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Abstract. In the first part of this survey we recall how the concept of (real)
C-analytic space emerged, when trying to generalize the classical concept of
complex analytic space with a clear red line: to keep the validity of Theorems
A and B, which are crucial properties of a very important type of complex
analytic spaces: the Stein spaces. Recall that closed analytic subspaces of

Stein open subsets of Cn play the same role as affine algebraic varieties in the
algebraic setting. The second part is devoted to the concept of C-semianalytic
subset of a real analytic manifold. C-semianalytic sets can be understood as
the natural generalization to the semianalytic setting of C-analytic sets. The
family of C-semianalytic sets is closed under the same operations as the fam-
ily of semianalytic sets: locally finite unions and intersections, complement,
closure, interior, connected components, inverse images under analytic maps,
sets of points of dimension k, etc. although they are defined involving only
global analytic functions. In addition, the image of a C-semianalytic set S un-
der a proper holomorphic map between Stein spaces is again a C-semianalytic
set. The previous result allows to understand better the structure of the set
N(X) of points of non-coherence of a C-analytic subset X of a real analytic
manifold M . It is also remarkable that subanalytic sets are the images under
proper analytic maps of C-semianalytic sets. In the third part we introduce
amenable C-semianalytic sets, that can be understood as C-semianalytic sets
with a neat behavior with respect to Zariski closure. This fact allows us to
develop a natural definition of irreducibility and the corresponding theory of
irreducible components for this type of sets. These concepts generalize the
parallel ones for: complex algebraic and analytic sets, C-analytic sets, Nash
sets and semialgebraic sets. We end this survey with a general view towards
Nullstellensätze in the complex and real global analytic settings. This requires
not only algebraic operations but also topological. In the real case we take ad-
vantage of �Lojasiewicz radical ideal, whose definition is inspired in the classical

�Lojasiewicz’s inequality.
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1. Emergence of real analytic spaces

In the first part of this survey we provide a brief historical summary on how
real analytic spaces arose. We begin recalling first some relevant facts concerning
complex analytic spaces.

1.A. Complex analytic spaces. During the 50s’ of last century the the-
ory of (complex) analytic spaces was developed ‘symbiotically’ with complex alge-
braic geometry. The local approach became clear after the classical Weierstrass’
Theorems (Preparation and Division) and Rückert’s Nullstellensatz for the ring of
holomorphic function germs. The two main research teams concerning this subject
developed their activity in France (we highlight the names of Oka, Cartan, Serre,
Grothendieck, inside the Séminaire Cartan) and in Germany (here we highlight the
names of Rückert, Bencke, Stein, Remmert, Grauert). The definition of analytic
space has local nature and one needs to define first local models (of analytic spaces).
We write OCn to denote the sheaf of germs of holomorphic function on Cn.

Definition 1.1. A local model consists of

(i) an open set Ω ⊂ Cn,
(ii) the zero-set Y ⊂ Ω of finitely many holomorphic functions f1, . . . , fk ∈

OCn(Ω),
(iii) the ringed space (Y,OY ) where OY is the quotient sheaf of OCn |Ω by

the sheaf of ideals IY of those germs of holomorphic functions vanishing
identically on Y .

Now, we are ready to introduce the concept of (complex) analytic space. Let
X be a Hausdorff paracompact topological space endowed with a sheaf of rings OX .

Definition 1.2. The pair (X,OX) is an analytic space if for each point x ∈ X
there exist an open neighborhood U such that (U,OX |U ) is isomorphic as a ringed
space to a local model (Y,OY ).

Oka-Cartan’s Theorem states that the sheaf of ideals IY of a local model (Y,OY )
is coherent [GR, §.IV.B-D]. This is a key result that makes the theory of complex
analytic spaces rather similar to the one of complex algebraic varieties. Among
complex analytic spaces we stress Stein spaces, which are important because they
have nice properties. Roughly speaking, a Stein space is a space with ‘enough’
holomorphic functions. A precise definition is the following.

Definition 1.3. An analytic space (X,OX) is a Stein space if it satisfies the
following properties:

(i) the ring O(X) := H0(X,OX) of holomorphic functions on X separates
points and provides local coordinates (that is, isomorphisms with local
models),

(ii) it is holomorphically convex (that is, the holomorphic convex hull of a
compact set in X is compact).

Among the properties of Stein spaces probably the most important one is that
they satisfy Cartan’s Theorems A and B. The first result states that the fiber
OX,x of the sheaf OX at each point x ∈ X is generated by global sections. The
second asserts that given a coherent sheaf F of OX -modules the cohomology groups
Hq(X,F) vanish for each q ≥ 1. In particular, if a short sequence of coherent
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OX -modules 0 → F → G → H → 0 is exact, the corresponding sequence of rings of
global sections 0 → H0(X,F) → H0(X,G) → H0(X,H) → 0 is also exact.

Recall that a subset Y of a Stein space (X,OX) is a closed analytic subset if for
each x ∈ X there exist analytic function germs f1,x, . . . , frx,x ∈ OX,x such that the
germ Yx is the common zero-set germ of f1,x, . . . , frx,x. As a matter of fact, a closed
analytic subset Y of a Stein space provides the Stein space (Y,OY := OX/IY ) where
IY is the ideal sheaf of germs of OX vanishing identically on Y . As (C,OCn) is a
Stein space, each closed analytic set X ⊂ Cn provides itself a Stein space and, in
addition, there exist finitely many holomorphic functions f1, . . . , fk ∈ O(Cn) such
that X = {z ∈ Cn : f1(z) = 0, . . . , fk(z) = 0}. Recall also that a Stein space is
compact if and only if it is a finite set. Consequently, compact analytic subsets of
Cn are only finite sets.

Closed analytic subspaces of Stein open subsets of Cn play the same role as
affine algebraic varieties in the algebraic setting. If the open set Ω of Definition
1.1 is a polydisc, then it is a Stein space. Consequently, Stein spaces provide local
models for complex analytic spaces. This behavior reproduces what happens in
complex Algebraic Geometry where algebraic varieties are unions of affine charts.

If we try to mimic in the real case the definition provided above for the complex
case, we are led to a very different situation. For instance,

(1) The ideal sheaf IY of a local model needs not to be coherent.
(2) There are real prime ideals p ⊂ ORn,0 whose zero-set is not pure dimen-

sional. In fact, this pathology already appears in the real algebraic setting.
(3) It is not possible to develop a reasonable theory of irreducible components

as it is done in the complex analytic setting (Cartan [C2], Forster [Fo],
Remmert-Stein [RS]).

Well-known examples of fact (2) are Whitney’s and Cartan’s umbrellas W1 and
W2, given respectively by equations f1 := x2−zy2 = 0 and f2 := x3−z(x2+y2) = 0.
Observe that the polynomial fi generates the global ideal of Wi, however fi does
not generate the ideal sheaf of Wi at the points of its stick or tail (the part of Wi

where local dimension equals 1, see §2.C). One can find in [BC1,BC2,WB] many
other smart examples where the notion of irreducible component cannot have the
usual meaning and several other pathologies appear. These facts led to two opposite
positions. Grothendieck [Gr, p.12, l.16-24] considered the real case not interesting:

“Lorsque k est algébriquement clos, il est probablement vrai que tout espace
analytique réduit à un point est de la forme qu’on vient d’indiquer, ce qui
serait une des variantes du “Nullstellensatz” analytique. Signalons par contre
tout de suite que rien de tel n’est vrai si k n’est pas algébriquement clos, par
exemple si k est le corps des réels R. Ainsi, le sous-espace analytique de R2

défini par l’idéal engendré par x2 + y2 est réduit au point origine, mais son
anneau local en ce point n’est pas artinien, mais de dimension de Krull égale
à 1. L’intérêt des espaces analytiques, lorsque k n’est pas algébriquement clos,
est d’ailleurs douteux.”

Cartan after a careful analysis of examples quoted above [BC1,BC2] stressed a
smaller class of real analytic sets with a better behavior. They were called by
Whitney-Bruhat C-analytic sets (as an abbreviation of Cartan real analytic sets).

1.B. C-analytic spaces. The purpose of Cartan was to keep valid in the real
case Theorems A and B. He proved that both results are preserved by direct limits.
The first result that appears in [C3] is that Rn has a fundamental system of open
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Stein neighborhoods in Cn. The same property holds true for closed real analytic
subsets X of Rn defined as the zero-set of finitely many real analytic functions on
Rn. These sets are exactly the real analytic sets considered by Cartan. It holds
that the same finitely many analytic equations that define the real analytic set X
extend to holomorphic functions on a suitable open Stein neighborhood of Rn in Cn

and such extensions define a complex analytic set, which is a Stein space because
it is a closed analytic subset of a Stein open set. Cartan provided in [C3] several
equivalent conditions for a closed real analytic subset X ⊂ Rn to guarantee that it
keeps Theorems A and B. Namely,

(i) To be the zero-set of finitely many analytic functions on Rn.
(ii) To be the real part Z ∩ Rn of a complex analytic subset Z of an open

neighborhood of Rn in Cn.
(iii) To be the support of a coherent sheaf of ORn -modules.

Here ORn denotes as usual the sheaf of germs of analytic function on Rn. Condition
(iii) is trivially true for coherent analytic sets, which are those real analytic sets X
for which the sheaf of ideals IX of ORn is coherent. Recall that IX,x is constituted,
for each x ∈ Rn, by those analytic function germs vanishing identically on Xx.

In order to prove that the class of C-analytic sets is smaller that those of real
analytic sets (defined locally as zero-sets of finitely many real analytic functions),
Cartan showed that there exist closed real analytic subsets X ⊂ Rn such that the
only analytic function vanishing identically on X is the zero function.

Example 1.4 (Cartan). Define X := {(x, y, z) ∈ R3 : a(z)x3−z(x2+y2) = 0}
where a(z) := exp( 1

z2−1 ) for −1 < z < 1 and a(z) := 0 otherwise. The function

a(z) seen as a function in one complex variable has essential singularities at the
points z = 1 and z = −1. Consequently, each real analytic function f ∈ O(R3)
vanishing on X is identically zero on R3, see [C3, §11].

Cartan wrote in [C4, pag. 49] the following:

“. . . la seule notion de sous-ensemble analytique réel (d’une variété analytique-
réelle V ) qui ne conduise pas à des propriétés pathologiques doit se référer à
l’espace complexe ambiant: il faut considérer les sous-ensembles fermés E de V
tels qu’il existe une complexification W de V et un sous-ensemble analytique-
complexe E′ de W , de manière que E = W ∩E′. On démontre que ce sont aussi
les sous-ensembles de V qui peuvent être définis globalement par un nombre fini
d’équations analytiques. La notion de sous-ensemble analytique-réel a ainsi un
caractère essentiellement global, contrairement à ce qui avait lieu pour les sous-
ensembles analytiques-complexes.”

Following similar ideas to the ones exposed above Whitney-Bruhat generalized
in [WB] Cartan’s results for a real analytic manifold M . First of all they construct
a complexification of M , that is, a complex analytic manifold N endowed with an
antiholomorphic involution σ on N such that M is the fixed subset Nσ of N under
σ. Then they proved thatM has a fundamental system of open Stein neighborhoods
inside N . Thus, closed real analytic subsets of M defined as the zero-set of finitely
many analytic functions keep Theorems A and B. As commented above, they called
these sets C-analytic sets. They also showed in [WB] that C-analytic subsets of
M admit a unique irredundant decomposition into irreducible components, exactly
as it happens with complex analytic sets. The irreducible components of a C-
analytic subset X ⊂ M are precisely the real parts of the irreducible components
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of the complex analytic set Y of a suitable Stein neighborhood Ω ⊂ N of M ,
which is defined by the same equations of X extended holomorphically to Ω. With
these results, the analogy between complex analytic sets and C-analytic sets is
complete. Following Whitney-Bruhat we define a C-analytic subset X of a real
analytic manifold M as follows.

Definition 1.5. A set X ⊂ M is C-analytic if there exist f1, . . . , fk ∈ O(M)
such that X = {x ∈ M : f1(x) = 0, . . . , fk(x) = 0}.

Later Tognoli [T] extended the concept of complexification to real analytic
spaces, which were not necessarily embedded inside a real analytic manifold. He
studied three properties of real analytic sets:

(1) To have a complexification.
(2) To be locally the real part of a complex analytic set, that is, its local

models are provided by C-analytic sets.
(3) To be the fixed set of an antiholomorphic involution on a complex analytic

space.

We point out here that a real analytic space has a complexification if and only
if it is coherent. Indeed, the complexification Yx of a real analytic set germ Xx is
unique as complex analytic set germ. Cartan proved in [C3, Prop.12] that X is
coherent at the point x if and only if for each y close to x the complex germ Yy

(induced by a representative Y of Yx) provides the complexification of the germ
Xy. By definition Y is a complexification of X if for each x ∈ X the set germ Yx

is the complexification of Xx. Consequently, the set X has to be coherent.
If a real local model is coherent, then it has a complexification, which is es-

sentially unique. Consequently, to construct a complexification of a coherent real
analytic space, it is enough to paste properly these complexifications of local mod-
els, see [T].

Properties (2) and (3) above are equivalent (see [T]) and characterize, what we
call inspired by Whitney-Bruhat, C-analytic spaces, which however were called in
[T] supports of coherent sheaves. If (X,OX) is a real analytic space satisfying (2)
and (3) there exists a complex analytic space (Y,OY ) that contains X as a closed
subspace and satisfies:

• X is the fixed part Y σ of an antiholomorphic involution σ : Y → Y ,
• OX is the restriction to X of the subsheaf of OY constituted by the in-
variant sections (with respect to σ),

• X has a fundamental system of open Stein neighborhoods inside Y .

In addition, the germ of (Y,OY ) at X is unique up to an isomorphism [T]. For
simplicity we will call Y the complexification of X, even if Yx does not provide the
complexification of the germ Xx for each x ∈ X.

2. Inequalities and the global approach

In Real Analytic Geometry it is natural to consider also inequalities. In this way
arose the concept of semianalytic set due to �Lojasiewicz [�L1, �L2], which generalized
to the real analytic setting the concept of semialgebraic set mimicking the local
definition of a real analytic set.

Definition 2.1 (�Lojasiewicz). LetM be a real analytic manifold. A set S ⊂ M
is a semianalytic subset of M if for each x ∈ M there is an open neighborhood
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Ux ⊂ M such that the intersection S ∩ Ux is a finite union of sets of the form
{f = 0, g1 > 0, . . . , gs > 0} where f, g1, . . . , gs ∈ O(Ux).

The class of semianalytic sets behaves well with respect to boolean and topo-
logical operations, but it is not stable under proper analytic maps. This fact led
�Lojasiewicz [�L1] and Hironaka [Hi1,Hi2] between others to introduce and develop
the theory of subanalytic sets.

There exists a great difference between the definitions of C-analytic set (of
global nature) and semianalytic set (of local nature). There are certain remarkable
subsets of a C-analytic subset X of a real analytic manifold M that are known to
be semianalytic. For instance, the set of points of X where the local dimension of X
is equal to a certain non-negative integer, or the set of points of X where X is non-
coherent. The semianalytic nature of these sets makes no reference to the global
nature of the C-analytic set X. Thus, it seems reasonable to ask whether there
exists a notion of global semianalytic set that restricts the class of semianalytic sets
and mimics the definition of C-analytic sets proposed by Cartan. More precisely, we
wonder whether there exists a class of semianalytic sets defined using only (global)
analytic functions defined on M , but having a similar behavior with respect to
boolean and topological operations to that of �Lojasiewicz semianalytic sets. In
addition, we would like that such class satisfies also some reasonable properties
with respect to images under proper analytic maps.

2.A. Global semianalytic sets. A first tentative in this direction was ex-
plored by Andradas-Broecker-Ruiz [ABR1,Rz2,Rz3,Rz4] under compactness as-
sumptions and by Andradas-Castilla [AC] in the general approach but for low
dimension. They defined a global semianalytic subset of a real analytic manifold
M as a definable subset with respect to the ring O(M), that is, a finite boolean
combination of equalities and inequalities involving global analytic functions on M .
They showed that this notion behaves in the desired way when the dimension of
M is 1 or 2 or when M is a compact manifold. There exists further information
concerning closure (and interior) of a global semianalytic set if dim(M) = 3 but
nothing conclusive for higher dimension if the involved global semianalytic set has
non-compact boundary. A main difficulty appears when determining for general di-
mension whether the closure and the connected components of an arbitrary global
semianalytic set are still or not global semianalytic sets. Another problem concerns
the lack of information when referring to images of global semianalytic sets un-
der proper analytic maps. Nevertheless global semianalytic sets have the so called
finiteness property like semialgebraic sets. Namely,

Proposition 2.2 (Finiteness property). Let S ⊂ M be a global semianalytic
set in a real analytic manifold M .

(i) Suppose S is open in M . Then it is a finite union of open basic global
semianalytic sets, that is, M is a finite union of global semianalytic sets
of the type {f1 > 0, . . . , fr > 0} where each fi ∈ O(M).

(ii) Suppose S is closed in M . Then it is a finite union of closed basic global
semianalytic sets, that is, M is a finite union of global semianalytic sets
of the type {f1 ≥ 0, . . . , fr ≥ 0} where each fi ∈ O(M).

The proof of the previous result, that appears in [ABS], is based on a weak
�Lojasiewicz inequality. The classical �Lojasiewicz’s inequality for continuous semi-
algebraic functions [BCR, 2.6.7] states the following.
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Theorem 2.3 (Classical �Lojasiewicz’s inequality). Let K be a compact semi-
algebraic set and let f, g be continuous semialgebraic functions on K such that
{f = 0} ⊂ {g = 0}. Then there exist an integer m ≥ 1 and a constant c ∈ R such
that |g|m ≤ c|f | on K.

The result proved in [ABS] is slightly different. Let Z be a C-analytic subset
of Rn and let f, g ∈ O(Z) := O(Rn)/I(Z) be such that {f = 0} ⊂ {g = 0}. Recall
that I(Z) is the ideal of those analytic functions on Rn that vanish identically on Z.
Fixed a compact setK ⊂ Z there exist a proper C-analytic subset X1 ⊂ {f = 0}\K
and an open neighborhood U of {f = 0} \X1 on which |g|m ≤ |f | for some integer
m ≥ 1. The precise statement of the weak �Lojasiewicz’s inequality is the following.
We use · to denote the Euclidean closure of a subset of Rn.

Theorem 2.4 (Weak �Lojasiewicz’s inequality). Let Z be a C-analytic subset
of Rn and let A ⊂ Z be a global semianalytic subset. Let f, g ∈ O(Z) be such that
{f = 0} ∩ A ⊂ {g = 0} ∩ A. Fix a compact set K ⊂ Z and denote X := {f = 0}.
Then there exist a proper C-analytic subset X1 ⊂ X such that X1∩K = ∅, an open
neighborhood U ⊂ Rn of X \X1 and a positive integer m ≥ 1 such that |g|m < |f |
on U ∩A \X.

Given analytic functions f, g ∈ O(Z) such that {f = 0} ⊂ {g = 0}, the previous
result provides a recursive procedure to construct an analytic function h on Z whose
zero-set does not meet a compact set K and satisfies |gh|m ≤ |f | for some integer
m ≥ 1, see [ABF1, Prop.4.3]. More precisely,

Proposition 2.5. Let Z be a C-analytic set in Rn and f, g ∈ O(Z) such that
{f = 0} ⊂ {g = 0}. Let K ⊂ Z be a compact set. Then there exist an integer
m ≥ 1 and an analytic function h ∈ O(Z) such that |h| < 1, {h = 0} ∩K = ∅ and
|f | ≥ |hg|m.

Proposition 2.5 is a key result to prove Nullstellensatz for ideals in the ring
O(Z) of analytic functions on Z, see [ABF1].

2.B. An alternative class of globally defined semianalytic sets. In
[ABF2] we propose the following class of globally defined semianalytic subsets
of a real analytic manifold M .

Definition 2.6. A subset S ⊂ M is C-semianalytic if S is a locally finite union
of global basic semianalytic sets, that is, sets of the form {f = 0, g1 > 0, . . . , gs > 0}
where f, gj ∈ O(M).

The previous definition is equivalent to the following one, which is more similar
to the one provided by �Lojasiewicz for classical semianalytic sets.

Definition 2.7. A subset S ⊂ M is C-semianalytic if and only if for each
x ∈ M there is an open neighborhood Ux ⊂ M such that S ∩ Ux is a global
semianalytic set in M (in the sense of §2.A).

The class of C-semianalytic sets in M is closed under the following boolean and
topological operations [ABF2]

• locally finite unions, intersections and complement,
• inverse image under analytic maps between real analytic manifolds,
• taking closure, interior and considering connected components.
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The C-semianalytic sets have a more relevant and deep property that extends
the well-known Direct Image Remmert’s Theorem [N1, VII.§2.Thm.2]. The pre-
vious result states that the family of complex analytic sets is stable under proper
holomorphic maps between complex analytic spaces. The C-semianalytic sets sat-
isfy an analogous result. Let (X,OX) and (Y,OY ) be reduced Stein spaces. Let
σ : X → X and τ : Y → Y be antiholomorphic involutions. Assume Xσ and
Y τ are non-empty sets. We denote the set of σ-invariant holomorphic functions
of X restricted to Xσ with A(Xσ). We say that a C-semianalytic set S ⊂ Xσ is
A(Xσ)-definable if for each x ∈ Xσ there exists an open neighborhood Ux such
that S ∩Ux is a finite union of sets of the type {F = 0, G1 > 0, . . . , Gr > 0} where
F,Gi ∈ A(Xσ). In [ABF2] we prove:

Theorem 2.8 (Direct image under proper holomorphic maps). Let

F : (X,OX) → (Y,OY )

be an invariant proper holomorphic map, that is, τ ◦F = F ◦ σ. Let S ⊂ Xσ be an
A(Xσ)-definable C-semianalytic set. We have

(i) F (S) is a C-semianalytic subset of Y τ of the same dimension as S.

(ii) If E := F−1(Y τ ) \Xσ, then F (E ∩ S) is a C-semianalytic subset of Y τ .
(iii) If S is a C-analytic set and F−1(Y τ ) = Xσ, then F (S) is also a C-analytic

subset of Y τ .

Theorem 2.8 generalizes the result of Galbiati collected in [Ga2], where she
proved that if f : X → Y is a proper analytic map between real analytic spaces

that admits a proper complexification f̃ : X̃ → Ỹ and Z is a C-analytic subset
of X, then f(X \ Z) is a semianalytic set. In [Hi3] Hironaka quoted this result
and remarked that f(X \Z) is ‘globally semianalytic in Y with respect to the given

complexification Ỹ of Y ’ in the same line as Theorem 2.8.
The following result, which is the key to prove Theorem 2.8, analyzes the local

structure of proper surjective holomorphic morphisms between Stein spaces and its
proof is developed in [ABF2]. For each x ∈ X we denote the maximal ideal of
O(X) associated to x with mx and for each y ∈ Y we denote the maximal ideal
of O(Y ) associated to y with ny. Compact analytic subsets of a Stein space are
finite sets, so the fibers of a proper holomorphic map between Stein spaces are finite
sets. Let F : (X,OX) → (Y,OY ) be a surjective proper holomorphic map between
reduced Stein spaces and write F ∗(O(Y )) := {G ◦ F : G ∈ O(Y )} ⊂ O(X) and

F ∗(O(Y )ny
) =

{G ◦ F
H ◦ F : G,H ∈ O(Y ) and H /∈ ny

}
.

Theorem 2.9 (Local structure of finite holomorphic morphisms). Let y0 ∈
Y with fiber F−1(y0) = {x1, . . . , x�} and denote Σ := O(X) \ (mx1

∪ · · · ∪ mx�
).

Then Σ−1(O(X)) is a finitely generated O(Y )ny0
-module and there exist invariant

H1, . . . , Hm ∈ O(X) such that Σ−1(O(X)) = F ∗(O(Y )ny0
)[H1, . . . , Hm].

Let P be a property concerning either C-semianalytic or C-analytic sets. We
say that P is a C-property if the set of points of an either C-semianalytic or C-
analytic set S satisfying P is a C-semianalytic set. Some examples are the following:

(i) The set of points where the dimension of the C-semianalytic set S is k
is a C-semianalytic set, that is, ‘to be a point of local dimension k’ is a
C-property.
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(ii) The set of points of non-coherence of a C-analytic set is C-semianalytic,
that is, ‘to be a point of non-coherence’ (or ‘to be a point of coherence’) are
C-properties. We will provide below more details concerning the points
of non-coherence of a C-analytic set.

We end this part explaining why we do not introduce a concept of C-subanalytic
sets. The family of semianalytic sets is not closed under the image of proper analytic
maps. The concept of subanalytic set was introduced to get rid of this problem. Let
us recall the concept of subanalytic set following the definition proposed in[BM].

Definition 2.10. A subset S ⊂ M is subanalytic if each point x ∈ M admits a
neighborhood Ux such that S ∩ Ux is a projection of a relatively compact semian-
alytic set, that is, there exists a real analytic manifold N and a relatively compact
semianalytic subset A of M ×N such that S ∩ Ux = π(A) where π : M ×N → M
is the projection.

It could sound reasonable to consider the family of C-subanalytic sets. How-
ever, this is useless because, as we proved in [ABF2], each subanalytic set is the
image of a C-semianalytic set under a proper analytic map. Thus, one can replace
semianalytic sets by C-semianalytic sets when one defines subanalytic sets.

Theorem 2.11. Let S be a subset of a real analytic manifold N . The following
assertions are equivalent:

(i) S is subanalytic.
(ii) There exists a basic C-semianalytic subset T of a real analytic manifold

M and an analytic map f : M → N such that f |T : T → N is proper and
S = f(T ).

(iii) There exists a C-semianalytic subset T of a real analytic manifold M and
an analytic map f : M → N such that f |T : T → N is proper and
S = f(T ).

2.C. The set of points where a C-analytic set is non-coherent. The
set of points N(X) where an analytic set X ⊂ M is non-coherent was studied first
by Fensch in [F, I.§2] where he proved that it is contained in a semianalytic set
of dimension ≤ dim(X) − 2. This result was revisited by Galbiati in [Ga1] and
she proved that it is in fact a semianalytic set. Thus, analytic curves are coherent
and real analytic surfaces have only isolated points where they fail to be coherent.
As coherence is an open condition, N(X) is a closed set. Later Tancredi-Tognoli
provided in [TT] a simpler proof of Galbiati’s result. Their procedure has helped
us to understand the global structure of the set of points of non-coherence of a
C-analytic set and to prove in [ABF2] the following.

Theorem 2.12. The set N(X) of points of non-coherence of a C-analytic set
X ⊂ M is a C-semianalytic set of dimension ≤ dim(X)− 2.

Let us give some general ideals about how the set N(X) arises. By Cartan’s
criterium [C3, Prop.12] a real analytic set X is non-coherent at the point a ∈ X
when there exists points b arbitrarily close to a such that the complexification of
the set germ Xb is not induced by the complexification of the germ Xa. A branch
of points x ∈ X where the complexification of the germ Xx does not coincide with
the germ at x of a complexification Y of X will be called a tail. Roughly speaking,
a branch of real points become a branch of complex points when crossing a non-
coherence point (as real roots can disappear when passing through a double root of
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a polynomial). Many times this translates on a drop of dimension and the points of
non-coherence are those points of X where the drops of dimension arise. Classical
examples of this situation are Whitney’s umbrella W1 := {x2 − zy2 = 0} ⊂ R3

and Cartan’s umbrella W2 := {x3 − z(x2 + y2) = 0} ⊂ R3. Both examples are
two dimensional C-analytic sets that have 1-dimensional tails and in both cases
the point of non-coherence is the origin. However, it is also possible that the ‘tail’
is hidden inside the 2-dimensional part of X. An example of this situation is
W3 := {z(x + y)(x2 + y2) − x4 = 0}. The points of the ‘tail’ are those in the line
� := {x = 0, y = 0}. In this case the point of non-coherence of W3 is the origin,
but if b ∈ � is close to the origin, then dim(W3,b) = dim(W3,0). So we have to be
careful with these hidden tails!

Tails (of type 1), which are obtained locally as intersections of complex con-
jugated analytic germs, cannot occur in a normal C-analytic set because such C-
analytic sets are locally irreducible and their complexifications are also locally ir-
reducible. There is another way to produce tails (of type 2). Let X ⊂ Y be
a C-analytic set inside its complexification Y . It could happen that there exist
points x ∈ X such that the germ Xx is a subset of the singular locus of Yx and
dimR(Xx) ≤ dimC(Yx)− 2. This situation is reproduced in the following example.

Example 2.13. Consider the pencil of conics given by x2 + y2 = t where t is a
real parameter. Then X := {(x, y, z, t) ∈ R4 : x2+y2−tz2 = 0} can be understood
as the pencil of (double) cones of vertex the origin and basis the conics above.
Consider the complex analytic set Y ⊂ C4 given by the same equation asX. It holds
that X is a C-analytic set in R4 and it is the fixed part of Y . Write p := (0, 0, 0, d).
If d ≥ 0 the germ Xp has dimension 3, while for d < 0 the germ Xp is the germ at
the point (0, 0, 0, d) of the line � := {x = 0, y = 0, z = 0}. Observe that the germ Xp

is contained in the singular locus of Yp and dimR(Xp) = 1 = dimC(Yp)− 2. Thus,
we have found a one dimensional tail which does not come from the intersection of
two complex conjugate branches.

The set of singular points of Y is the complex analytic set Sing(Y ) = {x =
0, y = 0, z = 0} ∪ {x = 0, y = 0, t = 0} ⊂ C4, which has codimension 2 in Y .
As Y is a complex irreducible analytic hypersurface, we deduce by [O] that Y is
a normal complex analytic set. Thus, X is a normal C-analytic set. As X is not
pure dimensional, it is non-coherent.

Let us see in an intuitive way how we can characterize the set N(X). For
an accurate approach see [ABF2, §5]. Assume that X is an irreducible C-analytic

subset of Rn. Let X̃ be a complexification ofX that is an invariant complex analytic

subset of an open Stein neighborhood Ω ⊂ Cn of Rn. Denote the restriction to X̃ of

the complex conjugation on Cn with σ : X̃ → X̃. It holds d := dimR(X) = dimC(X̃)

and X = {x ∈ X̃ : σ(x) = x}. Let π : Y → X̃ be the normalization of X̃. As

X̃ is Stein, also Y is Stein [N2]. The complex conjugation of X̃ extends to an
antiholomorphic involution σ̂ on Y that makes the following diagram commutative

Y σ̂

π|
Y σ̂

��

� � �� Y
σ̂ ��

π
��

Y

π
��

X X̃σ �
�

�� X̃
σ �� X̃
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Roughly speaking, the inverse images of ‘tails’ of X correspond to:

• The set π−1(X)\Y σ̂ (this set can be understood intuitively as the inverse
image of those tails of type 1, which disappear when irreducible local
components of X are separated after we apply normalization).

• The own ‘tails’ of Y σ̂ (which provide tails of type 2 in X, see Example
2.13 for further details).

The set Nd(X) of points of X such that the germ Xx has a non-coherent
irreducible component of dimension d is obtained as follows. Define

C1 := π−1(X) \ Y σ̂ (preimages of the tails of type 1)

C2 := Y σ̂ \ Y σ̂ \ Sing(Y σ̂) (preimages of the tails of type 2)

and denote Ai = Ci ∩ Y σ̂ \ Sing(Y σ̂) (points where the preimages of tails of type
i attach to the d-dimensional part of Y σ̂). Consequently, Nd(X) = π(A1) ∪ π(A2)
and we deduce that Nd(X) is a C-semianalytic set as a consequence of the Direct
Image Theorem 2.8.

The construction of the full set N(X) is much more involved, but it follows
from the same kind of ideas. The case when X is not irreducible is even more
complicated and requires a more careful discussion, which is done with full detail
in [ABF2, §5].

3. Amenable C-semianalytic sets and irreducible components

Irreducibility and irreducible components are usual concepts in Geometry and
Algebra. Both concepts are strongly related with prime ideals and primary de-
composition of ideals. There is an important background concerning this matter
in Algebraic and Analytic Geometry. These concepts has been satisfactorily de-
veloped for complex algebraic sets (Lasker-Noether [La]), complex analytic sets
and Stein spaces (Cartan [C2], Forster [Fo], Remmert-Stein [RS]), C-analytic sets
(Whitney-Bruhat [WB]), Nash sets (Efroymson [E], Mostowski [Mo], Risler [R2])
and semialgebraic sets (Fernando-Gamboa [FG]). The global behavior of real ana-
lytic sets could be wild as commented above and this blocks the possibility of having
a reasonable concept of irreducibility. As we have already mentioned, C-analytic
sets have a good global behavior that enables a consistent concept of irreducibility.
An additional requirement to avoid pathologies in the semianalytic setting should be
that ‘Zariski closure preserve dimensions’. The Zariski closure of a subset E ⊂ M
is the smallest C-analytic subset X of M that contains E. We define the dimension
of a C-semianalytic set S ⊂ M as dim(S) := supx∈M{dim(Sx)} and refer the reader
to [ABR2, VIII.2.11] for the dimension of semianalytic germs. The Zariski closure
of a C-semianalytic set is in general a C-analytic set of higher dimension.

Example 3.1. For n ≥ 1 consider the basic C-semianalytic set

Sn := {y = nx, n ≤ x ≤ n+ 1} ⊂ R2.

The family {Sn}n≥1 is locally finite, so S :=
⋃

n≥1 Sn is a C-semianalytic set. If
x ∈ S and Ux is a small enough C-semianalytic neighborhood of x, the Zariski
closure S ∩ Uxzar is a line. The collection {Szar

n } of all these lines is not locally

finite at the origin and S
zar

= R2.
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3.A. Amenable C-semianalytic sets. To guarantee a satisfactory behavior
of Zariski closure we need a more restrictive concept that we introduced in [Fe].

Definition 3.2. A subset S ⊂ M is an amenable C-semianalytic set if it is a
finite union of C-semianalytic sets of the type X ∩U where X ⊂ M is a C-analytic
set and U ⊂ M is an open C-semianalytic set. In particular, the Zariski closure of
S has the same dimension as S.

The family of amenable C-semianalytic sets is closed under the following op-
erations: finite unions and intersections, interior, connected components, sets of
points of pure dimension k and inverse images of analytic maps. However, it is
not closed under: complement, closure, locally finite unions and sets of points of
dimension k (see [Fe] for a clarifying collection of examples).

A C-semianalytic set S ⊂ M is amenable if and only if it is a locally finite
countable union of basic C-semianalytic sets Si such that the family {Si

zar}i≥1

of their Zariski closures is locally finite (after eliminating repetitions). As a con-
sequence the union of a locally finite collection of amenable C-semianalytic sets
whose Zariski closures constitute a locally finite family (after eliminating repeti-
tions) is an amenable C-semianalytic set. Amenable C-semianalytic sets have the
same reasonable behavior under proper holomorphic maps as C-semianalytic sets.
If we are under the same hypotheses of Theorem 2.8 we have

Theorem 3.3. Let F : (X,OX) → (Y,OY ) be an invariant proper holomorphic
map between reduced Stein spaces. Let S ⊂ Xσ be a A(Xσ)-definable and amenable
C-semianalytic set and let S′ ⊂ Y τ be an amenable C-semianalytic set. We have:

(i) F (S) is an amenable C-semianalytic subset of Y τ of the same dimension
as S.

(ii) If T is a union of connected components of F−1(S′) ∩Xσ, then F (T ) is
an amenable C-semianalytic set.

3.B. Irreducibility. In the algebraic, complex analytic, C-analytic and Nash
settings a geometric object is irreducible if it is not the union of two proper geo-
metric objects of the same nature. In the amenable C-semianalytic setting this
definition does not work because every C-semianalytic set with at least two points
would be reducible. Indeed, if p, q ∈ S and W is open C-semianalytic neighborhood
of p in M such that q �∈ W , it holds S = (S ∩ W ) ∪ (S \ {p}) where S ∩ W and
S \ {p} are amenable C-semianalytic sets.

In the previous settings the irreducibility of a geometric object X is equivalent
to the fact that the corresponding ring of polynomial, analytic or Nash functions on
X is an integral domain. This equivalence suggests us to attach to each amenable
C-semianalytic set S ⊂ M the ring O(S) of real valued functions on S that admit an
analytic extension to an open neighborhood of S in M . We say that S is irreducible
if and only if O(S) is an integral domain.

Our definition extends the notion of irreducibility for C-analytic, Nash and
semialgebraic sets. We refer the reader to [Fe] for the precise notion of irreducible
semialgebraic set. In addition, if X ⊂ Cn is a complex analytic set and XR ⊂ R2n

is its underlying real analytic structure, X is irreducible as a complex analytic set
if and only if XR is irreducible as a C-semianalytic set.

The irreducibility of an amenable C-semianalytic set S has a close relation with
the connectedness of certain subset of the normalization of the Zariski closure of
S. More precisely, let S ⊂ M be an amenable C-semianalytic set and let X be
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its Zariski closure. Let (X̃, σ) be a Stein complexification of X together with the

antiholomorphic involution σ : X̃ → X̃ whose set of fixed points is X. Let (Y, π)

be the normalization of X̃ and let σ̂ : Y → Y be the antiholomorphic involution
induced by σ in Y , which satisifies π ◦ σ̂ = σ ◦ π.

Theorem 3.4. The amenable C-semianalytic set S is irreducible if and only if
there exists a connected component T of π−1(S) such that π(T ) = S.

3.C. Irreducible components. In [Fe] we present a satisfactory theory of
irreducible components for amenable C-semianalytic sets. It holds that if S is either
C-analytic, semialgebraic or Nash, then its irreducible components as a set of the
corresponding type coincide with the irreducible components of S as an amenable
C-semianalytic set. In addition, if X ⊂ Cn is a complex analytic set and XR ⊂ R2n

is its underlying real analytic structure, the underlying real analytic structures of the
irreducible components of X as a complex analytic set coincide with the irreducible
components of XR as a C-semianalytic set.

Definition 3.5 (Irreducible components). Let S ⊂ M be an amenable C-semi-
analytic set. A countable locally finite family {Si}i≥1 of amenable C-semianalytic
sets that are contained in S is a family of irreducible components of S if the following
conditions are fulfilled:

(1) Each Si is irreducible.
(2) If Si ⊂ T ⊂ S is an irreducible amenable C-semianalytic set, then Si = T .
(3) Si �= Sj if i �= j.
(4) S =

⋃
i≥1 Si.

The following result states the existence and uniqueness of irreducible compo-
nents of an amenable C-semianalytic set S ⊂ M .

Theorem 3.6 (Existence and uniqueness). There exists a bijection between the
irreducible components of an amenable C-semianalytic set S ⊂ M and the minimal
prime ideals of the ring O(S).

The family {Si
zar}i≥1 of the Zariski closures of the irreducible components

{Si}i≥1 of an amenable C-semianalytic set is locally finite in M (after eliminating
repetitions). Consequently, any union of irreducible components of an amenable
C-semianalytic S ⊂ M is an amenable C-analytic set.

4. Nullstellensätze

A main tool in complex and real algebraic and analytic geometry is the use
of Nullstellensätze. The Nullstellensatz for the ring of analytic functions germs
is well-known, both in the complex and in the real cases. The first one is due
to Rückert [Ru] while the second is due to Risler [R3]. Their statements are
analogous to those for rings of complex or real polynomials. Recall that Z(a)
denotes the zero set of the ideal a of a ring of functions or germs whereas I(S) is
the ideal of those elements of the corresponding ring of functions or germs that are
identically zero on S. Given a ring A, the real radical of an ideal a of A is the set
r
√
a := {f ∈ A : f2m+a21+ . . .+a2k ∈ a for some ai ∈ A}. We summarize next the

classical results mentioned above.

(i) Let a ⊂ C[x] be an ideal. Then I(Z(a)) =
√
a (Hilbert, 1893, [H, p. 320]).

(ii) Let a ⊂ C{x} is an ideal. Then I(Z(a)) =
√
a (Rückert, 1933, [Ru]).
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(iii) Let a ⊂ R[x] is an ideal. Then I(Z(a)) = r
√
a (Risler, 1970, [R1]).

(iv) Let a ⊂ R{x} is an ideal. Then I(Z(a)) = r
√
a (Risler, 1976, [R3]).

Note that the complex case was approached many year earlier than the real one.
Next we look at rings of global analytic functions. Several difficulties arise.

First of all the rings O(Cn) and O(Rn) are neither noetherian nor unique factoriza-
tion domains. There are at least two important obstructions: (1) the ‘multiplicity’
of an analytic function at the points of its zero-set can be unbounded; and (2) there
exist prime ideals in O(Cn) and real prime ideals in O(Rn) with empty zero-set.
Let K be either C or R.

Example 4.1. Consider the following analytic functions in one variable:

f(x) :=
∏
n≥1

(
1− x

n2

)
and g(x) :=

∏
n≥1

(
1− x

n2

)n

.

Both functions have the same zero-set {n2 : n ≥ 1} but clearly no power of f can
belong to the ideal generated by g in O(K).

Example 4.2. Let U be an ultrafilter of subsets of N containing all cofinite
subsets. For an analytic function F ∈ O(K) we denote the multiplicity of F at the
point z ∈ K with multz(F ). Put M(F,m) := {� ∈ N : mult�(F ) ≥ m}. Consider
the non-empty set p := {F ∈ O(K) : M(F,m) ∈ U ∀m ≥ 0}. Let us check that p
is a prime ideal.

Indeed, let F,G ∈ p. Then M(F,m) ∩ M(G,m) ⊂ M(F + G,m) because
mult�(F +G) ≥ min{mult�(F ),mult�(G)}, so M(F +G,m) ∈ U for all m ≥ 0. On
the other hand, if F ∈ p and G ∈ O(K), then mult�(FG) = mult�(F ) + mult�(G),
so M(FG,m) ⊃ M(F,m) ∈ U for all m ≥ 0.

Suppose F1F2 ∈ p but F1, F2 �∈ p. Then there exist m1,m2 ≥ 0 such that

M(F1,m1),M(F2,m2) /∈ U.

Takem0 := max{m1,m2} and noteM(F1,m0),M(F2,m0) /∈ U; hence,M(F1,m0)∪
M(F2,m0) �∈ U. On the other hand,

M(F1,m0) ∪M(F2,m0) ⊃ M(F1F2, 2m0) ∈ U,

so also M(F1,m0) ∪M(F2,m0) ∈ U, which is a contradiction.
Thus, p is a prime ideal. In fact, one can check that when K = R, the it is

in addition a real prime ideal. Finally, observe Z(p) = ∅. For each k ≥ 1 let
Gk ∈ O(K) be an analytic function such that Z(Gk) = {� ∈ N : � ≥ k} and
mult�(Gk) = � for all � ≥ k. Since U contains all cofinite subsets, we deduce that
each Gk ∈ p, so Z(p) ⊂

⋂
k≥1 Z(Gk) = ∅.

4.A. Forster’s results for Stein algebras. The first approach to the global
problem was done by Forster [Fo] in 1964. To control the difficulties mentioned
above first of all he considers only ‘closed ideals’ of a Stein algebra. He consid-
ers a Stein space (X,OX), its algebra of global holomorphic functions O(X) :=
H0(X,OX) and those ideals in O(X) that are closed with respect to the usual
Fréchet’s topology of O(X), see [GR, VIII.A]. Cartan proved in [C1, VIII.Thm.4,
pag.60] that if (X,OX) is a Stein space, the closure of an ideal a of O(X) coincides
with its saturation H0(X, aOX) := {F ∈ O(X) : Fx ∈ aOX,z ∀x ∈ X}. Conse-
quently, a is closed if and only if a = H0(X, aOX). We present next a key result
for Forster’s Nullstellensatz [Fo] that relates the fact that a holomorphic function
f belongs to a primary ideal q ⊂ O(X) with the fact the germ fx belongs to the
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fiber qOX,x of the ideal sheaf qOX for some x ∈ X. Its proof is based on Cartan’s
Theorem B.

Lemma 4.3. Let q be a closed primary ideal of O(X) and let f ∈ O(X). Then,
f ∈ q if and only if there exists a point x ∈ Z(q) such that fx ∈ qOX,x.

Two straightforward but relevant consequences of the previous result are the
following.

Corollary 4.4 (Closed primary case). Let q be a closed primary ideal of
O(X). We have:

(i) If q is a closed proper primary ideal, then its zero-set is not empty.
(ii) I(Z(q)) =

√
q and there is an integer m ≥ 1 such that (

√
q)m ⊂ q.

Once the primary case was solved, to approach the general case Forster proved
that a closed ideal a admits a normal primary decomposition. Given a collection of
ideals {ai}i∈I of O(X), we say that it is locally finite if the family of their zero-sets
{Z(ai)}i∈I is locally finite in X. A decomposition a =

⋂
i∈I ai of an ideal a of O(X)

is called irredundant if a �=
⋂

i∈K ai for each proper subset K � I. Moreover, a
primary decomposition a =

⋂
i∈I qi of an ideal a of O(X) is called normal if it is

locally finite, irredundant and the associated prime ideals pi :=
√
qi are pairwise

distinct. As usual, a primary ideal qj is called an isolated primary component if
pj is minimal among the primes {pi}i∈I . Otherwise, qj is an immersed primary
component. Of course, a normal primary decomposition is not finite in general.
Forster primary decomposition result for O(X) is the following.

Proposition 4.5. ([Fo, §5]) Let a ⊂ O(X) be a closed ideal of O(X). Then
a admits a normal primary decomposition a =

⋂
i qi such that all primary ideals

qi are closed. Moreover, the prime ideals pi :=
√
qi and the primary isolated com-

ponents are uniquely determined by a and do not depend on the normal primary
decomposition of a.

Using the previous fact and a nice application of Baire’s Theorem to the Fréchet
space O(X) Forster proved the following result.

Theorem 4.6 (Closed general case). Let a ⊂ O(X) be a closed ideal and let
a =

⋂
i∈I qi be a normal primary decomposition of a. For each i ∈ I define

h(qi, a) := inf
{
k ∈ N : F k ∈ qi, ∀F ∈

√
a

}
,

h(qi) := inf{k ∈ N : F k ∈ qi, ∀F ∈ √
qi},

h(a) := inf
{
k ∈ N : F k ∈ a, ∀F ∈

√
a

}
.

Then we have

(i) h(a) = supi∈I{h(qi, a)} and
√
a is closed if and only if h(a) < +∞;

(iii) If a does not have immersed primary components, h(a) = supi∈I{h(qi)};
(iv) I(Z(a)) =

√
a if and only if h(a) < +∞ and in such case

√
a
h(a) ⊂ a.

In this context we extended Forster’s Nullstellensatz in [ABF1] to the non-
closed case as we state in the next result.

Theorem 4.7 (Nullstellensatz). Let (X,OX) be a Stein space and a ⊂ O(X)

an ideal. Then I(Z(a)) =
√
a.
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4.B. A real Nullstellensatz. Let (X,OX) be a C-analytic set endowed with
its natural structure of real analytic space and let O(X) be its algebra of global
analytic functions. It seems really difficult to obtain a real Nullstellensatz for
O(X) in the sense of Risler, so we tried an alternative way that involves a concept
of ‘convexity’ for ideals [ABF1]. The ring O(X) := H0(X,OX) = O(Rn)/I(X)

can be understood as a subset of the Stein algebra O(X̃) of its complexification

X̃ (understood as a complex analytic set germ at X). We stress that X needs
not to be coherent as an analytic set, but it is the support of a coherent sheaf of
ORn -modules. We endow O(X) with the topology induced by Fréchet’s topology of

O(X̃) and the saturation ã := H0(X, aOX) = {f ∈ O(X) : fx ∈ aOX,x ∀x ∈ X}
of an ideal a of O(X) is by [dB2] again its closure (with respect to this induced
topology). In addition, a ⊂ ã ⊂ I(Z(a)).

As de Bartolomeis proved in [dB1,dB2], each saturated ideal a of O(X) (that
is, such that a = ã) admits a normal primary decomposition similar to the one
devised by Forster in the complex case. Note also that the previous definition of
saturation coincides with the one proposed by Whitney for ideals in the ring of
smooth functions over a real smooth manifold [M, II.1.3].

An ideal a of O(X) is convex if each g ∈ O(X) satisfying |g| ≤ f for some f ∈ a

belongs to a. We define the convex hull â of an ideal a of O(X) by

â := {g ∈ O(X) : ∃f ∈ a such that |g| ≤ f}.

Notice that â is the smallest convex ideal of O(X) that contains a and â ⊂ I(Z(a)).

We define the �Lojasiewicz radical ideal of an ideal a ⊂ O(X) as: �L
√
a :=

√
â. In

particular, �Lojasiewicz’s radical is a radical convex ideal. The notion of �Lojasiewicz
radical has been used by many authors to approach different problems mainly
related to rings of germs, see for instance [D, p. 104], [K, 1.21] or [DM, §6]
but also in the global smooth case [ABN]. Our main result in the global analytic
context is the following [ABF1].

Theorem 4.8 (Real Nullstellensatz). Let X ⊂ Rn be a C-analytic set and a

an ideal of the ring O(X). Then I(Z(a)) = �̃L
√
a.

Sketch of the proof. The proof of the previous result is based mainly in
two main facts. The first one is Theorem 2.5. Let f, g ∈ O(X) be such that
Z(f) ⊂ Z(g). Fix a compact set K ⊂ X. Then, by Theorem 2.5 there exist an
integer m ≥ 1 and an analytic function h ∈ O(X) such that Z(h) ∩ K = ∅ and

|f | ≥ |hg|m. Consequently, gh ∈ �L
√
fO(X), so gx ∈ ( �L

√
fO(X))OX,x for each x ∈ K.

As this holds true for each compact subset K of X, we conclude g ∈ ˜�L
√
fO(X), so

we have got the real Nullstellensatz for principal ideals!
The second fact consists of a reduction of the general problem to the case of a

principal ideal. To that end we need, given an ideal a ⊂ O(X), an analytic function
f having the same zero-set as a. Observe that I(Z(a)) = I(Z(f)), so if such a

function exists, then each g ∈ I(Z(a)) satisfies Z(f) ⊂ Z(g), so g ∈ ˜�L
√
fO(X). In

case f ∈ ã, we will have

g ∈ ˜�L
√
fO(X) ⊂ �̃L

√
ã = �̃L

√
a,

and the proof will be done.
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In case a is finitely generated, the function f is easily found as the sum of the
squares of a finite system of generators of a. In case a is not finitely generated, it
admits a system of countably many generators ak for k ≥ 1. In addition, we may
assume that all this generators extend holomorphically to a common open Stein

neighborhood of X in its complexification X̃. We choose now suitable positive
coefficients to make the series

∑
k cka

2
k converge to a real analytic function f . But

there is a price to pay: the analytic function f does not belong in general to a but
to ã. To prove this last fact, recall that ã is the closure of a in O(X) with respect

to the topology induced by Fréchet’s topology of O(X̃). �

In general, if a ⊂ O(X) is an ideal, r̃
√
a ⊂ �̃L

√
a and it is a natural question to

determine under which conditions both ideals coincide. This question has a close
relation with Hilbert 17th Problem for the ring of global analytic functions. Indeed,
if we compare the radical ideals r

√
a and �L

√
a, we obtain the following:

• g ∈ �L
√
a if and only if there exist f ∈ a and m ≥ 1 such that f − g2m ≥ 0.

• g ∈ r
√
a if and only if there exists m ≥ 1 and a1, . . . , ak ∈ O(X) such that

g2m + a21 + · · ·+ a2k = f ∈ a or equivalently if there exist f ∈ a and m ≥ 1
such that f − g2m is a sum of squares in O(X).

Thus, we would have �L
√
a = r

√
a, if any non-negative analytic function were a sum

of squares. Unfortunately, this is not true even for polynomials and the best result
one can afford is the following: a polynomial f ∈ R[x1 . . . , xn] such that f(x) ≥ 0
for each x ∈ Rn is a sum of squares in the field R(x1, . . . , xn) of rational functions
(Artin, 1927, [Ar]). In other words, in general denominators are needed to obtain
representations as sum of squares (see Motzkin, 1967, [Mz] for the first explicit
example). We formulate Hilbert 17th Problem for analytic functions as follows.

Question 4.9. Let f ∈ O(Rn) be such that f(x) ≥ 0 for each x ∈ Rn. Do there
exist analytic functions g, a1, . . . ak such that Z(g) ⊂ Z(f) and g2f = a21+ . . .+a2k?

The answer is not known in general, but there are partial results related to
the topological properties of zero-set of the given non-negative function f ∈ O(Rn).
Hilbert 17th Problem has a positive solution when: (1) Z(f) is a discrete set [BKS];
(2) Z(f) is compact [Rz1,Jw]; (3) Z(f) is discrete outside a compact set [Jw]; and
(4) Z(f) is a countable union of pairwise disjoint compact sets [ABFR3]. In the
latter case the sum of squares could be an infinite convergent sum of squares (in
a strong sense, [ABFR3]). This lack of global information suggest the following
definition.

Definition 4.10. A C-analytic set Z ⊂ Rn is an Ha-set if each positive semi-
definite analytic function f ∈ O(Rn) whose zero-set is Z can be represented as a
(possible infinite) sum of squares of meromorphic functions on Rn.

Concerning this setting in [ABF1] we prove the following result. In order to
consider infinite sum of squares one introduces naturally the real-analytic radical
ideal ra

√
· which considers infinite convergent sum of squares instead of only finite

sums of squares.

Theorem 4.11. Let X ⊂ Rn be a C-analytic set and a an ideal of O(X) such

that Z(a) is a Ha-set. Then I(Z(a)) = r̃a
√
a.

IfX is either an analytic curve [ABFR1], a coherent analytic surface [ABFR2]
or a C-analytic set whose connected components are all compact, then Z(a) is a
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Ha-set for each ideal a ⊂ O(X). Thus, the previous result applies to this situations
and the real Nullstellensatz holds for such an X in terms of the real radical (or the
real-analytic radical).

Sketch of proof of Theorem 4.11. The proof of this result provided in
[ABF1] is reduced after some work to the case when a = p is a saturated real-
analytic prime ideal of O(Rn) and Z := Z(p) is an Ha-set. Let us roughly comment
some general details concerning the proof of this case. Real-analytic means that
p = ra

√
p, that is, if

∑
k≥1 a

2
k ∈ p with each ak ∈ O(Rn), then every ak ∈ p.

Let f ∈ p be a non-negative analytic function with the same zero-set as p and

take g ∈ I(Z(p)) = �̃L
√
p. Pick a point x0 ∈ Z(p). Then, by Theorem 2.5 there exists

b ∈ O(Rn) such that b(x0) �= 0 and f − (bg)2m ≥ 0. Observe that b �∈ p because
b(x0) �= 0. It is not clear that f − (bg)2m vanishes only on Z. However, this fact
can be fixed using a straightforward trick, so let us assume Z(f − (bg)2m) = Z. As
Z is an Ha-set, there exists h, ak ∈ O(Rn) such that h is not identically zero on
Rn and h2(f − (bg)2m) =

∑
k≥1 a

2
k. Thus, h(bg)m ∈ p, but we still do not know

whether the denominator h belongs to p or not. In order to get rid of h we need
to push it a little ‘without changing’ the analytic function f − (bg)2m. This can be
done using a suitable analytic diffeomorphism close to the identity that:

• keeps f − (bg)2m invariant up to multiplication by a positive unit, but
• pushes the complex zero-set of an holomorphic extension of h away from
the ‘complex zero-set of p’. Recall that the real prime ideal p has a natural
holomorphic extension to a prime ideal of holomorphic functions defined
on an open Stein neighborhood of Rn in Cn.

Thus, we may assume that h /∈ p because its holomorphic extension does not vanish
identically on the complex zero-set of p. As p is prime and b �∈ p, we conclude g ∈ p,
as required. �
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the finiteness of Pythagoras numbers of real meromorphic functions (English, with
English and French summaries), Bull. Soc. Math. France 138 (2010), no. 2, 231–247.
MR2679039

[ABN] Francesca Acquistapace, Fabrizio Broglia, and Andreea Nicoara, A Nullstellensatz
for �Lojasiewicz ideals, Rev. Mat. Iberoam. 30 (2014), no. 4, 1479–1487, DOI
10.4171/RMI/822. MR3293441

[ABS] F. Acquistapace, F. Broglia, and M. Shiota, The finiteness property and �Lojasiewicz
inequality for global semianalytic sets, Adv. Geom. 5 (2005), no. 3, 377–390, DOI
10.1515/advg.2005.5.3.377. MR2154832

http://www.ams.org/mathscinet-getitem?mr=3453361
http://www.ams.org/mathscinet-getitem?mr=3552251
http://www.ams.org/mathscinet-getitem?mr=2195258
http://www.ams.org/mathscinet-getitem?mr=2318567
http://www.ams.org/mathscinet-getitem?mr=2679039
http://www.ams.org/mathscinet-getitem?mr=3293441
http://www.ams.org/mathscinet-getitem?mr=2154832


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SOME RESULTS ON GLOBAL REAL ANALYTIC GEOMETRY 19

[ABT] Francesca Acquistapace, Fabrizio Broglia, and Alberto Tognoli, Sull’insieme di non
coerenza di un insieme analitico reale (Italian, with English summary), Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 42–45 (1974). MR0393542
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