Definitions 3.2. Let M C R"™ be a semialgebraic set. For every f € S(M) and
€ > 0 we denote

B.(f) = fH([~e.€]) = Zm (e — | f| = le = [ fIl) = B=(If]-
Let us fix in what follows an ideal a of S(M), and define
a* ={feS"(M):Ve>03gea with Zy(g) C B(f)},

which, as one can check straightforwardly, is a radical ideal which satisfies the
following convexity condition: given h € S*(M) and f € a* such that 0 < h(z) <
f(x) for each x € M, then h € a*.

We will next prove some preliminary results.

Lemma 3.3. Let M C R" be a semialgebraic set and let p be a prime ideal of
S(M) and m the unique mazimal ideal of S(M) containing p. Then, p* = m* is
the unique mazimal ideal in S*(M) containing p N S*(M).

Proof. First, let us prove that p* = m*. The inclusion p* C m* is clear, and let
us check that in fact it is an equality. Suppose by way of contradiction that there
exists f € m* \ p*. Since f & p* there exists £ > 0 such that for all g € S(M) with
Zy(g) C B:(f), we have g ¢ p. In particular, the function g1 =& — |f| — |e — | f]]
satisfies B-(f) = Za(g1), and so g1 € S(M) \ p. On the other hand, since f € m*,
there exists go € m such that Zy/(g2) C B.2(f). Next, by B2 there exists h €
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S(M) such that Zy;(h) = {z € M : |f(x)| > ¢}. Since g1h =0 € p and g; & p, we
deduce that h € p C m and so g5 + h? € m. However,

Zn(gs +0%) C Bepp(f) N {w € M« |f(2)| > e} = 2,

or equivalently, g3 + h? € m is a unit of S(M), a contradiction. Hence, p* = m*.

Thus, to prove the second part of the statement, we may assume that p = m is
a maximal ideal of S(M). We already know that m* is an ideal of $*(M). Before
proving that m* is maximal we show that m N S*(M) C m*. Let f € mNS*(M);
given £ > 0 there exists, by 2.2l g € S(M) such that B.(f) = Zn(g), and it suffices
to check that g € m. By [22] there exists h € S(M) such that

{reM: |f(x)| >e} =Zp(h).

Then, gh = 0 € m, and so it is enough to prove that h ¢ m, or equivalently,
f? + h? ¢ m, but this is obvious because Zy;(f? + h?) = @.

To finish let us prove that m* is a maximal ideal of S*(M). Given f € S*(M)\m*
we must show that 1 € fS*(M) +m*. Since f2 ¢ m* there exists 0 < € < 1/2 and
g € S(M) \ m such that Zy(g) = Be(f?). Moreover, since m is a maximal ideal
and g ¢ m, there exist h € S(M) and b € m such that 1 = gh 4+ b. Notice that
c= /(1 +b*) € mNS*(M) C m* and B.(f?) N Be(c) = Zy(g) N Be(c) = @.
Thus, ¢ < f%(z) + c(x) for each * € M; hence, d = 1/(f* + ¢) € S*(M) and
1=d(f>+c)= f?d+cd € fS*(M)+ m*, as wanted. O

Lemma 3.4. Let M C R™ be a semialgebraic set and let m be a maximal ideal of
S(M) and f € S(M). Then, the following conditions are equivalent:

(i) The function f € m.

(ii) Zap(f) N Be(b) # @ for each € > 0 and each b € m*.

Proof. Suppose first that f € m, and let ¢ > 0 and b € m*. Then, there exists
g € m such that Zy;(g) C B.(b). Thus,

@+ Zu(f*+9°) = Zu(f) N Zn(g) € Zar(f) N Be(b),

because f? + g € m.

Conversely, let f € S(M) be a semialgebraic function satisfying (ii). We will
prove:

(ml) ZM(f)ﬂZ]\/[(g)#Q for allgem.

Once this is done, suppose, by way of contradiction, that f ¢ m. Then, there
exists h € S(M) with g = hf—1 € m, and so Zy(f)NZn(g) = &, which contradicts
B.4m

Next, assume, again by way of contradiction, that B.4l0] does not hold. Then,
there exists g € m such that f and g have no common zero. Therefore, the semialge-
braic function h = ¢g*/(f* + g?) € §*(M) satisfies h|z,, () =1 and h|z,,(;) = 0. In
particular, h € §*(M) and for every ¢ > 0, Zy(g) = Zy(h) C Be(h); hence,
we have h € m*. Since f fulfills condition (ii) in the statement, there exists
x € Zy(f) N Byja(h), and so 1 = h(zx) < 1/2, a contradiction. O

Theorem 3.5. Let M C R" be a semialgebraic set. Then, the map
®: B M — BIM, m s m*,

which maps each mazimal ideal m of S(M) to the unique mazimal ideal m* of
S*(M) that contains mNS*(M), is a homeomorphism. Moreover, ®(m,) =my for
allp € M.
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Proof. First, we prove that the map ® is continuous, proper and surjective. Indeed,
the map (-)* : Specs(M) — BM, p — p* is the composition r0j; of the continuous
map j; : Specs(M) — Spec. (M), p — pNS*(M) with the (continuous) retraction
ryr : Spece (M) — BiM which maps each prime ideal of S*(M) onto the unique
maximal ideal containing it (see [MOl 1.2]). Hence, the map (-)* is continuous.
Thus, if j : BsM < Specs(M) is the inclusion map, then the composition

d=rp0j10jo= () 0ja:BM — M

is also continuous. Moreover, since m, N S*(M) = my, for each p € M, we deduce
that ®(m,) = my for all p € M. Thus, since S;M is compact, the set im ®, which
contains M, is closed in the Hausdorff space S:M. Hence, im® = CIB:M(M ) =

B:M, and so @ is surjective. Therefore, ® : S M — B:M is continuous, proper and
surjective, and it only remains to prove its injectivity.

Indeed, let m; and my be distinct maximal ideals of S(M), and let f € my \ mo.
Then, by B4l there exist ¢ > 0 and b € m} such that Zy,(f) N B:(b) = @. Since
f € my, necessarily b ¢ m} (again use B4). Thus, m} # mj, and we are done. [

Remarks 3.6. (i) Notice that the inverse homeomorphism
O L BIM — BM, m* —m

is defined by m = {f € S(M) : Zy(f) N B:(b) # @ Ve > 0& Vb € m*} (see BA).

(ii) As a consequence of BH] it is not an abuse of notation to denote m* for
every maximal ideal of §*(M). Moreover, m will denote the unique maximal ideal
of S(M) such that m N S*(M) C m*.

(iii) Observe that the inclusion map R < S*(M)/m*, r — r4+m*, is an (injective)
homomorphism of ordered fields; in fact, it is an isomorphism, because S*(M)/m*
is an archimedean extension of R. Thus, since R admits a unique automorphism,
there is no ambiguity to refer to f +m* € R as a real number for every f € S*(M).
In particular, for each p € M the isomorphism S*(M)/my = R identifies f + m7
with f(p). Therefore, each bounded semialgebraic function f : M — R defines
a natural extension f: BiM — R, m* — f + m*, which is continuous because
FY(a,b)) = Ugei (f —a,b— f) for every pair of real numbers a < b. Of course, 7

. . . . * . . *
is the unique continuous extension of f to S,M because M is dense in S M.

In contrast to what happens in dealing with ideals of polynomial rings, the zeroset
of a prime ideal p of §°(M) provides no substantial information about p, because it
is either a point or the empty set (see for instance [FGI] 2.3]). An ideal a of S°(M)
is said to be fized if all functions in a vanish simultaneously at some point of M.
Otherwise, the ideal a is free. The fixed maximal ideals of the ring S°(M) are those
of the form mj where p € M. As we have already commented, m;, N S* (M) = my
for each point p € M. In fact, the equality mNS* (M) = m* characterizes the fixed
maximal ideals of S°(M). Namely, if ht(a) denotes the height of an ideal a, we
have:

Proposition 3.7. Let M C R" be a semialgebraic set and let m be a mazimal ideal
of S(M). Then, the following assertions are equivalent:

(i) m* is a fized ideal.

(i) mNS* (M) = m*.
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(i) m is a fizved ideal.
(iv) ht(m) = ht(m*).

Before proving [3.7] we need some preliminaries.

Proposition 3.8. Let M C R™ be a semialgebraic set and f € S°(M).
(i) If the zeroset Zyi(f) is not compact, then f lies in some free ideal a of

S°(M).
(ii) If S°(M) = S(M), the converse of (i) is true.

Proof. (i) Since Zp(f) is not compact, there exists a family {W;};c of open semi-
algebraic subsets of R™ which covers Zy;(f) and admits no finite subcovering. For
each index i € I, let g; € S*(R™) such that Zgn(g;) = R™ \ W;. Let us show that
the ideal a of §°(M) generated by f and the restrictions f; = g;|ar is a free ideal.
In case a = §°(M) we have an equality 1 = gf + > . ; fjh; for some finite subset
J of I and some functions g,h; € S°(M). Since the finite family {W;};c; does
not cover Zy(f) there exists a point = € Zy(f) \ U,;c; Wj, which contradicts the
equality above. Thus, a is a proper ideal of S°(M), and we now check that it is
free. In fact, Zp(f) C U;c; Wi or, equivalently,

() Zu(h) = Zu(F) N () Zue (i) = Zue(FH) N R\ W) = 2,
hea iel iel
and so a is a free ideal.

To prove (ii), assume that f € a for some free ideal a of S(M). Then, the
intersection (¢, Zm(g9) = @, that is, the family {Dun(g) : g € a}, is an open
covering of Zp/(f). Notice that the finite unions Dps(g1) U --- U Dps(gr) do not
cover Zp(f), and so this last is not compact. Otherwise, if

Zym(f) € Da(g1) U+ U Du(gr)

for some ¢1,...,¢g, € a, the intersection Zy/(f) N Zy(g1) NN Zn(gr) = &, and
this implies that f2+¢%+---+g¢? € a would be a unit in S(M), a contradiction. [

Remark 3.9. Note that B[(ii) is not true for S*(M) if M is not compact. Indeed, we
may assume, by 2] that M is bounded, and so there is a point p € Clgn (M) \ M.
Consider the bounded semialgebraic function f : M — R, =z — ||z — p|| whose
zeroset is empty, hence, compact, and the ideal generated by f in S*(M) is free.
This also proves that if M is not compact, then S*(M) has free maximal ideals.
Of course, if M is a compact semialgebraic set there is nothing to discuss because

S(M) =S*(M).
Now, we are ready to prove [3.71

Proof of Proposition Bl The equivalence (i) <= (iii) is clear, and the one of (ii)
and (iv) follows from the fact that S(M) = §*(M)yy(ar) is the localization of S*(M)
at the multiplicative subset W(M) of those bounded semialgebraic functions on M
with empty zeroset. Thus, it suffices to check the implications (i) = (ii) = (iii).

Indeed, if m* = m; for some p € M, then m;, N S*(M) = m;. Next, let m be a
maximal ideal of S(M) such that m N S*(M) = m*. By 2] we may assume that
M is bounded and we consider the compact semialgebraic set X = Clgn (M). We
have the following sequence of ring monomorphisms

S(X)=8"(X) = S"(M) — S(M),
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where the first one is defined as the restriction to M, while the second one is the
inclusion. Let us see that n = m* NS(X) =mNS*(M)NS(X)=mNSX) is a
maximal ideal of S(X). Consider the following composition of homomorphisms:

P :S(X) = S (M) = S (M)/m* =R.

Since n = kervy, we get R — S(X)/n — S*(M)/m* =2 R, and so S(X)/n = R;
that is, n is a maximal ideal of S(X). Next, by the compactness of X there exists,
by B8l a point p € X such that n =n, = {f € S(X) : f(p) = 0}. The function
glx) = lx —p]l €n=mnNS(X) C m. Since m is an ideal of S(M), the point
p € M (otherwise g would be a unit of S(M)). Thus, m C m,, because if not,
there exists h € m such that h(p) # 0; hence the zeroset of g? + h? € m is empty, a
contradiction. Therefore, m being a maximal ideal, we conclude that m = m,, is a
fixed ideal, as wanted. O

Corollary 3.10. Let M C R™ be a semialgebraic set. Then, the following asser-
tions are equivalent:
(i) M is compact.
(ii) Each mazimal ideal of S(M) is fized.
(iil) Each mazimal ideal of S*(M) is fized.
(iv) S(M) = 8*(M).

Proof. The equivalence of (i) and (ii) follows from B8 and the one of (ii) and (iii)
follows from Bl Finally, we check that the rings S(M) and S*(M) coincide if and
only if M is compact. The equality S(M) = §*(M) is obvious if M is compact.
Conversely, if S(M) = S8*(M), then mNS*(M) = m* for each maximal ideal m of
S(M). Thus, by B all maximal ideals of S(M) are fixed and, by the equivalence
of (i) and (ii), M is compact. O

We have shown in B3] that the maximal spectra of S(M) and S*(M) are home-
omorphic. However, there exists a difference in dealing with them. While all
quotients S*(M)/m* are (isomorphic to) R, for the maximal ideals m of the ring
S(M) this is true if and only if m is a fixed maximal ideal. Namely,

Corollary 3.11. Let M C R"™ be a semialgebraic set and let m be a maximal ideal
of S(M). Then, S(M)/m is (isomorphic to) R if and only if m is a fivzed mazimal
ideal.

Proof. Note that S(M)/m, = R for every fixed maximal ideal m, of S(M), since
m,, is the kernel of the epimorphism evaluation at p. For the converse, consider the
homomorphisms $*(M) — S(M) — S(M)/m = R. The composition is surjective
and its kernel is m N S*(M), which is henceforth a maximal ideal of S*(M). Thus,
mNS* (M) = m* is, by B a fixed ideal of S*(M). We conclude, again by B that
m is a fixed ideal of S(M). O

4. SEMIALGEBRAIC STONE—CECH COMPACTIFICATION

The classical Stone-Cech compactification is a crucial tool for the study of rings
of continuous functions. It is characterized as the “smallest” Hausdorff compacti-
fication to which all bounded R-valued continuous functions extend continuously.
This suggests that we make a similar construction in the semialgebraic setting. To
illustrate the used strategy we begin by constructing a compactification to which
a finite family of bounded semialgebraic functions can be extended. In this case,
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we can force the compactification to be moreover semialgebraic. As we will see
later the semialgebraicity of a compactification to which all bounded semialgebraic
functions extend is kept just for very particular situations.

Proposition 4.1. Let M C R™ be a semialgebraic set and let fi,..., f. € S*(M).
Then, there exists a compact semialgebraic set X C R™" and a semialgebraic
embedding j : M — X such that (X, j) is a compactification of M, and for each f;
there exists F; € S(X) such that F; 0§ = f;. In fact, if M is bounded, we can take

X = Clgnsr (graph(fi, ... f)).

Proof. First, we may assume, by 211 that M is bounded. Consider the graph I" of
the semialgebraic map ¢ : M — R", z — (fi(z),..., fr(z)). Let X be the closure
in R"" of I'. Since M and the functions fi,..., f, are bounded, the same holds
true for I'; hence, X is compact. Let j: M - ' — X, = — (z, f1(z),..., fr(2))
and, for 1 < ¢ < r, let F; = m,4i|x be the restriction to X of the projection
Tnti : R™ 5 R, (21,...,%p4r) = Tpyi. Then, the pair (X, j) and the functions
F; satisfy the required conditions. [l

Once this is done, we attack the problem of extending simultaneously all bounded
semialgebraic functions on a semialgebraic set.

Definitions 4.2. (i) Let M C R" be a semialgebraic set. A compactification (X, j)
of M is semialgebraically complete if for each f € S*(M) there exists a continuous
function F' : X — R such that f = F o j.

(ii) Given two compactifications (X7, j1) and (Xa, j2) of a semialgebraic set M C
R™, we say that (Xs, j2) dominates (X1, j1), and we write (X1, j1) < (X2, j2) if there
exists a continuous surjective map p : Xo — X; such that p o jo = j;. Note that
since j;(M) is dense in X; for i = 1,2, the map p is unique with such property.

The domination relation < is an order relation (up to homeomorphism compat-
ible with the embeddings) in the set of all compactifications of M, and we look
for the smallest one among those being semialgebraically complete. Before that we
need some preliminaries.

Lemma 4.3. Let (X1,j1) and (Xo, j2) be two compactifications of a semialgebraic
set M C R™ such that (X1,71) < (X2,72). Let p: Xo — X5 be the unique continu-
ous and surjective map such that p o jo = j1.
(i) Suppose that Xs is Hausdorff. Then, p~1 (X1 \ j1(M)) = X2\ jo(M). In
particular, p(X2\ j2(M)) = X1\ j1(M).
(ii) Suppose that (Xa,j2) < (X1,41). Then, p is a homeomorphism.
(i) Let f: X1 — R be a continuous function. Then, fop: Xo — R is the
unique continuous function such that f o j; = (f o p)o ja.

Proof. Statement (i) alone requires some comments. Indeed, let us first see that
Xo\ jo(M) C p~ 1 (X1 \ j1(M)). Let 5 € Xo \ jo(M). Since jo(M) is dense in Xo,
there exists a net {sq, D, <} in M such that the net {ja(sq), D, <} converges to
x2. By continuity, the net {j1(sq) = (p o ja2)(s4), D, <} converges to p(zz). If this
point occurs in ji (M), then the net {sq, D, <} converges to a point y € M. Since
X, is Hausdorff and the points x5 and ja(y) are limits of the net {j2(sq), D, <},
we conclude that x5 = ja(y) € j2(M), a contradiction. Conversely, suppose there
exists 2 € p~H( X1 \ j1(M)) N ja(M). Then, p(z2) & j1(M), but z2 = j2(y) for
some y € M. This implies p(z2) = p(j2(y)) = ji(y) € j1(M), a contradiction.
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Finally, since p is surjective and p~1(X; \ j1(M)) = Xz \ j2(M), we conclude that
p(X2\ j2(M)) = X1\ j1(M). 0

In the rest of this section, all the involved compactifications will be Hausdorff.
To construct the smallest semialgebraically complete compactification of a semial-
gebraic set we imitate, adapted to the semialgebraic context, the classical method
to construct the Stone-Cech compactification of a completely regular topological
space.

(4.4) Semialgebraic Stone—Cech compactification. Let M C R™ be a semi-
algebraic set. For each semialgebraic function f € S*(M) consider the bounded
interval Iy = [infar(f),supp/(f)] € R, and let J];cg.(ap) Iy which, endowed with
the product topology, is a compact and Hausdorff topological space.

@41) The map ¢ + M = [liesean Ly v = (f(2))res~ur) is a topological
embedding.

To prove this it is enough to check (see [Mul, Ch. 4]) that the ring S* (M) separates
points and closed subsets of M. Indeed, given a point p € M and a closed subset
C C M, let B be the intersection of M with an open ball centered at p of small
enough radius, such that BNC' is empty. Then, K = M\ B is a closed semialgebraic
subset of M containing C' and p ¢ K. From 24 applied to the disjoint closed
semialgebraic subsets C; = K and Cy = {p} of M, there exists f € S*(M) such
that f(p) = 1 and f|x = 0. Hence, f separates p and C, and so ¢ is an embedding.

[@A2) Let us define SM as the closure of ¢(M) in [];cg-(np Iy, which is a

compact set, and let us see that (8)M, ) is a semialgebraically complete compact-
ification of M. Indeed, given g € S*(M) the projection

Ty BIM — Iy CR, (2f)fes-(m) = Tg
is a continuous function and 7, 0 ¢ = g.

(#413) The compactification (52M, o) is the smallest among the semialgebraically
complete compactifications of M (see 3]). To prove this, let (X,4) be another
semialgebraically complete compactification of M. For each f € S*(M), let us
denote ]?: X — R as the unique continuous function such that fo ¢ = f. The
continuous map
VX [ Iz (F@)res-n
fes= (M)

satisfies W o ¢ = ¢, and we just need to check that im W = g2M. This is obvious
since X is compact, (M) and ¢(M) are dense in X and M, respectively, and
Yo = .

Because of EAMAAB] we say that (8.M, ) is the semialgebraic Stone—Cech
compactification of M. The adjective semialgebraic refers to the nature of the
functions expected to be continuously extended and not to the set 8/M, which
very rarely is semialgebraic (see[5I7T). Clearly, by definition, S/M = M if and only
if M is compact.

(4.5) Semialgebraic compactifications. Let M C R™ be a semialgebraic set.
A compactification (X, j) of M is said to be a semialgebraic compactification of
M if j is a semialgebraic map between the semialgebraic sets M and X C R™.
Proposition 1] provides a large family of semialgebraic compactifications of M.
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Our next goal is to compare the semialgebraic Stone-Cech compactification with
the semialgebraic ones.

Proposition 4.6. Let M C R"™ be a semialgebraic set. Then:
(i) Each semialgebraic compactification (X,j) of M satisfies that (X,j) <
(BEM, p).
(ii) Let (Y,i) be a compactification of M such that (X,j) < (Y,i) for every
semialgebraic compactification (X,3) of M. Then, (BMM, ) < (Y,1).

Proof. (i) Write j = (j1,.-.,Jm) : M — X C R™. Since X is compact, each
component j; € S*(M), and we denote by ji : S2M — R its unique continuous

extension, that is, ji o ¢ = ji. Consider the continuous map
p= (1, dm) : BM — R™.

By definition, p o ¢ = j. Hence, p(¢(M)) = j(M) C X and so p(B,M) C X. Since
p(BLM) is closed in X and contains the dense subset j(M), we have p(BiM) = X.
Therefore, (X, j) < (BoM, ¢).

(ii) By 4418] it suffices to prove that (Y, 4) is semialgebraically complete. To that
end, let f € S*(M). By ] there exist a semialgebraic compactification (X, j) of
M and a function F € S(X) such that F oj = f. Since (X, j) < (Y,7) there exists
a surjective continuous map p : Y — X such that po¢ = j. Therefore, the function
G=Fop:Y — Rsatisfies Goi=Fopoi=Foj=f, as wanted. O

We showed in BlB. Tl that (B:M , ®) is a Hausdorff compactification of the semialge-
braic set M. Let us now see that it is the semialgebraic Stone-Cech compactification
of M. This way, we get a new model for such a compactification.

Proposition 4.7. Let M C R™ be a semialgebraic set and consider the canonical
inclusion ¢ : M — BiM, p my. Then, the pair (BiM, ¢) is the semialgebraic
Stone—Cech compactification of M.

Proof. First, observe that for each f € S*(M) the map f: BiM — R, m* s f+m*
is continuous and f = fo ¢ (see BG). In particular (B.M, ¢) is semialgebraically
complete. Next, we show that SiM = B/M, via a homeomorphism ¥ such that
Po¢ = p, where ¢ is the topological embedding defined in [Tl With the notation
of @4 observe that for each f € S*(M),

FBIM) = F(Clysy (6(M))) € Cla(f($(M))) = Cle(f(M)) C Iy.

Moreover, the family of continuous functions {f f € 8*(M)} separates points and
closed subsets of 3.M. Indeed, let n* € 3.M and let C' C 3.M be a closed subset
of BoM such that n* ¢ C. Thus, there exists f € S*(M) such that n* € Dy (f) C

BiM \ C. Clearly, f satisfies ﬂc =0 and f(n*) # 0. Therefore, the map
UM~ [ Iy wte (f(m*) res-(an)
fes*(M)

is an embedding.

To check the equality ¥ o ¢ = ¢, observe that for each point p € M and each
function f € S*(M) we know that f(my) = f+m; = f(p) or, in other words,
Yo ¢ =.
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To finish we must just check that im W = S2M, which follows at once from the
compactness of S.M, the equality ¥ o ¢ = ¢ and the fact that ¢(M) and ¢(M) are
dense subspaces of B:M and M, respectively. O

As a straightforward consequence of and 7] we have the following.

Corollary 4.8. Let M C R™ be a semialgebraic set and consider the canonical
inclusion ¢ : M — BsM, p — m,. Then, the pair (BsM, @) is the semialgebraic
Stone-Cech compactification of M.

Thus, we have constructed three different models of the semialgebraic Stone—
Cech compactification of a semialgebraic set M. We will choose, according to the
involved situation, the suitable model to work with, but we will always denote it by
BiM. Only if a particular question requires more details will we use a more specific
notation.

For the sake of simplicity, given a compactification (X, j) of M we identify M
with its image j(M) and we will write M C X. Moreover, if (X1,J1) < (X2, j2),
there exists a continuous surjective map p : Xo — X; which commutes with the
inclusions. After our identification, we will say that p is the identity on M. More-
over, the remainder S:M \ M of the semialgebraic Stone-Cech compactification of
M will be denoted by OM.

Let us now see an example of a semialgebraic Stone-Cech compactification that
will be used to determine the semialgebraic Stone-Cech compactification of semi-
algebraic curves.

Example 4.9. If M = [0,1) or (0,1), then 5.M = [0,1].

Proof. We just consider the case M = [0, 1) because the other one is similar. It is
clear that X = [0,1] is a semialgebraic compactification of M. By [BCR] 2.5.3],
each bounded semialgebraic function f defined on [0,1) can be extended to [0, 1]
just taking f(1) = limy— f(¢). Thus, X is semialgebraically complete. Hence, by
B4 there exists a continuous surjective map p : [0,1] — SM. Moreover, by E3(i),
p({1}) = p(X \ M) = BiM \ M = OM. Hence, OM is a singleton, and so p is a
continuous bijective map from a compact space to a Hausdorff space. Therefore, p
is a homeomorphism and B;M = [0, 1]. O

The compactification S.M being Hausdorff, it is a normal topological space, that
is, two closed disjoint subsets can be separated by a continuous function. However,
since we are dealing with semialgebraic objects it is desirable to separate closed
disjoint subsets of .M by means of the continuous extension to S.M of some
fesS (M).

Proposition 4.10. Let M C R" be a semialgebraic set. Given two closed disjoint
subsets K1 and Ko ofﬂ:M there exists a bounded semialgebraic function f: M — R
such that ﬂKl =0 and ﬂK2 =1.

Proof. The open subset .M \ K is a union Uier Dprae(9i) with g; € S*(M).
Moreover, since 6:M is compact, Ko C ﬂ:M\Kl is compact too, and so there exists

a finite subset J of I with Ky C U;c; Dgrar(9i) = Dgrar(g), where g = 3., g7
Therefore, \

r=min{g(m): me€ K>} >0 and Dy (g) C |JDgoarlg:) = BM \ K.
el
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Thus, the bounded semialgebraic function f : M — R, = — M satisfies
flx, =0 and f|g, =1. O

(4.11) Locally compact semialgebraic sets. In general topology the locally
compact Hausdorfl spaces are characterized as those spaces which admit a Haus-
dorff compactification by a single point ([Mul 3.29.1]). For our purposes, it will be
profitable to use semialgebraic compactifications by a single point of locally com-
pact semialgebraic sets. On the other hand, it must be pointed out that the local
closedness has been revealed, in the semialgebraic setting, as an important property
for the validity of results which are in the core of semialgebraic geometry. Recall
that the locally closed subsets of a locally compact topological space coincide with
the locally compact ones (see for instance §9.7, Prop. 1 2-13]). Namely,

Lemma 4.12. Let T be a Hausdorff and locally compact topological space. Given

M C T, the following conditions are equivalent:
(i) M is locally closed.
(i) M =UNClp(M), where U =T\ (Clp (M) \ M) is an open subset of T.
(iil) M is a locally compact space.
Remark 4.13. Tf M C R™ is a semialgebraic set, then the sets Clgn (M) and U = R™\
(Clgn (M)\ M) are also semialgebraic. Thus, if M is a locally compact semialgebraic

set, it can be written as the intersection of a closed and an open semialgebraic
subsets of R"™.

Corollary 4.14. Let M C R"™ be a semialgebraic set. The following statements
are equivalent:

(i) M is locally compact.
(ii) The remainder X \ j(M) of each Hausdorff compactification (X, j) of M is
a closed subset of X.
(iil) There exists a Hausdorff compactification (X,j) of M whose remainder
X\ j(M) is a closed subset of X.

Next, we recall some properties of the largest locally compact and dense subset
M. of a semialgebraic set M whose construction is a main goal of 3.8].

Theorem 4.15. Let M C R™ be a semialgebraic set. Define
po(M) = Clgn(M)\ M and  p1(M) = po(po(M)) = Clgn(po(M)) N M.

Then, the semialgebraic set My = M \ p1(M) = Clgn (M) \ Clga(po(M)) is the
largest locally compact and dense subset of M and coincides with the set of points
of M which have a compact neighbourhood in M.

Corollary 4.16. Let M C R"™ be a bounded noncompact semialgebraic set. Then,
the semialgebraic set Clgn (M) \ (Clgn (p1(M)) U M) is nonempty.

Proof. Suppose by way of contradiction that Clgn (M) = Clgn(p1(M)) U M. Sub-
tracting M on both sides we get

po(M) = Clgn (M) \ M = Clgn (p1(M)) \ M C Clgn(p1(M)) = Clgn (po(po(M))).
But this is impossible, because by [BCR] 2.8.13],
dim Clgn (po(po(M))) = dim po(po(M)) < dim po(M),

and we are done. O
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Now, we show that each locally compact semialgebraic set admits a semialgebraic
compactification by a single point. Namely,

Lemma 4.17 (Semialgebraic compactification by a single point). Let M C R™ be
a locally compact but not compact semialgebraic set. Then,

(i) There exists a semialgebraic homeomorphism between M and a closed semi-
algebraic subset of R™TL.

(ii) There exists a semialgebraic homeomorphism ¢ : M — o(M) C R"*2 such
that o(M) C R"*2\ {0} and Clgn+2(0(M)) = o(M)U{0} is a compact set.

Proof. (i) Since locally compact semialgebraic subsets of R™ are locally closed, the
statement follows from 2.2.9].

(i) Identify R™™! with the hyperplane {z,12 = 0} € R""2 and consider a
stereographic projection

n+1
¢>:5:{xeRn+2: fo+(xn+2+1)2:1}\{0}—>R”+1.
i=1

Let us denote ¢ : M — (M) C R**! as a semialgebraic homeomorphism, where
(M) is a closed semialgebraic subset of R"1. Hence, the composition ¢ = ¢~ o)
does the job. O

Finally in this section we present a class of semialgebraic sets whose semialgebraic
Stone-Cech compactification is (homeomorphic to) a semialgebraic set. In fact, as
we will prove in[B.17 this is the class of those semialgebraic sets whose semialgebraic
Stone—Cech compactification is a semialgebraic set.

(4.18) For the time being, given a semialgebraic set M C R", we denote by
Mz2={peM: dim, M > 2} the set of points of M of local dimension > 2. We
refer the reader to 2.8.10-11] for further details about the local dimension of
semialgebraic sets. This set M =2 turns out to be semialgebraic, and there exists a
closed semialgebraic subset L C M of dimension < 1 such that M = M 22y L and
M=2 N L is either empty or a finite set (see for instance [FG4, 2.7(ii)]). In fact, L
is the closure in M of the set of points of M of dimension < 1. Also recall that by
2.7(iii)], if M=2 is compact, then M is locally compact.

Proposition 4.19. Let M C R™ be a semialgebraic set such that M=? is compact.
Then, B:M is homeomorphic to a semialgebraic set and OM is a finite set.

Proof. If M is compact there is nothing to prove. Thus, in what follows we as-

sume that M is not compact. By I8 we may write M = M=2 U L, where the

semialgebraic set L is the closure in M of the set of points in M of local dimen-

sion < 1; in particular, M=% N L is either empty or a finite set. Since M=? is

compact, M is locally compact and we may assume, by 17 that M U {0} is com-

pact. Next, by m 9.3.6], there exist € > 0 and a semialgebraic homeomorphism

B,.(0,¢) — B, (0,¢) such that:

() le)ll = [lyll for every y € B, (0, ¢),

(ii) @lsn-1(0,) is the identity map,
)

o Y (M NB,(0,¢)) is the cone with vertex 0 and basis M NS"~1(0, ), with
its vertex excluded.

(iii
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Let us also denote ¢ : R — R™ as the extension of such homeomorphism to
the whole R™ using the identity map outside B,,(0,¢), and identify M with ¢(M).
Notice that since M=? is compact, {0} is adherent to L but not to M=2, and so
M NS"1(0,¢) is a finite set. This allows us to write M as the union of a compact
semialgebraic set Z = M N (R™\ B,,(0,¢)) and finitely many segments C1, ..., C,,
which are Nash diffeomorphic to [0,1) and whose closure connects the irreducible
components of the finite semialgebraic set Z N S"71(0,¢) with the origin. Now
consider the semialgebraic set C' written as the disjoint union C' = Cy U --- U C). of
its connected components C;. Since Z is compact, C is closed in M and M = ZUC,
we have

BiM = Clgryp (M) = Clgry(C) U Clgrps(Z) = Clgep (C) U Z

and Clg=,(C) = B.C' (see BIH). To simplify notation we identify the last two
spaces and write B:M = ﬂ:C U Z. Thus, since C' is closed in M, we have

OM = B;M\ M = (B,CUZ)\ M = 8,C\ C.
On the other hand, by B.TIG] B:C can be written as the disjoint union
BiC = BCyU---UBLC,,

and, by B3, each $.C; is homeomorphic to [0, 1] and dC; is a singleton. Moreover,
since each C} is closed in C,

OM =0C =B.C\C=| |gCi\Ci=| |oc,
i=1 i=1
and, in particular, M is a finite set. Even more, M is semialgebraically homeo-
morphic to My = M\B,,(0,£/2) and 5. My = S:M is homeomorphic to Clgn+2 (M),
which is a semialgebraic set. t

Remark 4.20. Roughly speaking, if the semialgebraic subset M=2? C M is compact,
then the semialgebraic Stone-Cech compactification 3.M is obtained by adding to
M a different ending point at each open half-branch of M. In particular, if M is a
semialgebraic curve, then M=? = @ is a compact set. Thus, applies to M and
SO B:M is homeomorphic to a semialgebraic set.

5. TOPOLOGICAL PROPERTIES OF THE REMAINDER

The analysis of the topological properties of the remainder of the Stone-Cech
compactification of a completely regular topological space comes back to the pioneer
work of Gillman—Jerison (see [GJ, §6, §9, §10, §14]). We study in this last section
the same kind of properties in the semialgebraic context, paying special attention
to the finiteness of the number of connected components of 9M = M \ M. Notice
that the remainder is rarely a semialgebraic set. In fact, this happens if and only
if M is a finite set (see BIT).

(5.1) Connected components of 9M. We first prove the finiteness of the
number of connected components of the remainder M of the semialgebraic Stone—
Cech compactification of a semialgebraic set M. In fact, we prove a stronger result,
namely, the existence of a semialgebraic compactification X of M whose remainder
X \ M shares the number of connected components with 9M. Moreover, in case
M is locally compact we show that such a number coincides with the number of
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connected components of the germ at infinity of M, where it is seen as a subset of
its one point semialgebraic compactification (see EIT]).

We will first observe that in fact the number of connected components of IM is
greater than or equal to the number of connected components of X \ M for every
semialgebraic compactification X of M.

Lemma 5.2. Let X C R™ be a semialgebraic compactification of a semialgebraic
set M C R™. Then, the number of connected components of OM is greater than or
equal to the number of connected components of X \ M.

Proof. By [0 there exists a surjective continuous map p : ﬂ:M — X which is the
identity over M. By H3l the restriction plgy : OM — X \ M is continuous and
surjective. Therefore, the inverse image of each connected component of X \ M is
open and closed in 9M; hence, it is a union of connected components of 9M. This
proves the result. O

For our purposes it will be fruitful to use some properties concerning the density
in OM of the collection M of all free maximal ideals associated to semialgebraic
paths. Namely

(5.3) Free maximal ideals associated to semialgebraic paths. Let M C R”
be a semialgebraic set and let « : (0, 1] — M be a semialgebraic path which cannot
be extended to a continuous map [0,1] — M. By [EGI], 2.5], the set

m, = {f € §"(M) : lim(f 0 a)() = 0}

is a maximal ideal of $*(M). Since « cannot be extended to a continuous path
[0,1] — M, the ideal m? is free.
The collection of all free maximal ideals of S*(M) defined as above is denoted

by OM (see [Fe2] for further details), and as we will see it is a dense subset of M.
In fact, we have:

Proposition 5.4. Let M C R™ be a semialgebraic set. Then:

(i) Let f1,...,fr € 8*(M), and for each i = 1,...,r letfi : BS*]\{ — R be
the unique continuous extension of f; to BiM. Then, (f1,..., f)(OM) =
(fios ) (OM).

(ii) The set OM is dense in OM.

Proof. All along the proof we may assume, by 2] that M C B,(0,1).

(i) Let m* € OM. Since Clgn (M) is a semialgebraic compactification of M, there
exists a surjective continuous map p : ﬂ:M — Clgn (M) which is the identity on M.
By 3] po = p(m*) € Clgn (M) \ M. Consider the proper map

U= (pf): M = R""

where we abbreviate f = (f1,..., fr) and f = (ﬁ,,ﬁ) The image of the
restriction W[y is the graph I' of f because f;(my) = fi(p) for each p € M, and
since ¥ is proper one gets

Let qo = U(m*) = (p(m*), f(m*)) = (po,a0) € Clgusr () \ T C R™ x R"; see
[3(i). By the Curve Selection Lemma [BCR], 2.5.5], there exist semialgebraic paths
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a:[0,1] — R™ and v : [0,1] — R" such that a((0,1]) C M, v|, 1) = (f o @), 1
and («(0),v(0)) = (po, ap) = qo- Finally, we deduce that

ao = v(0) = lim (1) = lim(f 0 a)(t) = f(m}),

where m?, € OM because limy_, a(t) = py & M.
(ii) We have to check that for every f € S*(M) such that Dgy(f) ¢ M, the

intersection Dy, (f) N OM # @. Otherwise, M C Zgm(f), and we consider

the continuous function ]?: BiM — R such that ﬂM = f. Then, by part (i),
{0} = f(OM) = f(OM), or equivalently, Dg=;(f) C M, a contradiction. O

Now, we compute the number of connected components of 0M for a semialgebraic
set M C R" which is comprised in between an open ball and its closure in R™.
Namely, we obtain the following result whose proof is inspired in [GJ], 6.10].

Lemma 5.5. Let us abbreviate B = B,,(0,1) and B = B, (0,1), and let M C R"
be a semialgebraic set such that B C M C B. Then, the number of connected

components of OM equals the number of connected components of the semialgebraic
set B\ M.

Proof. First, by 5.2 the number of connected components of B\ M is less than or
equal to the number of connected components of OM.

To prove the converse inequality let p : ﬁ:M — B be the unique continuous
surjective map whose restriction to M is the identity. It is enough to check that
given two points mj,m5 € OM such that p = p(m}) and ¢ = p(m3) belong to
the same connected component C' of B\ M, then m} and mj belong to the same
connected component of OM.

Indeed, by [BCR], 2.4.5, 2.5.13], there exists a semialgebraic path a : [0,1] — C
connecting p with ¢. Let Y = «([0,1]) C C, which is a compact semialgebraic set.
By [22] there exists u € S*(R™) such that Zgn(u) = Y. It suffices to prove that
the set 7' = Z g+, (u|pr) is connected, since it contains mj and m3. This last is so
because

m; € p " (Zen (u)) = Zgar(uop) = Zgma(ulp) =T
Note that T" C 9M, because Zy;(u) = &. Moreover, T' is compact because it is a
closed subset of M.

(EEX11) Suppose that T is not connected. Then, there exist two disjoint nonempty
closed subsets C1,Cy C T such that T = Cy U Cy. Of course, both C; and Cy
are also open subsets in 7T'. Thus, there exists a family of semialgebraic functions
{fitier € S*(M) such that C1 = T'NU;c; Dy (fi) Since Ch is compact, there
exists a finite set J C I such that
Ci=Tn U Dgp(fi) =T N Dgepg(f),
icJ

where f =Y., f? € 8*(M). Therefore, the semialgebraic function gy = u?+ f? €
S§*(M) satisfies C2 = Zg+/(g2). With the same argument, there exists a function
g1 € 8*(M) such that C1 = Zg+;(g1). Since C1 and Cy are disjoint, the sum
g3 + g3 is a unit in S*(M). Therefore, its inverse h = 1/(g? + g35) € S*(M). The
unique continuous extension a : 6:M — R of the bounded semialgebraic function
h1 = gih = g3 /(93 +g3) € S*(M) vanishes identically on C; and 71]02 =1. ByE4
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there exist two semialgebraic paths ay,as : [0,1] — R™ such that «;((0,1]) C M,
a1(0) = p, a2(0) = ¢ and

0 ifi=1,

lim (hy 0 ;) (s) = { 1 ifi=2.

s—0

(EH2) For each positive integer m > 2, consider the open semialgebraic neigh-
bourhood V;,, = {& € M : dist(z,Y) < 1/m} of Y in M. Pick two points a,, €
B, (p,1/m)Nai((0,1]) and by, € B, (g, 1/m) Naz((0,1]) satistying

a1((0, a1 (am)]) € Ba(p,1/m) and  ax((0,a3 " (bm)]) C Bulg, 1/m).

Consider, for each A € [0,1], the connected semialgebraic set Yy = {A\z : z € Y},
which is semialgebraically path connected by [BCR] 2.5.13]. Take A, = 1 — 5&
and choose two points ¢, € B, (p,1/m)NY,,, and d,, € B,(q,1/m)NY,, . Since
both sets B, (p, 1/m)N B and B, (¢, 1/m)N B are semialgebraically path connected,
there exist semialgebraic paths

m :[0,1] = Bn(p,1/m)N B and 02 :[0,1] = Bn(g,1/m) N B

which connect, respectively, a,, with ¢, and b, with d,,. Next, since Y,  is semial-
gebraically path connected, we find a semialgebraic path 75 : [0, 1] — B connecting
¢m and d,,. By suitably gluing the previous semialgebraic paths al‘(&a;l (am)]?
N1, N3, N2 and a2|(0,a;1(bm)] we construct, for each m > 2, a semialgebraic path
Ym ¢ (0,1) = M such that

im~y, C Vi, llg%(hl °Ym)(s) =0, and 213%(}“ ovm)(s) = 1.

Hence, for each m > 2, there exists a point ¢, € V,,, such that hq(g,,) = % By the
compactness of B the set @ = {gm }m>2 has a cluster point ¢y € B. In fact, gg € Y,
because lim,, 1o d(¢m,Y) = 0 and, of course, we may assume that {gm }m>2
converges to go. Thus, u(qy) = 0 since ¢o € Y, and so the sequence {u(gm)}m>2
converges to 0.

On the other hand, B:M being compact, there exists a cluster point m* € ﬁ:M of
Q. Since {u(gm)}m>2 converges to 0, the unique continuous extension u : fiM — R
of u satisfies u(m*) = 0. Therefore, m* € T, and a(m*) = 1/2 because hi(qy,) =
1/2 for all m > 2. This is a contradiction because hq|r just takes the values 0 and
1. Thus, T is connected, and we are done. 1

For our purpose of computing the number of connected components of the re-
mainder M we use the results about triangulations of compact semialgebraic sets
already introduced in

Lemma 5.6. Let M C R™ be a semialgebraic set. Then, OM has finitely many
connected components.

Proof. First, by Bl we may assume that M is bounded and so X = Clgn (M)
is compact. By 2] there exist a finite simplicial complex K = (0;)?_; and a
semialgebraic homeomorphism @ : |K| — X such that M is the union of some
®(0?). We may assume that ®(c?) N M # & exactly for i = 1,...,s. This implies,
by the choice of |K|, that ®(¢?) C M fori=1,...,s. Hence,

B(0)) C Si = MN&(a;) C (o)
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for i = 1,...,s. Note that S; is a closed subset of M for i = 1,...,s and that
M =J;_, Si. Then, B;M = |J;_; Clg=y,(S;) and since S; is closed in M, we get
OM = U;_, (Clgps(Si) \ Si). By BIHL Clgey, (i) \ S; is homeomorphic to BiSi\ S;.
Thus, all reduces to check that [3:Si \ S; has finitely many connected components
fori=1,...,s. But this follows from and the fact that a simplex is a compact
semialgebraic manifold with boundary, semialgebraically homeomorphic to a closed
ball of its same dimension. O

After and it is a natural question to decide if the number of connected
components of M equals the number of connected components of the remainder
of some semialgebraic compactification of M. We answer this question in the affir-
mative in (.8, whose proof is rather involved. Before that we need a preliminary
result.

Lemma 5.7. Let N C M C R" be semialgebraic sets such that N is closed and
nowhere dense in M. If OM # @, then OM ¢ Clg=,(N).

Proof. First, by 2 we may assume that M is bounded. Since M # &, M is not
compact, and so there exists a point p € Clgn (M) \ M. Moreover, since M \ N
is dense in M, we have Clgn (M \ N) = Clgn(M). Thus, by the Curve Selection
Lemma [BCR], 2.5.5] there exists a semialgebraic path « : [0,1] — R™ such that
a(0) = p and C = «((0,1]) € M \ N. Note that C is a closed semialgebraic
subset of M disjoint with N. Hence, by [Z4] there exists f € S*(M) such that
fle = 0 and f|y = 1. In particular, the continuous extension f: BiM — R of f
satisfies that m7, € Clg,(C) C ZﬂjM(f) and Clg(N) C Zﬁ:M(f— 1). Therefore,
m?, € OM \ Clgrp(N), as wanted. ‘ “ O

Theorem 5.8 (Realization of the connected components of S.M). Let M C R™ be
a semialgebraic set. Then, there exists a semialgebraic compactification X C R™
of M such that the number of connected components of OM equals the number of
connected components of X \ M.

The next example was inspiring for the proof of

Example 5.9. Consider the semialgebraic sets
Qr={-1<z+ky<l, -1<z—-ky<1}

for k=1,2. Let M = Q1 \ ((—1,1) x {0}) and My = (@1 \ Q2) U{(-1,0),(1,0)}.
Notice that M and M; are semialgebraically homeomorphic; thus, B:M = 6:M1.
By B2 the number of connected components of OM = dM;, which is the number of
connected components of Clgz(M7)\ My, is > 2. On the other hand, M = C; U Cs,
where each C; = M N {(—=1)"y > 0} is a closed subset of M. Notice that, by
BId oM = 0C; U dCy and, by .5 9C; is connected for i = 1,2. Thus, the
number of connected components of M is 2 and X = Clgz(M;) is a semialgebraic
compactification of M whose remainder X \ M; has the same number of connected
components as OM.

Proof of Theorem We divide the proof into two steps. First, we claim:

Step 1. Let C be a union of connected components of M and let B = 9M \ C
be the union of the remaining connected components of M. Then, there exists
f € 8*(M) such that f|c =0 and f is strictly positive on B.
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Once this is done we will finish with:

Step 2. There exists a semialgebraic compactification X C R™ of M such that the
number of connected components of M equals the number of connected compo-
nents of X \ M.

In fact, suppose for a while that Step 1 is proved and recall that M has, by 5.6
finitely many connected components, say Cq,...,Cy. For each index i = 1,...,¢,
define B; = |J iz C;. Since C; and B; satisfy the hypothesis of Step 1 there exists
fi € 8*(M) such that ﬁ|c =0 and ﬁ-|Bi is strictly positive. By 1] there exist
a semialgebraic compactification X = Clgn+e(graph(f1,..., f¢)) of M and for each
index 7 a semialgebraic extension fz : X = Rof f;. By[[ZGl there exists a surjective
continuous map p : B:M — X which is the identity on M and f, = ﬁ op. Moreover,
the restriction plgy : OM — X \ M is proper and surjective, as we proved in 3]
and so each image p(C;) is connected and closed in X \ M. Thus, by B2 all reduces
to check that p(C;) N p(C;) = @ for i # j. Suppose there exists a common point
z € p(C;) N p(Cj). Then, fi(z) = 0 because z € p(C;), but fi(z) > 0 since
x € p(B;), a contradiction.

(B3R1) Therefore, all reduces to prove Step 1. First, by BIl we may assume as
always that M is bounded and, by 6] there exists a continuous surjective map
p:BeM — X = Clgn (M) which is the identity on M. By @3l p(OM) = X \ M.

We apply to the compact semialgebraic set X = Clgn (M) and the family of
semialgebraic sets F = {M, X \ M, M,.,Y = M \ M}, where M, is the largest
dense and locally compact semialgebraic subset of M (see dI5]). Thus, there exists
a semialgebraic triangulation (K, ®) of X compatible with F such that, for each
simplex o € K which is not a face of other simplex of K, either ¢ C ®~1(M) or
there exists a proper face 7 of o satisfying 7° C o\ @~ 1(M) C 7.

To simplify notation we identify in what follows X and the elements of F with
their respective inverse images under ®. Note that X is the union of the closed
simplices o which are not a face of another simplex of K, and we denote them by
01y...,05.

For each i = 1,...,s, the intersection S; = o; N M is a closed subset of M
such that either S; = o; or S; C o; and there exists a proper face 7; of o; with
™ Co; \ M C 7;. By Bl we may identify 6:5,» = Clg:M(Si)7 and in this way, S;
being closed in M, we get »

8S; = B8\ Si = B.8i \ M = B.8; N (B:M \ M) = B,S; N dM.

Both intersections CNAS; and BNAOS; are either empty or finite unions of connected
components of 35;, because B and C' are open and closed subsets of M. On the
other hand, each 0S; is, by and 55 connected, because o; \ S; is connected
too. Hence, for each index i = 1,..., s either CNAJS; = & or CNIS; = 95;, which
is connected. Also the intersections B N 9dS; for i = 1,...,s are either empty or
coincide with 95S;, and, whenever 0S; is nonempty, B N dS; = 05, if and only if
CnNos; =o.

Consequently, we may assume that C N 9S; = 995; # @ just fori =1,...,r < s,
BNoS; =0S; #Jjustfori=r+1,....;t<sand 90S;, =@ fori=¢t+1,...,s.
Moreover, C' = J;_, S; and B = {J;_, ., 9S;.

(ER82) On the other hand, ¢ is an open subset of M for i = 1,...,s, because
o; is not a face of another simplex of K. In particular, since M. is dense in M
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and (K, ®) is compatible with F, we deduce that o) C M. fori =1,...,s. Thus,
Y; =YNS; = S;\ My is closed and nowhere dense in S; because it does not intersect
0?. Hence, from (.7 it follows that 05; ¢ Clgepr (Y3) = Clg=p (Si) N Clgrp (Y) for
i =1,...,t, where the last equality follows from [3.T14l

(BR13) After this preparation we introduce the numerical invariant
o = max{ht(m*) : m* € C} < dim M

and we proceed by induction on ¢c. Notice that, by 7.2], {c > 1, and we are
going to prove first that Step 1 holds true in case ¢ = 1.

ER4) Fixi=1,...,r and let us see that S; has dimension 1.

By there exists m* € 95; \ Clg-,(Y) C C. Then, p(m*) =p € o; \ S;.
Clearly, m* & Clﬁs*M(B) because B and C' are closed disjoint subsets of OM. By
10 there exists g € S*(M) with g(m*) = 1 and ‘/g\|015*1\4(BUY) = 0; let I = graph(g)
and X; = Clgn+:1(T). By Bl there exists g € S*()El) such that g o (7|r) = g|r,
where 7 : R"*! — R™ is the projection onto the first n coordinates. Since X, is
a semialgebraic compactification of M there exists, by B0l a continuous surjective
map v : f.M — X; which is the identity on M. A straightforward computation
shows that p = m oy (see ER). Then, the point ¢ = vy(m*) € X, satisfies
w(q) = n(y(m*)) = p(m*) = p, and so dim, X; > dim, X. Moreover, g(q) =
g(y(m*)) = g(m*) =1 and

q € v(0S; \ Clﬁ:M(Y)) C Clx, (Sz) \ (Sl U Clx, (Y)) c Xy \ (M UCly, (Y))
By 7.1], there exists a maximal ideal n* € OM such that g ¢ n* and
ht(n*) = dimy X7 > dim, X > dim,, S; = dim S; > 1.

On the other hand, n* € C = M \ B, because g ¢ n* and g|p = 0. Whence
ht(n*) < ¢c =1, and this implies dim S; = 1.

Once is proved, we approach the proof of Step 1 in case /o = 1. Recall
that we must construct a function f € S*(M) such that ﬂc =0 and f| B is strictly
positive. To that end, we write M = M22 U L, where MZ? is the set of points at
which M has local dimension > 2 (see [II]]) and L is the closure in M of the set of
points at which M has local dimension < 1. In fact, M=% N L is either empty or a
finite set.

Since M=? and L are closed semialgebraic subsets of M, we may write, by using
BIHE, B:M = Clge (M=2) U Clgo, (L) = M=% U BL. Since dimS; = 1 for
i =1,...,7 and each o; is not a face of another simplex of K, we deduce that
S; C Lfori=1,...,7. Thus, C C OL, and this last is a finite set (see l220)) with,
say, ¢ elements, that we denote 0L = {m} : 1 < k < ¢}. Moreover, by BI1H[ii), we
have

BM=? 1 BIL = Clgep (M=) 0 Clgpy (L) = Clgy (M= N L) = MZ* N L,

because M=% N L is a finite set. Hence, L N ;M=% C (MZ?N L)\ L = @ and so
Cc 8L\B:M 22 Since L is a semialgebraic curve, B:L is also a semialgebraic curve
(see L20). In fact, one can check that for each point m; € 9L there exists a closed
semialgebraic subset A, C L\ M=2? = M \ M=2 of M, which is homeomorphic to
the interval [0,1), and such that Clg-;(Ay) is a neighbourhood of mj; in BiM. We
may also assume that the neighbourhoods Ay are pairwise disjoint. By there
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exists f € §*(M) such that
1 ifmy &C,
0 ifmyed.

flaz2 =1 and  f|a, :{

Thus, ﬂB =1>0and ﬂc = 0. This finishes the proof of Step 1 in case ¢c = 1.

(BE35) Suppose that Step 1 is true for £o < d — 1 and let us see that it is also true
for bc = d.

Indeed, let G = |J._, o which is an open subset of M. For each i = 1,...,r,
consider the skeleton ¢; = 0;\0? of o; and let E; = ¢,NM = ¢;NS;, which we call the
skeleton of S;. By the choice of the triangulation (K, ®) in (.80 dim E; = dim S;—1

fori=1,...,r. Let us define the following closed semialgebraic subsets of M:
s t s s
M1 = U Si7 M2 = U SZ and M3 = U SZ = U ;.
i=1 i=r41 i=t41 i=t41

Notice that Mjz is compact and OM = M, U OMs, with C = OM; and B = 0M,.
Let £ = U:Zl E; C M, which is a closed subset of M of dimension dim EF =
dim My — 1. Thus,

Cy=0F COM; =C and M():M\G:EUMQUM;),.

Therefore, OMy = OFE U 0Ms = C; U B. Our next goal is to see that o, =
lc — 1. To that end it suffices to prove that /o = dim M;. Once this is done, and
proceeding similarly with the suitable simplices which constitute E, one deduces
lo, =dimE = dim M; — 1 = (¢ — 1.
(ER6) We begin by proving that /¢ < dim M;. Let m* € C' = 9M; be a maximal
ideal of §*(M). Then,

m* € ClB:M(MQ @] Mg) = M2 U M3 U B,
because M = M; U My U M3, OM3 = @ and B = 0M>. By there exists
g1 € S*(M) such that §1|Clﬁ*NI(M2UM3) =0 and §1(m*) =1. Let Po g s g P = m*
be a chain of prime ideals of S*(M) which does not admit refinements and such
that ¢ = ht(m*). For each j = 1,...,¢, let f; € p; \ pj—1. By EIl there exist
a semialgebraic compactification X5 of M and bounded semialgebraic functions
g2, F; € §*(X3) such that g2|ar = g1 and each Fj|y = f;. Therefore, the prime
ideals q; = p; N S(X2) satisfy F; € q; \ qj—1, and so there exists a chain of prime
ideals qo € -+ € q¢ = m% in S*(X>) for some point © € X, such that go(x) # 0.
This last is so because g1 (m*) = 1 implies g1 ¢ m*. Hence, x € X5\ Clx, (MaUM3),
because gl‘CIB;M(MzuMg) = 0. Moreover, from [FG2| 4.2], ht(m?) = dim, X5, and

X2\ Clx, (M2 U Ms)
= Clx, (M; U My U M3) \ Clx, (My U Mj3) = Clx, (M) \ Clx, (M U Ms).
Consequently,
ht(m*) < ht(m}) = dim, X5 = dim, (X3 \ Clx, (M2 U M3))
= dim,, (Clx, (M) \ Clx, (M2 U M3)) < dim Clx, (M;) = dim M,
which implies /¢ < dim M.

BR7) We must now prove the converse inequality ¢c > dim Mj; hence, the
equality /¢ = dim M;. To that end it suffices to show the existence of a maximal
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ideal n* € C such that ht(n*) = dim M;. After reordering the indices i = 1,...,r
we can suppose that dim M; = dim S;. Let us choose a point

P E Can(Sl) \ S| C Can(U?) \O‘?

By the Curve Selection Lemma [BCR], 2.5.5] there exists a semialgebraic path « :
[0,1] — R™ such that a(0) = p; and a((0,1]) C of. Note that as we observed in
B3R oY NY = @ and so a((0,1]) € M \ Y. By [Z4 there exists g3 € S*(M) such
that g3 oa =1 and gs[pn o0 = 0. Thus,

my, € M\ (Sy U Clgey (M \ S1) U Clgey (Y)) € 051\ Clgy (V).

By [T there exists a semialgebraic compactification X3 = Clgn+1(graph(gs)) C
R™! of M such that g3 admits a semialgebraic extension to X3. Using B3] once
more there exists a semialgebraic extension g3 of g3 to the whole R*!. By 8]
there exists a continuous surjective map =1 : ﬁ:M — X3 which is the identity on
M. Then, if 7 : R""' — R"™ denotes the projection onto the first n coordinates,
p =mo~y and the point ¢; = y1(m})) € X3 satisfies 7(¢1) = p1. Hence, dim,, X3 >
dim,, X. Moreover, g5(¢1) = g3(71(m})) = gz(m}) = 1. Note that, S; being closed
in M, we have Clx,(S1)\ S1 € X3\ M, and so

q1 € 11(051\ Clﬁ:M(Y)) C Cly, (S1)\ (S1 U Clx, (V) c X3\ (MU Clx, (Y)).
By [Fell, 7.1], there exists a maximal ideal n* € OM such that g3 & n* and
ht(n*) = dim,, X3 > dim,, X > dim, S; = dim S; = dim M.

Since g3 ¢ n*, then n* & B C Clg=y, (M \ S1) C Zg74(g3), and this implies n* € C'.
Thus,

and we conclude /¢ = dim My, as claimed.

(ER18) Applying the inductive hypothesis to Cy there exists a € S(M \ G) such
that @|c, = 0 and a|p is strictly positive. Thus, it is enough to check that we can
extend a to a bounded semialgebraic function b : M — R such that 8|C =0.

The restriction a; = a|p, admits, by 23] a semialgebraic extension 4; € §*(.5;).
By ET] there is a semialgebraic compactification T; = Clgn+1(graph(A4;)) of S; to
which we can extend A;. Let us denote by a; the semialgebraic extension of a; to
Clr, (E;). Moreover, by the uniqueness of the continuous extensions, the function
a; 6:Ei — R factorizes through Clr, (E;) C T; via a;. Thus, a; vanishes identically
is a closed subset of T; and a;|g,n(1,\s,) = @ilg,\s; = 0, there exists, by 2.3l a
semialgebraic function G; € S*(T;) such that G|, = a; and Gi|p,\s, = 0. Thus,
extending a by G;|g, on each S; for i =1,...,r, and since

SiﬁSj :O'iﬁUij:qmejﬂM:EiﬂEj
for 1 < i< j <r, we get the desired function b € S*(M) with the property that

6|c = 0. Since b extends a, we also know that 3| B is strictly positive, and we are
done. (]

(5.10) Connected components of M for locally compact M. Next, we ex-
plain how to compute the number of connected components of OM for a locally
compact semialgebraic set M by means of its one point semialgebraic compactifica-
tion. Since M is locally compact, we may assume, by .T7] that MU{0} is a compact



3506 JOSE F. FERNANDO AND J. M. GAMBOA

set. Next, by 9.3.6], there exist € > 0 and a semialgebraic homeomorphism

v :B,(0,¢) = B,(0,¢) such that:

(i) el = lly|l for every y € B, (0, ¢),

(ii) @lsn-1(0,) is the identity map,
)

0 Y (M NB,(0,¢)) is the cone of vertex 0 and basis M N S"~1(0,¢), with
its vertex excluded.

(iii

Let us also denote ¢ : R" — R™ as the extension of such homeomorphism to the
whole R” by using the identity map outside B,, (0, &), and we identify M with ¢(M).
After this preparatory work, and with the notation above, we enunciate:

Theorem 5.11. Let M C R" be a locally compact semialgebraic set embedded in
R™ as stated in B.I0. Then, the number of connected components of OM coincides
with the number of connected components of M NS"~1(0, ), which also equals the
number of connected components of the germ My of M at the origin of R™.

Before proving this, we need a preliminary result inspired in [GJ, 6.10] which is
quite similar to but simpler.

Lemma 5.12. Let X C R™ be a compact and connected semialgebraic subset of the
unit sphere S*"1(0,1). Let Yo = {tz € R" : x € X and t € [0,1]} be the cone of
basis X and vertex the origin of R™, and let M = Yy \{0}. Then, OM is connected.

Proof. First note that Y is the image of the continuous map
[0,1] x X = R"™, (t,x) — ta.

Hence, Yy is compact and therefore M is locally compact. Thus, by [£4] M is open
in B2M and so OM is a compact set. Suppose that dM is not connected. Then, there
exist two disjoint nonempty closed subsets C1,Cy C OM such that OM = Cy U Cs.
Proceeding similarly to BEII there exists hy € S*(M) whose unique extension
Iy : BiM — R to BiM vanishes identically on C; and 71:\02 = 1. By[B4 there exist
two semialgebraic paths oy, s : [0,1] — R™ such that «;((0,1]) € M, «;(0) =0
and

i (o)) 0 ifi=1,
im owy)(s) =
500 1 ifi=2.

Denote X; = {tz : € X} for each ¢t € [0,1], which is a connected semialgebraic
set since X is as well. Thus, each X, is, by [BCR] 2.5.13], semialgebraically path
connected. On the other hand, let § > 0 such that im«; N X, is not empty for
all0 <t <dandi =1,2. Fix 0 < t < § and take p;; € ima; N X; such that
@i(s) € Une(o, ) X forall s € (0,0, *(pir))-
Since X; is semialgebraically path connected, there exists a semialgebraic path
:10,1] — X¢ with 14(0) = p1; and v4(1) = pg;. By suitably gluing the semialge-
bralc paths a1|(0 ar (o)) Vi and «s] 0, a5 (par)) W€ construct, for each 0 < t < 9,
a semialgebraic path v :(0,1) = M such that

im~y; C U X, 1i_r>%(h1 ov)(s) =0, and 1E(h1 ov)(s) =1.
XE(0, t) ) ‘

Hence, for each 0 < t < 6, there exists a point g; € U)\G(O_’t) X such that hi(gq:) =
1/2. Notice that for every 0 < t < ¢, we have ||qt|| = )\ for some 0 < A < t. By the
compactness of 3.M there exists a cluster point m* € dM of the set {g; : 0 <t < §}.
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Thus, 71\1(111*) = 1/2, and this is a contradiction because E|3M just attains the
values 0 and 1. Consequently, OM is connected. O

Proof of Theorem 11l We keep the notation introduced in statement BI0l Let
X = Clg« (M \ B, (0,¢)), which is a compact set. Let Mj, ..., M, be the connected
components of M NB,(0,¢). Note that each M; U {0} is a cone with vertex the
origin and whose basis is a connected component of M N S"~1(0,¢). Conversely,
given a connected component C; of M NS"~1(0,¢), let K; be the cone with vertex
the origin and basis C;. Then, K; \ {0} is a connected component of M NB,, (0, ¢)
and we may assume that K; = M; fori=1,...,r.
We write M = X UN, where N = M; U ---U M,. Hence,

BM = Clg (X) U Clgep (N).

Notice that, by B £.X = Clgsp(X) and BN = Clgeas (V) because X and N

are closed in M and, since X is compact, B:X = X. Therefore, after identifying
BN with Clg;(N), we have S;M = X U BN, and since Clg,(N)N M = N,

OM = f.M\ M = (X UBN)\ M = N\ N =0N.
Now, by BB, BiN = BiM; L - - - U BiM,., and therefore
OM = (B;My \ My) U+ U (BIM, \ M,) = OM; U -+~ U M,

Each M; is locally compact since it is a closed subset of the locally compact space
N. Thus, OM; is compact and therefore it is closed in M. Consequently, the
disjoint sets OM; are open and closed in M. Hence, the connected components
of OM are the collection of all connected components of the sets dM;. Thus, all
reduces to check that each 9M; is connected. This follows at once from .12 because
M; U {0} is the cone with vertex the origin and basis a connected component of
M NS"1(0,¢). O

Once we know that the number of connected components of the remainder OM
is finite (see [1.6l), we are ready to prove that it is also locally connected. Moreover,
we will also determine under what conditions on M the remainder OM is locally
compact.

(5.13) Local connectedness and local compactness of 9M. Let M C R™ be
a semialgebraic set. We begin by proving the local connectedness of OM.

Proof. Let m* € OM and let V be an open neighbourhood of m* in M. Since .M
is locally compact, there exists f € S*(M) such that

Moreover, as one can check almost straightforwardly,
Clgear (D (f)) = Clgeag (D (f))-
Next, consider the semialgebraic set T' = Cla (D (f)) = Clgep (Dae(f)) N M. By

BIE BT = Clg=p (T) C B:M. Moreover, since T is closed in M, Clgep (T)NM =T
and so

OT = BT\ T = Clgep(T) \ M = Clygep (T) N OM = Clgep, (D (f)) N OM

has, by B.6], finitely many connected components, C1,...,C,, which are therefore
open and closed subsets in 0T. Let C; C 9T be the connected component of 9T
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containing m*. Since 9T = Clg=,(T)NIM is closed in M, the union C' = (J;_, C;
is a closed subset of M such that m* ¢ C. Notice that

W = (Dyear(f) NOM)\ C € (Clyops (Das () NOM) \ € = 0T\ C = €y C V,

and W is an open neighbourhood of m* in M. Hence, C is a connected neigh-
bourhood of m* contained in V', which proves that M is locally connected. 0

We now determine under what conditions 9M is locally compact. Indeed, with
the notation already introduced in T8l we have

Proposition 5.14. Let M C R™ be a semialgebraic set. Then, OM is locally
compact if and only if p1(M) is compact.

Proof. Recall first that, by I8 the set p; (M) does not depend on the immersion
of M in R™, because p1(M) = M \ M. and M), equals the set of points of M
which have a compact neighbourhood in M. Hence, we may assume, by 2.1} that
M is bounded. Let X = Clgn (M), which is a semialgebraic compactification of
M. Thus, by 6] there exists a surjective continuous map p : 6:M — X which is
the identity on M. By BIIHl its restriction p|aas : OM — X \ M is proper and
surjective.

Now, if 9M is locally compact, then po(M) = X \ M = p(dM) is, by [Bal, Cor.
§10.4, page 106], locally compact too. Thus, by EI5] p1 (X \ M) = p1(po(M)) = @.
Therefore,

Clgn (p1 (M) \ pr(M) = po(p1(M)) = po(po(po(M))) = p1(po(M)) = 2,

and so p1(M) C X is closed in R™. Since X is compact, p1 (M) is compact too.

Conversely, suppose that Y = p; (M) is compact and write M), = M \ 'Y, which
is, by [£18], locally compact. By [£14] 0M,. is a closed subset of the compact space
ﬁ:MlC. Thus, OM,. is compact, and so it is locally compact. Moreover, by .14
Clgzas (Y) = BiY =Y because Y is compact. Denote j : M. = M as the inclusion
map. By [FG3, 6.7) the map 5] gas,\ (57) -1 (v) © BsMic \ (B) 7 (Y) = BIM\ Y s
a homeomorphism. Thus, 9M = (.M \ Y) \ M. is homeomorphic to

(BMic \ Mio) \ (B) 1Y) = 0Mic \ (B) (YY),
which is locally compact because it is an open subset of the locally compact space
OM,.. Consequently, OM is locally compact. O

Remark 5.15. Let M C R™ be a semialgebraic set. Then, OM is compact if and
only if M is open in B.M or, equivalently, if M is locally compact (see EI4).

(5.16) Nonsemialgebraicity of ,B:M . Our next purpose is to characterize those
semialgebraic sets whose semialgebraic Stone-Cech compactification is homeomor-
phic to a semialgebraic set, in this way completing .T91 We show that this happens
very rarely.

Proposition 5.17. Let M C R™ be a semialgebraic set and let B:M be its semial-
gebraic Stone—Cech compactification. The following assertions are equivalent:
(i) The semialgebraic set M=? is compact.
(ii) The remainder OM = B.M \ M is a finite set.
(iii) BiM is homeomorphic to a semialgebraic set.
(iv) BiM is metrizable.



ON THE SEMIALGEBRAIC STONE-CECH COMPACTIFICATION 3509

Proof. The implication (i) = (ii) follows from I and (iii) = (iv) is immediate.

(ii) = (iii) By 8] there exists a semialgebraic compactification X of M such
that the number of connected components of M equals the number of connected
components of X \ M. By [0l there exists a continuous map p : 6:M — X such
that pla = idy and, by E3[i), X \ M = p(0M) is a finite set, because so is
OM. Since the (finite) number of connected components (and so the number of
elements) of both sets M and X \ M coincide and p(OM) = X \ M, the restriction
ploar : OM — X \ M is a bijection. Hence, p : 6:M — X is a continuous bijection
between a compact set and a Hausdorff space, that is, p is a homeomorphism.
Therefore, 6:M is homeomorphic to the semialgebraic set X.

(iv) = (i) Let us prove that if M=? is not compact, then .M is not metrizable.
As is well known, to prove that a separable space is not metrizable just requires
checking that its topology does not admit a countable basis. So it is convenient
in our case to first show the separability of B:M . Since M is dense in BsM, it
suffices to prove that M is separable. By [BCR] 2.9.10], M is the disjoint union
of a finite number of Nash submanifolds N, each of them Nash diffeomorphic to
an open hypercube (0, 1)3™ ¥ Hence, since each hypercube is separable, the same
holds for each N and so for M.

Suppose now, by way of contradiction, that B:M is metrizable, and so it admits
a countable basis. By [2.J] we may assume that M is bounded, and there exists, by
[£T6l a point

p € Clan (MZ2)\ (Clan (o2 (M>2)) UM>?).
Observe that p ¢ M, because M=?2 is closed in M, and denote X = Clga(M).
By 26 there exists semialgebraic triangulation (K, ®) of X compatible with the
family F = {M, X \ M,{p}}. We identify X with |K|, M with ®~*(M) and p
with ®~1(p). Let o be a simplex of K of dimension d > 2 such that p is one of its
vertices and ¢ is contained in M. We may assume that p is the origin and that
o\ {p} C {zq>0,2441 =0,...,2, = 0}. Consider the noncountable set

S={aecR¥: 3c>0]|(at,t,0,...,0) €0 Vte[0,e]},
and define, for each a € S, the maximal ideal of S*(M) given by
m; ={f eS8 (M): lim f(at,t,0,...,0) =0}
t—0

(see[53). Let us see that for all @ € S there exists f, € S*(M) such that f,(m?) < 0
and fq(mj) >0 for all b€ S\ {a}. Let

(1 —ar1za)* + -+ (Tg—1 — ag_174)* — 7 }
(x1—arza)? + -+ (g1 — ag1za)® + g+ +ap )

falz) = max{ -1,

A straightforward computation shows that |f,| < 1 and therefore f, € S*(M). On
the other hand, f,(m?) = —1 <0 and f,(m}) =1 > 0 for all b # a.

Consider the family of open sets U, = Ugry(—fa) in B:M. Note that m* € U,
but mj & U, for b # a. Let B = {B,,},n>1 be a countable basis of the topology of
B:M. For each a € S there exists m, > 1 such that m* € B,,, C U,, and since B
is countable but S is not countable, there exist distinct points a1, as € S such that
Mq, = Mq,. Thus, mg € By, = By, C U,,, a contradiction, and so BiM is not
metrizable. O
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We have characterized in [BI7 the semialgebraic sets M whose semialgebraic
Stone-Cech compactification B:M is metrizable. The proof heavily relies on the
separability of 6:M , which is an immediate consequence of the separability of M.
A natural question is to decide the metrizability of the remainder OM. In this
direction a first step should be to answer the following question whose expected
answer is stated just below in

Question 5.18. Under which assumptions is the remainder M a separable space?

(5.19) Let M C R™ be a semialgebraic set. Then,

B:M is metrizable <= OM is finite <= OM is separable.

The first equivalence in [5.19 is proved in 517, and the difficult point is to prove
that the separability of M implies one (and so both) of the other conditions.

The next step should be to study the metrizability of the remainder OM. In the
absence of the separability assumption, to analyze the metrizability of M one is
forced to use the classical Nagata-Smirnov metrizability theorem (see [Mul, §40]).
Such a result claims that the regularity of a topological space and the existence of a
countable and locally finite basis of its topology are equivalent to its metrizability.
Hence, the strategy used in .17 to approach the metrizability of .M no longer
works and new ideas are needed. However, we expect that the following statement
holds.

(5.20) Let M C R™ be a semialgebraic set. Then,
BiM is metrizable <= OM is metrizable <= OM is finite.

To finish we study under what conditions B: commutes with finite products, in
the same vein as [GJ) §6].

Proposition 5.21. Let N C R™ and M C R™ be semialgebraic sets. Then, the
product BiM x BN is homeomorphic to B.(M x N) if and only if either M or N
are finite sets or both M and N are compact.

Proof. <=) Since the roles of M and N are interchangeable, we begin by proving
that if NV is finite, say with k elements, then S.M x SiN = B(M x N). Note that
M x N is semialgebraically homeomorphic to M x {1,...,k}. Thus, the product
M x N = |_|f:1 M x {j} and we deduce, from BBl and 4] that

k k
M x Ny = B[ M x {5}) = | BIM x {j} = BIM x N = 5IM x 5N,
j=1 j=1

On the other hand, if M and N are compact, then M x N is compact too and,
by B4, (M x N) = M x N 2 M x 3N

=) For the converse, we may assume that M and N are infinite sets and M
is bounded (by EZII) but not compact. Let us see that S.M x SN 2 (M x N).
Indeed, since M is not compact, it contains, by the Curve Selection Lemma [BCRI]
2.5.5], a semialgebraic set Cy C M semialgebraically homeomorphic to (0, 1] which
is closed in M. Also, since dim NV > 1, there exists, again by the Curve Selection
Lemma [BCR] 2.5.5], a closed semialgebraic set Co C N which is semialgebraically
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homeomorphic to [0, 1]. The set C x Cs is a closed subset of M x N. Suppose that
BiM x BiN = B{(M x N). Then, by BIHEii),

B(C1 x C2) = Clyzarxny (C1 x C2) 2 Clynysen (C1 % Co)

= Clg=y (C1) x Clgey (C2) = B:C1 x B.Co.

By B9, B.C; = [0,1]. Therefore,

BL(Cy x Ca) =2 BiCy x BiCy 22 [0,1]2.

In particular, 8.(C; x Cy) is homeomorphic to a semialgebraic set. Hence, by F.11,
the set Cy x Cy = (0,1] x [0,1] of points of C; x Cy of local dimension > 2 is
compact, a contradiction. Therefore, B.M x BN 2% Bi(M x N). O
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