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An Application of Galois Theory to Elementary Arithmetic 
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1. INTRODUCTION 

After the ancient result about the irrationality of Vt/m, it is natural to 
consider linear combinations of radicals, like the sum 43 + $4 + $‘/72. 
Are such expressions irrational whenever their terms do not obviously 
cancel out ? An affirmative answer is given by the theorem which follows. 

THEOREM 1. Let n > 1 be any integer, p, ,..., p, distinct positive 
primes, and $$\ the positive n-th root of p, ; Q denotes the Jield of rational 
numbers. Then the field Q($“’ ,..., flpx) is of degree nk over Q. 

The field Q(V& ,..., YpP,) is spanned by rational linear combinations 
of products of the terms $$ , no single term being repeated more than 
(n - 1) times. Thus, an equivalent formulation of Theorem 1 is: 

THEOREM la. Let {e,} denote the set of nk radicals, 

n z/P1 Pjyk), m(1) . . . 0 < m(i) < n, 1 < i < K. (1) 

Then the set {ei} is linearly independent over Q. (Clearly {ei} spans 
Q(V& ,..., V&)4 

Theorem 1 a is due to Besicovitch [ 11. His proof is based on a Euclidean 
algorithm for polynomials in several variables (one variable at a time 
being distinguished). The purpose of this note is to show that the 
result is an easy consequence of Galois theory. (We add that the problem 
for square-roots, n = 2, is significantly easier than the general case; 
cf. Section 4 or [4, 71.) 
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Some numerical examples. Consider the number +3 + +4 + m 
mentioned above. Set n = 60, {pi} = (2, 31, k = 2. After Theorem 1, 

the field generated by ?Z and ??l is of degree 3600 over Q. A basis 
is given by the set of radicals ?m, 0 < a < 60, 0 < b < 60. Each 
of the elements 1, $A, $4, $YiZ is of that form, and since all 3600 
elements are linearly independent, so in particular are the four terms 
in question. 

Similar reasoning shows that 1/5 does not belong to the field generated 
over Q by all the real nth roots of 2 and 3 (i.e., 2/5 is not expressible 
as a finite rational function of such roots). 

Remark. These theorems fail if Q is replaced by the field R generated 
by the nth roots of unity (e.g., if n = 5, R contains l/S; and the result 
would fail for n = 10.) 

Rather strangely, these number-theoretic results have applications 
in other areas. For instance, R. Fateman used them in connection with 
the theory of algorithms and computer design (he also referred me to 
work of Caviness [2], who proved and applied the theorems for the case 
of odd n). L. Markus has recently found an application to differential 
algebra; using Theorem la, he shows that: 

The countable set of functionsf,(z) = Cf, (p’l”/n!)z”, wherep runs 
through the set of primes, is “differentiably independent” over the 
field Q(z) of rational functions with coefficients in Q. This implies 
independence over C(x) also (C = complex numbers), roughly because 
complex constants satisfy the trivial differential equation doc/dx = 0. 

Standing notations. Let w  denote a primitive nth root of unity; 
A, E, F denote the extension fields R = Q(o), E = Q(pi/“,...,pij”), 
F = R(p;ln,..., pi/“). 

2. PROOF OF THEOREM 1 FOR ODD n 

In order to avoid bothersome complications, we begin by taking n 
to be odd. Then the field Q can be replaced by R, i.e., [F: R] = nk 
(contrary to the remark made in Section 1). 

Note. Of course [F: R] = nk implies [E: Q] = nk, since the linear 
independence of {e,} over R implies independence over Q (compare 
Theorems 1 and la). 

The first two lemmas which follow are well known (cf. [3]), but we 
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include them for the sake of completeness. It is worth mentioning that 
Lemma 2 involves the structure of the Galois groups (commutativity), 
and not just their degree. 

LEMMA 1. Take any field F 3 R, and any element a E F. Then either 
(1) the polynomial x n - a is irreducible over F, or (2) there exists an 
integer m 1 n, m > 1, such that *dz E F. 

Proof. Write xn - a = (x - walln)(x - fiJ2a1/“) a** (x - all%) (over 
a suitable extension field). Then any nontrivial factor of xn - a in 
F[x] must have a constant term 6 E F of the form b = wrasin, where 
0 < s < n. Let m = n/(s, n). Choose integers U, v so that us + vn = 
(s, a). Then b”aw = utalim (some t), and since w E R, al/m E F. Q.E.D. 

LEMMA 2. No irrational number of the form ?i, m odd, a > 0 E Q, 
lies in any of the fields Q($‘i) g enerated by n-th roots of unity (n can be 
arbitrary). 

Proof. Without loss of generality we may assume that m is prime. 
Let w denote a primitive mth root of unity. Then all* $Q(w), since 
the degree [&(a’/“): Q] = m, whereas [Q(w): Q] = m - 1. Thus, since 
m is prime, xnz - a is irreducible over Q(w), and [Q(all”, u): Q] = 
m(m - I). 

Now, a simple calculation shows that the Galois group of Q(al’“, w) 
over Q is not abelian. For, since the degree is m(m - l), all the 
“plausible automorphisms” actually are automorphisms: thus let qi 
map alJm onto wallm and leave w fixed, and let ?2 map w onto w2 leaving 
al/m fixed. Then y’ly2(a11m) = wallm and ~2~l(a11m) = W2a1Jm. 

On the other hand, Q($‘i) is a normal abelian extension of Q for 
all n. Q.E.D. 

Remark. The same result holds for $‘/a, a > 0 E Q, if l/a is irra- 
tional. 

LEMMA 3 (The key step). Assume that Theorems 1 and la (with Q 
replaced by R) hold for some jixed k. Take a prime p,,, distinct from 
p, ,.“, P, - Then, for any integer m > 1 which divides n, the following 
equation is impossible : 

(2) 
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(Recall that { (} ’ d $ d e IS e ne in Theorem la as the set of nk “essentially 
distinct” radicals generated from $& , . . . , q& . By the induction hypothesis, 
{eJ is linearly independent over R.) 

Proof. There are two cases: 

(A) There is only one coefficient c, # 0. This contradicts 
Lemma 2. (Here we use the assumption that the pi are distinct, and 
the elementary theorem about the irrationality of nth roots.) 

(B) There are at least two terms ci , cj # 0. Then since ei/ei $ R 
(by the “induction hypothesis”), and since the field F = R(pil”,..., pi/“) 
is a normal extension of R, there is an automorphism v of F over R 
with de~)/deJ + e&i - 

Now apply y to (2). Since every eh is the nth root of an integer, 
C$(eh) = wrth) 
cd(O) * ?px 

e, (with some r(h)) for each h. Likewise, v(?p<) = 
for some r(0). Furthermore r(i) $ r(j) (mod n); that is, 

e, and ei are multiplied by different nth roots of unity under the action 
of ‘p. Since w E R, this contradicts the assumed linear independence of 
(e,} over R. That proves the lemma. 

Now, Theorems 1 and la (with Q replaced by R) follow by induction 
on K. It is convenient to start the induction with the vacuous case 
K = 0. This done, let F = R(pi/“,..., pi@), and assume [R R] = nk. 
Lemmas 1 and 3 together imply that the polynomial xn - p,,, is 
irreducible over F, whence [F(G): q = n. Thus [F(G): R] = 
nk+l. This completes the proof for odd n. 

3. PROOF FOR THE CASE WHERE n IS EVEN 

Here Q can no longer be replaced by R throughout, although a partial 
result is true ((3) below). The proof requires the use of intermediate 
fields S, and T, (with g > K Jixed). We shall only sketch the main 
steps. First define: 

S, = Q(P:‘~,...,P;‘~), with g>k; 

T, = R(P;‘~,...,P;‘~); 

E* = &,(P;‘~,...,P;‘~); 

F* = T,(p:‘“,...,&“). 
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Remarks. Since we have to do an induction on k, and yet want 
to hold the intermediate fields S, and T, fixed, we imagine a fixed 
sequence pi ,..., p, of distinct primes with g > k. If g = k, then E* 
and F* become our original extension fields E and F. The point of all 
this is that the square roots have to be separated out (because Lemma 2 
breaks down). 

Now the proof for even n proceeds as in the odd case, except for 
the following modifications: 

In Lemma 2, the field R is replaced by T, . (The Galois group of T, 
over Q is also abelian.) Moreover, the lemma is extended to include 
the case of q/a, a > 0 E Q, dZ irrational. 

In Lemma 3, the field R is again replaced by T, , and m ( n is any 
integer >2. (Then either m has an odd factor, or 4 1 m.) 

Lemma 1 is then applied to the polynomial xnJ2 - a. 
One obtains the relations: 

[F*: T,] = (TZ/~)~ for all k <g. (3) 

[S,: Q] = 2’ for all g. (4) 

[The proof of (3) is exactly similar to the proof of Theorem 1 for 
odd n, and (4) can be proved the same way (and more easily). There 
is also an elementary proof of (4) (cf. $4).] 

[F*: Tg] = (r~/2)~ implies [E*: S,] = (42)” (see the “Note” at the 
beginning of 92). And combining [E*: S,] = (n/2)k with [S,: Q] = 28 
(for g = k) gives Theorem 1. 

4. ELEMENTARY TREATMENT OF SQUARE ROOTS 

The crucial step, of course, is Lemma 3; and in the “nontrivial” 
case (B) we have: 

l/p,,= zciei , ci EQ, 

with at least two nonzero terms. 
There must be at least one pi which occurs with different exponents 

(l/2 and 0) in th is sum, and we can assume that this pi = p, and obtain 

l/p,l= A + B 6, where A, B ~Q(pi” ,..., p’,i_“), A, B # 0. 
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Squaring both sides gives pk+l = (AZ + B2pk) + 2AB dp: , whence 
dfi E Q( P”’ 1 ,..., k-l , contradicting the “induction hypothesis.” plf2 ) 

This proof does not generalize, even to n = 3. 
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