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Abstract. Let f := (f1, . . . , fm) : Rn → Rm be a map. We say that f
is polynomial if its components fk are polynomials. The map f is regular if
its components can be represented as quotients fk = gk

hk
of two polynomials

gk, hk such that hk never vanishes on Rn. More generally, the map f is Nash

if each component fk is a Nash function, that is, an analytic function whose
graph is a semialgebraic set. Recall that a subset S ⊂ Rn is semialgebraic
if it has a description as a finite boolean combination of polynomial equal-
ities and inequalities. By Tarski-Seidenberg’s principle the image of a map
whose graph is a semialgebraic set is a semialgebraic set. Consequently, the
images of polynomial, regular and Nash maps are semialgebraic sets. In 1990
Oberwolfach reelle algebraische Geometrie week, the second author proposed
a kind of converse problem: To characterize the semialgebraic sets in Rm that
are either polynomial or regular images of some Rn. In the same period Sh-
iota formulated a conjecture that characterizes Nash images of Rn, that has
been recently proved by the first author. In this survey we collect our main
contributions to these problems and present some new examples. We have
approached our contributions along the last two decades in three directions:

(i) To construct explicitly polynomial and regular maps whose images are
the members of large families of semialgebraic sets whose boundaries are
piecewise linear.

(ii) To find obstructions to be polynomial/regular images of Rn.
(iii) To prove Shiota’s conjecture and some relevant consequences.

1. First examples and obstructions

We will be concerned, except for the last section, with polynomial and regular
images of Rn. To ease the presentation we introduce the following two invariants.
Given a semialgebraic set S ⊂ Rm, we define

p(S) : = inf{n ≥ 1 : ∃ f : Rn → Rm polynomial such that f(Rn) = S},
r(S) : = inf{n ≥ 1 : ∃ f : Rn → Rm regular such that f(Rn) = S}.
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If S is not representable as a polynomial or regular image of some Rn, then
p(S) := +∞ and/or r(S) := +∞. By [BCR, 2.8.8] one has dim(S) ≤ r(S) ≤ p(S).
We will see that these inequalities may be strict, although we do not know if there
exists a semialgebraic set S ⊂ Rm such that dim(S) < r(S) < p(S) < ∞. Our feeling
is that the previous invariants only take the values dim(S), dim(S) + 1 or +∞.

1.A. Potential applications. There are certain problems in Real Geometry
that are reduced, for semialgebraic sets that are either polynomial or regular images
of Rn, to their analysis for Rn. This has the advantage that no contour conditions
appear and there are more powerful tools. Let us discuss two of them.

1.A.1. Optimization. Suppose that f : Rn → Rm is either a polynomial or a
regular map and let S := f(Rn). Then the optimization of a given regular function
g : S → R is equivalent to the optimization of the composition g ◦ f on Rn. In this
way one can avoid contour conditions (see for instance [NDS,PS,Sc] for relevant
tools concerning optimization of polynomial functions on Rn). The weakness of
this construction is that complexity of the composition g ◦ f is much higher than
the one of g. For a regular function g : S → R the problem that we have to solve is( ∂g

∂x1
◦ f, · · · , ∂g

∂xn
◦ f

)
·
( ∂fi
∂xj

)
1≤i,j≤n

= (0, . . . , 0)

where the matrix Jf := ( ∂fi
∂xj

)1≤i,j≤n depends only on f . We expect that a “good

knowledge” of the jacobian matrix Jf will be useful if we have to device optimization
problems for many regular functions on S, because, although complexity increases,
the matrix Jf is the same for all the maximization problems.

Recall that if S ⊂ Rn is a compact semialgebraic set there is a doubly expo-
nential algorithm (in the number n of variables describing S) triangulating S (see
[BCR, Ch.9,§2] and [HRR]). Thus, semialgebraic compact sets can be considered
as finite simplicial complexes, but we remark that the known algorithm can produce
a doubly exponential number of simplices. The algorithms we have developed to
show that certain semialgebraic sets with piecewise linear boundary are polynomial
or regular images of Rn are constructive, but the degrees of the involved maps are
very high. It will be interesting to estimate the smallest degree for which there is a
suitable polynomial or regular map and to compare its complexity with the doubly
exponential one for the triangulations of semialgebraic sets.

1.A.2. Positivstellensätze. Another classical problem is the algebraic charac-
terization of those regular functions g : Rn → R that are either strictly positive
or positive semidefinite on S. In case S is a basic closed semialgebraic set these
problems were solved by Stengle [St], see also [BCR, 4.4.3]. Note that g is strictly
positive (resp. positive semidefinite) on S if and only if g ◦ f is strictly positive
(resp. positive semidefinite) on Rn and both questions are decidable using [St].
Thus, this provides an algebraic characterization of positiveness for polynomial
and regular functions on semialgebraic sets that are either polynomial or regular
images of Rn. These semialgebraic sets need not be either closed, as it happens with
the interior of a convex polyhedron, or basic, as it happens with the complement of
a convex polyhedron. Thus, this provides a large class of semialgebraic sets (neither
closed nor basic), which are out of the scope of the classical Positivstellensätze, for
which there is a certificate of positiveness for polynomial and regular functions.
Again, the weakness of this strategy arises from the complexity of the composition
g ◦ f .
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1.B. Obstruction for the representation. To state some elementary ob-
structions for the finiteness of p(S) we recall some terminology. Jelonek called in
[J1] parametric semilines the non-trivial polynomial images of R. By analogy we
call regular semilines the non-trivial regular images of R. The exterior boundary
of S ⊂ Rm is defined as δS := Cl(S) \ S where Cl(S) denotes the closure of S in

Rm in the Euclidean topology of Rm. We denote S
zar

the Zariski closure of S in
Rm, that is, the smallest algebraic subset of Rm that contains S. A continuous
map f : Rn → Rm is proper at a point p ∈ Rm if there exists a compact neigh-
borhood K ⊂ Rm of p such that f−1(K) is compact. The exterior boundary δS of
S := f(Rn) is a subset of the set N(f) of points p ∈ Rn at which f is not proper.
Indeed, if p ∈ δS \N(f) there exists a compact neighborhood K of p such that the
restriction f−1(K) is compact. Thus, K ∩ S = f(f−1(K)) is a closed subset of K,
so p ∈ K ∩Cl(S) = K ∩ S, which is a contradiction. Consequently, δS ⊂ N(f). The
invariant p(S) was firstly studied in [FG1], where some of its properties are stated:

Proposition 1.1. Suppose that p(S) < +∞. The following conditions hold:

(i) S is connected, pure dimensional and its Zariski closure is irreducible.
(ii) For each semialgebraic function f : Rm → R the image f(S) is a singleton

or an unbounded set. In particular, S is unbounded or a singleton.

(iii) If S ⊂ R2 is open and p(S) = 2, then δS
zar

is a finite union of parametric
semilines.

The previous result provides us some tools to analyze the following examples:

Examples 1.2. (i) Let S := {x2 − zy2 = 0} be the Whitney umbrella. Then
p(S) = +∞ because S is not pure dimensional.

(ii) The union S ⊂ R2 of the lines {x = 0} and {y = 0} is a reducible algebraic
set, so p(S) = +∞.

(iii) The exterior boundary of S := {x2 + y2 > 1} ⊂ R2 is the unit circumfer-
ence, which is not a finite union of parametric semilines since it is a bounded set.
Consequently, p(S) > 2.

(iv) Both S := {xy < 1} and T := {x > 0, xy > 1} are semialgebraic subsets
of R2 such that p(S) > 2 and p(T) > 2. This is so because the common Zariski
closure of their exterior boundaries is the hyperbola {xy = 1}, which is not a finite
union of parametric semilines.

(v) The punctured plane S := R2 \{(0, 0)} has p(S) = 2 because it is the image
of the polynomial map R2 → R2, (x, y) �→ (xy − 1, (xy − 1)x2 − y).

(vi) An open half-plane S has p(S) = 2. It is enough to check that the upper
half-plane H := {y > 0} ⊂ R2 is the image of the polynomial map

R2 → R2, (x, y) �→ (y(xy − 1), (xy − 1)2 + x2).

Another elementary but very useful result appears in [FU3, Thm.2.1]. Recall
that a subset S ⊂ Rm is basic semialgebraic if there exist g1, . . . , gr ∈ R[x1, . . . , xm]
such that S := {g1 ∗1 0, . . . , gr ∗r 0}, where each ∗i stands for either the symbol >
or ≥. We fix a basic semialgebraic set S � Rm.

Theorem 1.3. Then p(Rm+1 \ (S× {0})) = m+ 1.
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Proof. Write x := (x1, . . . , xm). First one check that if Λ ⊂ Rm and g ∈
R[x1, . . . , xm] the polynomial maps

f1 : Rm+1 → Rm+1, (x, xm+1) �→ (x, xm+1(1 + x2
m+1g(x))),

f2 : Rm+1 → Rm+1, (x, xm+1) �→ (x, xm+1(1 + x2
m+1g(x))(g

2(x) + (xm+1 − 1)2)),

satisfy the equalities

f1(R
m+1 \ (Λ× {0})) = Rm+1 \ ((Λ ∩ {g ≥ 0})× {0}),

f2(R
m+1 \ (Λ× {0})) = Rm+1 \ ((Λ ∩ {g > 0})× {0}).

Let S := {g1 ∗1 0, . . . , gr ∗r 0} be a proper basic semialgebraic subset of Rm

where each ∗i ∈ {>, ≥}. We proceed by induction on the number r of inequalities
needed to describe S. As S � Rm, we may assume 0 /∈ S. If r = 1, we have
S := {g1 ∗1 0}. Consider the polynomial map

f0 : Rm+1 → Rm+1, (x1, . . . , xm+1) �→ (x1xm+1, . . . , xmxm+1, xm+1),

whose image is Rm+1 \ (Λ× {0}), where Λ := Rm \ {0}. Write g := g1 and choose

f :=

{
f1 if {g ∗1 0} = {g ≥ 0},
f2 if {g ∗1 0} = {g > 0}.

As 0 /∈ S, we have Λ ∩ S = S. Thus, the composition f ◦ f0 satisfies

(f ◦f0)(Rm+1) = f(Rm+1 \ (Λ×{0})) = Rm+1 \ ((Λ∩S)×{0}) = Rm+1 \ (S×{0}).
Suppose now that the result holds for each proper basic semialgebraic subset of Rm

described by r−1 ≥ 1 inequalities and let S := {g1∗10, . . . , gr∗r0} be a proper basic
semialgebraic subset of Rm. We may assume that Λ := {g1 ∗1 0, . . . , gr−1 ∗r−1 0} �

Rm because otherwise S = {gr ∗r 0} can be described using just one inequality and
this case has already been studied.

By the inductive hypothesis there exists a polynomial map f0 : Rm+1 → Rm+1

such that f0(R
m+1) = Rm+1 \ (Λ× {0}). Denote g := gr and choose

f :=

{
f1 if {g ∗r 0} = {g ≥ 0},
f2 if {g ∗r 0} = {g > 0}.

Then f(Rm+1 \ (Λ×{0})) = Rm+1 \ ((Λ∩{gr ∗r 0})×{0}) = Rm+1 \ (S×{0}) and
the composition f ◦ f0 provides us

(f ◦ f0)(Rm+1) = f(Rm+1 \ (Λ× {0})) = Rm+1 \ (S× {0}),
as required. �

A useful consequence, alternatively proved in [FG1, Thm.1.5], is the following.

Corollary 1.4. p(Rm+1 \ F) = m+ 1 for each finite set F ⊂ Rm+1.

Proof. As dim(Rm+1\F) = m+1, it is enough to check that Rm+1\F is a poly-
nomial image of Rm+1. Let us construct a polynomial bijection f : Rm+1 → Rm+1

such that f(F) ⊂ Rm × {0} and its inverse is polynomial. Write F := {p1, . . . , pr}
and pi := (pi1, . . . , pim, pi,m+1). After a linear change of coordinates, we may as-
sume that the projection π : Rm+1 → Rm, (x1, . . . , xm, xm+1) → (x1, . . . , xm)
induces a bijection between F and S := π(F). Let P ∈ R[x1, . . . , xm] be an inter-
polating polynomial such that P (pi1, . . . , pim) = pi,m+1 for i = 1, . . . , r. Define

f(x1, . . . , xm+1) := (x1, . . . , xm, xm+1 − P (x1, . . . , xm)).
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Then f(F) = S× {0}. Write p′i := (pi1, . . . , pim) and

g(x1, . . . , xm) :=
r∏

j=1

m∑
i=1

(xi − pij)
2 ∈ R[x1, . . . , xm].

Note that S is a basic semialgebraic set because S = {g = 0} = {g ≥ 0, −g ≥ 0},
so there exists by Thm. 1.3 a polynomial map h : Rm+1 → Rm+1 such that

h(Rm+1) = Rm+1 \ (S× {0}) = Rm+1 \ f(F).

As the inverse map

f−1 : Rm+1 → Rm+1, (x1, . . . , xm+1) → (x1, . . . , xm, xm+1 + P (x1, . . . , xm))

is a polynomial map and (f−1 ◦ h)(Rm+1) = Rm+1 \F, we conclude that Rm+1 \F
is a polynomial image of Rm+1, as required. �

1.C. The open quadrant. Fix a semialgebraic set S ⊂ R2 of dimension 2.
Condition (iii) in Prop. 1.1 shows that the exterior boundary δS, which is empty
if S is closed, plays a significant role to determine if S is a polynomial image of
R2 in case S is open. This partially explains why it is more difficult to compute
p(Q) than to calculate p(Q ∪ {(0, 0)}) and p(Cl(Q)) for the open first quadrant
Q := {x > 0, y > 0} ⊂ R2. One can check that p(Q ∪ {(0, 0)}) = p((Cl(Q)) = 2
because Q ∪ {(0, 0)} = f(R2) and Cl(Q) = g(R2) where

f : R2 → R2, (x, y) �→ (x4y2, x2y4) and g : R2 → R2, (x, y) �→ (x2, y2).

1.C.1. First proof: computational. Also p(Q) = 2, but the proof of this result
constituted a challenge for many years. The first one appeared in [FG1, Thm. 1.7].
Choose h1 : R2 → R2, (x, y) �→ (h11(x, y), h12(x, y)) where

h11 := (1− x3y+ y− xy2)2 + (x2y)2 and h12 := (1− xy+ x− x4y)2 + (x2y)2.

It holds that h1(R
2) ⊂ Q ∪ K where K := {(1, 0), (0, 1)}. To prove that

this inclusion is an equality we needed Sturm’s algorithm applied to a high degree
univariate polynomial. As h−1

1 (K) = {(−1, 0), (0,−1)} is a finite set there exists,
by Cor. 1.4, a polynomial map h0 : R2 → R2 such that h0(R

2) = R2 \ h−1
1 (K) and

consequently (h1 ◦ h0)(R
2) = Q.

It is worthwhile mentioning that the map h := h1 ◦ h0 proposed in [FG1]
has total degree 56 (the sum of the degrees of its two components) and its total
number of monomials is 168. The reading of [FG1] can become rather disappointing
because a part of the proof of the main result requires computer assistance and it
is a tedious task to verify that all the involved computations are correct.

1.C.2. Second proof: algebraic. We have wondered whether a less technical and
less demanding approach was possible. It was proved in [FU1] without the aid of
computers that Q is the image of the polynomial map g := H ◦G ◦ F where

F : R2 → R2, (x, y) �→ ((xy − 1)2 + x2, (xy − 1)2 + y2),

G : R2 → R2, (x, y) �→ (x, y(xy − 2)2 + x(xy − 1)2),(1.1)

H : R2 → R2, (x, y) �→ (x(xy − 2)2 + 1
2xy

2, y).

The polynomial maps F,G and H have small degree, but the total degree of its
composition g is 72 and its total number of monomials is 350.
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1.C.3. Third proof: topological. Looking for a more conceptual proof with less
complexity we have found in [FGU2] a third map f2 : R2 → R2 with f2(R

2) = Q.
We consider the polynomial map f := (f1, f2) : R

2 → R2 where f1, f2 ∈ R[x, y] are
the polynomials

f1 := (x2y4 + x4y2 − y2 − 1)2 + x6y4 and f2 := (x6y2 + x2y2 − x2 − 1)2 + x6y4.

The polynomial map f has total degree 28 and its total number of monomials is 22.
The proof we have developed in [FGU2] involves arguments of algebraic topology.

The equality p(Q) = 2 implies the following:

Corollary 1.5. (i) Let S := R2 \ {x ≥ 0, y ≤ 0}. Then p(S) = 2.
(ii) Let m ≥ 2 and Qr,m := {h1 > 0, . . . , hr > 0} ⊂ Rm where h1, . . . , hr are

independent linear forms on Rm. Then p(S) = m.

Proof. (i) It is enough to observe that S = g(Q) where

g : R2 → R2, (x, y) ≡ z := (x+ iy) �→ z3 ≡ (x3 − 3xy2, 3x2y − y3)

is written in complex coordinates.
(ii) We may assume h1 := x1, . . . , hr := xr. Observe that:
(1) p(H) = p(Q) = 2 where H := {x1 > 0} and Q := {x1 > 0, x2 > 0} are the

open half-plane and the open quadrant of R2 (see 1.2 (vi) and 1.C).
(2) The set Q3 := {x1 > 0, x2 > 0, x3 > 0} ⊂ R3 is a polynomial image of

R3. To show this, we proceed as follows: let h1, h2 : R2 → R2 be polynomial maps
whose respective images are H and Q. Now consider the polynomial maps:

(h1, idR) : R
2 × R → R2 × R and (idR, h2) : R× R2 → R× R2.

Then Q3 is the image of the polynomial map h := (idR, h2) ◦ (h1, idR) : R
3 → R3.

From the previous facts it follows statement (ii). �

Examples 1.6. We are ready to show the different behavior of the invariants
p and r over some examples.

(i) The disc D := {x2 + y2 < 1} ⊂ R2 satisfies p(D) = +∞ because it is a
bounded set, but r(D) = 2.

The upper half-plane H := {y > 0} is by Ex. 1.2 (vi) the image of a polynomial
map f : R2 → R2. Consider the Möbius transformation g : H → C ≡ R2, (x, y) ≡
z := x + iy �→ z−i

z+i that maps H onto D. Thus g ◦ f : R2 → R2 is a regular map,
whose image is D.

(ii) The open half-band B := {x > 0,−1 < y < 1} has p(B) = +∞ by
Prop. 1.1 (ii). However, r(B) = 2 because B = h(Q1), where Q1 is the open
quadrant {x− y > 0, x+ y > 0}, which has r(Q1) = 2 by 1.C, and h is the regular

map h : Q1 → R2, (x, y) �→
(
x, y

x

)
.

2. One dimensional polynomial and regular images of Rn

In [Fe] the first author obtained a full geometric characterization of the 1-
dimensional semialgebraic sets S such that either p(S) or r(S) is finite. In addition,
he computed the exact values for these invariants. Let us explain these results.

Lemma 2.1. Let f = (f1, . . . , fm) : Rn → Rm be a polynomial map with
dim(f(Rn)) = 1. Then there exist polynomial maps g : Rn → R and h : R → Rm

such that f = h ◦ g.
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Proof. Let F := R(f1, . . . , fm) and observe that tr. deg(F/R) = dim(f(Rn)) =
1, so we may assume f1 is not constant. By [Sch2, Lem. 2] (see also [Sch1, Lem. 2,
pag. 710-711]), F = R(g) for some g ∈ R[x1, . . . , xn]. We seek h1, . . . , hm ∈ R[t]

such that hi(g) = fi. As fi ∈ R(g), we have fi =
pi(g)
qi(g)

for some relatively prime

polynomials pi, qi ∈ R[t]. By Bezout’s lemma, 1 = piui+qivi for some ui, vi ∈ R[t].
Substituting t by g we get

1 = pi(g)ui(g) + qi(g)vi(g) = qi(g)fiui(g) + qi(g)vi(g) = qi(g)
(
fiui(g) + vi(g)

)
,

so qi(g) is a nonzero constant. Thus, the polynomials hi(t) :=
pi(t)
qi(g)

satisfy hi(g) =

fi. The polynomial maps h := (h1, . . . , hm) : R → Rm and g : Rn → R satisfy
f = h ◦ g, as required. �

Corollary 2.2. (i) Let S ⊂ Rm be a 1-dimensional polynomial image of Rn.
Then Cl(S) is a parametric semiline and either coincides with S or Cl(S) \ S is a
singleton.
(ii) If p(S) < +∞ is finite, then p(S) ≤ 2. In addition, p(S) = 1 if and only if S is
closed in Rm.

Proof. (i) By Lem. 2.1, there exist polynomial maps g : Rn → R and h :
R → Rm such that S = h(g(Rn)). By Prop. 1.1 g(Rn) is an unbounded interval of
R. Without loss of generality, we may assume that g(Rn) is one of the following
sets: R, [0,+∞) or (0,+∞). If S is closed, h−1(S) is a closed subset of R that
contains g(Rn), so S = h(Cl(g(Rn))). Thus, S is either h(R) or h([0,+∞)). As
[0,+∞) = f0(R) where f0 : R → R, t �→ t2, we conclude that S is a parametric
semiline. Next, if S is not closed, g(Rn) = (0,+∞) and Cl(S) = S ∪ {h(0)} is a
parametric semiline.

(ii) We have shown that if S is closed in Rm and p(S) is finite, then p(S) = 1.
If S is not closed, S = h(g(Rn)) = h((0,+∞)). In addition, (0,+∞) = f0(R

2)
where f0 : R2 → R, (x, y) → (xy − 1)2 + y2, so S = (h ◦ f0)(R2). This proves that
p(S) ≤ 2 and in fact this is an equality because each non constant polynomial map
h : R → Rm is proper [GU], so its image is a closed subset of Rm. �

As 1 ≤ r(S) ≤ p(S) ≤ +∞ for every S ⊂ Rm, there are only three possible
values in the 1-dimensional case for both invariants p and r, which are 1, 2 or +∞.
All possibilities satisfying the above restriction are attained except for the pair
r(S) = 1 and p(S) = 2, which is not attainable. The geometric characterization of
the 1-dimensional semialgebraic sets S such that either r(S) or p(S) is finite involves
the concept of irreducibility of a semialgebraic set introduced in [FG3, 3.1] and the
projective Zariski closure of either S or its complexification.

Definitions 2.3. Let S ⊂ Rm be a semialgebraic set. A function f : S → R is
Nash if there exist an open semialgebraic neighborhood V of S in Rm and a Nash
function F : V → R such that F |V = f . A Nash function on an open semialgebraic
set U ⊂ Rm is a smooth function on U whose graph is a semialgebraic set. The
semialgebraic set S is irreducible if the ringN (S) of Nash functions on S is an integral
domain. By [FG3, 3.1(iv)] regular images of Rn are irreducible semialgebraic sets.

Write K to refer indistinctly to R or C and denote the hyperplane of infinity of
the projective space KPm with H∞(K) := {x0 = 0}. As usual, we manipulate the
homeomorphism

Km → KPm \ H∞(K) = {x0 = 1}, (x1, . . . , xm) �→ [1 : x1 : · · · : xm]
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as an identity. For each n ≥ 1 denote the complex conjugation with

σn : CPn → CPn, z := [z0 : z1 : · · · : zn] �→ z := [z0 : z1 : · · · : zn],
whose set of fixed points is RPn. A subset A ⊂ CPn is called invariant if σn(A) = A.

For each S ⊂ Rm ⊂ RPm ⊂ CPm we denote its Zariski closure in KPm with
ClzarKPm(S). The intersection S

zar
:= ClzarRPm(S)∩Rm is the Zariski closure of S in Rm.

A complex rational curve is the image of CP1 under a birational (and hence regular)
map whereas a real rational curve is a real projective irreducible algebraic curve C

such that the subset C(1) of points in C with local dimension 1 (see [BCR, 2.8.12])

is the image of RP1 under a birational (and hence regular) map. We are ready to
characterize the 1-dimensional semialgebraic sets S with finite p(S).

Theorem 2.4. Let S ⊂ Rm be a 1-dimensional semialgebraic subset. Then p(S)
is finite if and only if S is irreducible, unbounded, ClzarCPm(S) is an invariant rational
curve such that ClzarCPm(S)∩H∞(C) = {p} is a singleton and the germ ClzarCPm(S)p is
analytically irreducible.

The main differences between the invariants p(S) and r(S) in case dim(S) = 1
arise from the following elementary but enlightening examples.

Examples 2.5. (i) The circumference S1 and the real projective line RP1 are
regular images of R, but they are not polynomial images of Rn for any n ∈ N. As
RP1 is the image of S1 via the canonical projection π : S1 → RP1, it is enough to
prove that S1 is a regular image of R. We may choose the regular map

f : R → S1, t �→
(( t2 − 1

t2 + 1

)2

−
( 2t

t2 + 1

)2

, 2
( t2 − 1

t2 + 1

)( 2t

t2 + 1

))
.

The previous map is the composition of the inverse of the stereographic projection
of S1 with respect to (1, 0) with the polynomial map

g : C ≡ R2 → C ≡ R2, z := x+
√
−1y ≡ (x, y) �→ z2 ≡ (x2 − y2, 2xy).

(ii) The intervals [0, 1] = h1(R) and (0, 1] = h2(R) where

h1 : R → R, t �→ t

1 + t2
+

1

2
and h2 : R → R, t �→ 1

1 + t2
,

whereas the interval (0, 1) = h3(R
2) where

h3 : R2 → R, (x, y) �→ (xy − 1)2 + x2

1 + (xy − 1)2 + x2
.

Thus, we have p(I) = ∞ and r(I) = 1 for each bounded interval I ⊂ R.
The counterpart of Cor. 2.2 and Thm. 2.4 in the regular setting consists of the

full geometric characterization of the 1-dimensional regular images of Euclidean
spaces and the description of those semialgebraic sets S with r(S) = 1.

Theorem 2.6. Let S ⊂ Rm be a 1-dimensional semialgebraic set. Then,

(i) r(S) is finite if and only if S is irreducible and ClzarRPm(S) is a rational
curve.

(ii) Assume r(S) is finite. Then r(S) = 1 if and only if either ClRPm(S) = S

or ClRPm(S) \ S = {p} is a singleton and the analytic closure of the germ
Sp is irreducible. In the remaining cases r(S) = 2.

Corollary 2.7. There is no 1-dimensional semialgebraic set S ⊂ Rm with
p(S) = 2 and r(S) = 1.
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Proof. Suppose that there exists a semialgebraic set S ⊂ Rm with dim(S) =
r(S) = 1 and p(S) = 2. By Cor. 2.2 (ii) and Thm. 2.4 the semialgebraic set S is
unbounded and not closed in Rm. Thus, ClRPm(S) \ S has at least two elements:
one point in H∞(R) because S is unbounded and another one in Rm since S is not
closed in Rm. This contradicts Thm. 2.6 (ii) because the difference ClRPm(S) \ S

has to be either empty or a singleton. �

The following table illustrates the situation.

S R or [0,+∞) − [0, 1) (0,+∞) (0, 1) Any non-rational curve

r(S) 1 1 1 2 2 +∞

p(S) 1 2 +∞ 2 +∞ +∞

This Table admits two different readings. The obvious one provides the value
of p(S) and r(S) for some significant examples. A more subtle reading provides the
values of p(S) and r(S) for a 1-dimensional semialgebraic set S according to the fact
that S admits an either polynomial or regular parametrization whose domain is one
of the above mentioned subsets of R or if ClCPm(S) is non-rational.

Example 2.8. Consider the semialgebraic sets

S := {y2 − x(x2 − 1) = 0, x > 1} ⊂ R2 and T := Cl(S).

By Thm. 2.6 r(S) = r(T) = +∞ because

ClzarRP2(S) = ClzarRP2(T) = {x2
2x0 − x1(x

2
1 − x2

0) = 0}

is an elliptic curve.

3. Examples and obstructions for dimension two

We only know a full answer to the problem of deciding the finiteness of p(S) and
r(S) and computing their precise values for the 1-dimensional case. In what follows
we implicitly assume that dim(S) ≥ 2. We describe in this section some results
concerning 2-dimensional convex semialgebraic sets whose boundary is piecewise
linear. They constitute a natural precedent to the main results of Section 5. Recall
the following improvement of Prop. 1.1 (iii) proposed in [FG2, 3.8].

Proposition 3.1. Let S ⊂ R2 be a 2-dimensional semialgebraic set such that
p(S) = 2 and let δS be its exterior boundary. Then δS is either empty or there exist
a finite set F ⊂ R2 and a finite family of parametric semilines L1, . . . ,Lr such that

δS ⊂ F ∪
r⋃

i=1

Li ⊂ Cl(S) ∩ δS
zar

.

Proof. Let f : R2 → R2 be a polynomial map such that f(R2) = S. The set
N(f) ⊂ Cl(S) of points in Rm at which f is not proper is by [J2, 4.2] either empty
or a finite union of parametric semilines L1, . . . ,Ls. As δS ⊂ N(f), we can assume
Li ∩ δS is a finite set for r+1 ≤ i ≤ s. Thus, F := (Lr+1 ∪ · · · ∪Ls)∩ δS is a finite

subset of δS. Let us check that Li ⊂ Cl(S) ∩ δS
zar

for i = 1, . . . , r. As Li
zar

is an
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irreducible algebraic set of dimension 1 and Li ∩ δS is infinite, then Li
zar ⊂ δS

zar
,

so Li ⊂ Cl(S) ∩ δS
zar

. We conclude

δS = δS ∩N(f) =

r⋃
i=1

(δS ∩ Li) ∪
s⋃

i=r+1

(δS ∩ Li) ⊂
r⋃

i=1

Li ∪ F ⊂ Cl(S) ∩ δS
zar

,

as required. �

Examples 3.2. (i) A convex polygon K ⊂ R2 is the intersection of a finite
family of closed half-planes, whose interior in R2 is nonempty. We denote Int(K)
the interior of K as a topological manifold. It follows from 1.C and Prop. 3.1 that
p(Int(K)) = 2 if and only if K has only two edges.

(ii) Let S := {x > 0, y > 0, x+ y > 1} ⊂ R2. Combining (i) with [FG2, 6.1] it
follows that r(S) = 2 and p(S) = 3.

(iii) The first known examples of open polynomial images S of R2 obtained
in [FG1,FG2] have connected complement R2 \ S. The third author proved in
[U1, Prop.1]: the semialgebraic set S := {0 < y < x2+1} ⊂ R2, whose complement
has two 2-dimensional connected components, is a polynomial image of R2.

As the open half-plane H : {y > 0} has p(H) = 2, it is enough to prove the
following: Let f : R2 → R2 be the polynomial map defined by

f(x, y) := (y + (y2 + 1)x, (xy + 1)2 + x2).

Then, the restriction g := f |H : H → S is bijective.
Write a := y + (y2 + 1)x and b := (1 + xy)2 + x2 > 0. If y > 0,

a2 + 1− b = y2((1 + xy)2 + x2) > 0,

so g(H) ⊂ S. Conversely, if (a, b) ∈ S, the coordinates of the unique point (x, y) ∈ H

such that g(x, y) = (a, b) are y :=
√

a2+1−b
b and x := a−y

y2+1 . Thus, g is a bijection

between H and S, as required.

The previous example contains the key to prove [U1, Thm.1].

Theorem 3.3. For each positive integer k there exists an open semialgebraic
subset S of R2 such that p(S) = 2 and whose complement R2 \ S has k + 1 two-
dimensional connected components. In addition, δS has k+1 connected components
and all of them are parametric semilines.

Concerning regular images we proved in [FGU3, 4.5] the following.

Proposition 3.4. Let S ⊂ R2 be a 2-dimensional semialgebraic set such that
r(S) = 2 and let δS be its exterior boundary. Then δS is either empty or there exist
a finite set G ⊂ R2 and a finite family of regular semilines M1, . . . ,Mr such that

δS ⊂ G ∪
r⋃

i=1

Mi ⊂ Cl(S) ∩ δS
zar

.

3.A. Convex polygons. The previous results led us to study distinguished
families of sets S ⊂ R2 such that dim(S) = p(S) = 2. The third author obtained in
[U2, Thm.1 & Thm.2] conclusive results in this direction when S is either a convex
polygon, its interior, its complement or the complement of its interior. A convex
polygon K ⊂ R2 is a band if it is affinely equivalent to [−a, a]× R for some a ≥ 0.
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Theorem 3.5. Let K ⊂ R2 be a convex polygon. We have:

(i) If K is not a band, p(R2 \K) = p(R2 \ Int(K)) = 2.
(ii) r(K) = r(Int(K)) = 2.

In addition, we showed in [FG2, §4] that S := {x2 + y2 > 1} ⊂ R2 satisfies
p(S) = 3, r(S) = 2 and p(Cl(S)) = 2.

4. Obstructions for the boundaries of polynomial images

In this section we find conditions that should satisfy δS in order to have
p(S) = dim(S), r(S) = dim(S) or the finiteness of p(S) and r(S). Let S ⊂ Rm

be a semialgebraic set. For every integer k ≥ 0 we denote S(k) the set of points
p ∈ S such that the local dimension of S at p equals k.

4.A. Exterior boundary and parametric semilines. The next result sum-
marizes [FG2, 3.4] and the main results in [FGU3].

Proposition 4.1. Let S ⊂ Rm be a semialgebraic set of dimension d and let
δS be its exterior boundary. We have:

(i) Let Z ⊂ Rm be a (d−1)-dimensional algebraic set such that dim(Z∩δS) =
d− 1 and Z ∩ Cl(S) is bounded. Then p(S) > d.

(ii) Suppose p(S) = dim(S). Then, there exists a semialgebraic set U that
is open and dense in (δS)(d−1) such that for each p ∈ U there exists a
parametric semiline L through p satisfying L ⊂ ClzarRPm((δS)(d−1)) ∩Cl(S).

(iii) Suppose r(S) = dim(S). Then, there exists a semialgebraic set V that is
open and dense in (δS)(d−1) such that for each p ∈ V there exists a regular
semiline M through p satisfying M ⊂ ClzarRPm((δS)(d−1)) ∩ Cl(S).

Proof. Part (i) follows from (ii), so let us prove (ii). We assume (δS)(d−1) �= ∅

since otherwise there is nothing to prove. Let f : Rn → Rm be a polynomial
map with f(Rn) = S and X := graph(f) ⊂ Rn × Rm ⊂ RPn × RPm. Denote
D := π2(ClRPn×RPm(X)\X)∩Rm where π2 : RPn×RPm → RPm, (x, y) → y is the
projection onto the second space. As ρ := π2|ClRPn×RPm (X) : ClRPn×RPm(X) → RPm

is proper and ρ−1(H∞(R)) ⊂ ClRPn×RPm(X) \X, the restriction f |Rn\f−1(D) : R
n \

f−1(D) → Rm \ D is also proper. In addition, notice that for each y ∈ D, there
exists a sequence {xk}k ⊂ Rn such that all its subsequences are unbounded and
the sequence {f(xk)}k converges to y.

By [BCR, 2.8.13] D is a semialgebraic set of dimension ≤ d − 1, so R :=
Cl(D ∩ S) \ (D ∩ S) has dimension ≤ d− 2. In particular,

(4.1) T := δS\Cl(R) = Cl(S)\(S∪Cl(R)) = Cl(S)\(Cl(D∩S)∪S) = δS\Cl(D∩S)

has dimension d− 1 and δS \ T ⊂ Cl(R) has dimension ≤ d− 2. Thus,

U := ((δS)(d−1) ∩ T) \ δS \ (δS)(d−1)

zar
= (δS)(d−1) \ (Cl(D ∩ S) ∪ δS \ (δS)(d−1)

zar
)

is a dense open semialgebraic subset of (δS)(d−1). Pick a point x ∈ (δS)(d−1). By
[FU2, Lem. 2.5] there exist, after a linear change of coordinates,

• integers r, ki with k1 = min{k1, . . . , kn} < 0, and
• polynomials pi ∈ R[t] with pi(0) �= 0 for i = 2, . . . , n
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such that x = limt→0+(f ◦ α)(t) and (f ◦ α)(t) ⊂ U if 0 < t ≤ ε for some ε > 0,
where α(t) := (tk1 +tr, tk2p2(t), . . . , t

knpn(t)). After the substitution t → t2, we
may assume that k1, r are even. Write h1(x, y) := y|k1| + xr and for i = 2, . . . , n

hi(x, y) :=

{
y|ki|pi(x) if ki < 0,

xkipi(x) if ki ≥ 0.

The map h := (h1, . . . , hn) : R
2 → Rn is proper, because if {zk}k ⊂ R2 is a such that

all its subsequences are unbounded, then {h1(zk)}k ⊂ R is an unbounded sequence,
so {h(zk)}k ⊂ Rn is an unbounded sequence. In addition, (f ◦h)(t, 1/t) = (f ◦α)(t),
so x = limt→0+(f ◦ h)(t, 1/t) in RPn. Denote A := {(f ◦ α)(t) : t ∈ (0, ε]} ⊂ U.

Write g := f◦h and note that the restriction g|R2\g−1(D) : R
2\g−1(D) → Rm\D

is proper, because both h and the restriction f |Rn\f−1(D) : R
n\f−1(D) → Rm\D are

proper. Write S0 := g(R2) ⊂ S. By Prop. 3.1 there exist finitely many parametric
semilines L1, . . . ,Lr such that

δS0 ⊂ D0 :=

r⋃
i=1

Li ⊂ Cl(S0) ⊂ Cl(S) = S ∪ δS

and the restriction g : R2 \ g−1(D0) → Rm \D0 is proper and for each z ∈ D0 there
is an unbounded sequence {xk}k ⊂ R2 such that the sequence {g(xk)}k converges
to z. As h is proper, D0 ⊂ D and D0 ∩ S ⊂ D ∩ S. As x ∈ δS0, there exists an
index i = 1, . . . , r such that x ∈ Li. Observe that

Li ⊂ (S ∩D0) ∪ (δS \ (δS)(d−1)) ∪ (Li ∩ (δS)(d−1)).

Suppose by contradiction that dim(Li ∩ (δS)(d−1)) = 0. Then

x ∈ Li ⊂ Cl(D0 ∩ S) ∪ Cl(δS \ (δS)(d−1)) ⊂ Cl(D ∩ S) ∪ δS \ (δS)(d−1)

zar
,

which is false because x ∈ U. Hence, dim(Li ∩ (δS)(d−1)) = 1, so Li ⊂ (δS)(d−1)

zar
.

The proof of (iii) is analogous to that of (ii) using Prop. 3.4 instead of Prop. 3.1. �

Example 4.2. Let ∗i denotes either > or ≥ and consider the m-dimensional
semialgebraic set S := {x1 ∗1 0, . . . , xm ∗m 0, x1 + · · · + xm > 1} ⊂ Rm. It follows
from Prop. 4.1 (i) that p(S) > m since the algebraic set Z := {x1+· · ·+xm = 1} has
dimension m− 1 and Z∩Cl(S) = {x1+ · · ·+xm = 1, x1 ≥ 0, . . . , xm ≥ 0} = Z∩ δS
is bounded and has dimension m− 1.

4.B. Few parametric semilines in the exterior boundary. It is natural
to wonder about the number of parametric semilines through each point of the
exterior boundary of a semialgebraic S of dimension d that is a polynomial image
of Rd. The following example, which is original of this survey, shows that this
number can be essentially one. More precisely, we provide a semialgebraic set S

that is a polynomial image of R3 and satisfies the following property:
4.B.1. For each point p ∈ δS := Cl(S) \ S there exists a parametric semiline

Lp ⊂ δS through p such that if L′ is another parametric semiline through p satisfying
dim(L′ ∩ δS) = 1, then L′ ⊂ Lp.

Example 4.3 (The exterior of a cylinder). Let A := {x2 + y2 ≥ 1} ⊂ R3 and
let S =: Int(A) = {x2 + y2 > 1} ⊂ R3, which satisfies Property 4.B.1. Let us
construct a polynomial map f : R3 → R3 such that f(R3) = S.
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Proof. It was proved in [FG2, Prop 4.1] that there exists a polynomial map
φ : R2 → R2 whose image is T := {x2 + y2 ≥ 1} ⊂ R2. Thus, the polynomial map

f1 : R3 → R3, (x, y, z) �→ (φ(x, y), z)

satisfies f1(R
3) = A. Consider the polynomials

g := (x2 + y2)(1 + z2)− (2 + z2) and h := 1 + g2

and the polynomial map

f2 : R3 → R3, (x, y, z) �→ (h(x, y, z)x, h(x, y, z)y, z).

4.B.2. We claim: B ⊂ f2(A) ⊂ S where B := {(1+ z2)(x2+y2)− (2+ z2) ≥ 0}.
We prove first the second inclusion. If (x, y, z) ∈ A and x2 + y2 > 1, then

h(x, y, z)2(x2 + y2) > 1 because h(x, y, z) ≥ 1, whereas if x2 + y2 = 1 then
g(x, y, z) = −1, so h(x, y, z) = 2 and h(x, y, z)2(x2 + y2) = 4 > 1. In order to
show the first inclusion, we work with cylindrical coordinates. Then f2 becomes
f̄2(ρ, α, z) = (h̄(ρ, z)ρ, α, z), where h̄(ρ, z) = 1 + (ρ2(1 + z2)− (2 + z2))2. We have

A = {ρ ≥ 1} and B = {(1 + z2)ρ2 − (2 + z2) ≥ 0}.

Set A(α,z) := {(ρ, α, z) : ρ ≥ 1} and B(α,z) := {(ρ, α, z) : ρ ≥ rz :=
√

2+z2

1+z2 } for

fixed (α, z) ∈ R2. Notice that B(α,z) ⊂ A(α,z) for each (α, z) ∈ R2,

A =
⋃

(α,z)∈R2

A(α,z) and B =
⋃

(α,z)∈R2

B(α,z).

In addition, f̄2(rz, α, z) = (rz, α, z) and limρ→+∞ h̄(ρ, α, z)ρ = +∞. Having these
properties of f̄2 in mind, the reader checks that f̄2 satisfies

B(α,z) ⊂ f̄2(B(α,z)) ⊂ f̄2(A(α,z)) for each (α, z) ∈ R2

and this readily implies B ⊂ f2(A).
4.B.3. Set ψ(x, y, z) := z(1− g2(x, y, z)z2) and consider the polynomial map

f3 : R3 → R3, (x, y, z) �→ (x, y, ψ(x, y, z)).

We claim: S ⊂ f3(B) ⊂ f3(S) ⊂ S (see Fig. 1).
The middle inclusion is clear since B ⊂ S. The inclusion f3(S) ⊂ S holds

because f3 leaves invariant vertical lines. Let us check the inclusion S ⊂ f3(B). Fix
(a, b) ∈ R2 so that a2 + b2 = r2 > 1 and denote �(a,b) the vertical line x = a, y = b.

For each r ∈ R with 1 < r2 < 2 define cr := +
√

2−r2

r2−1 . Then

�(a,b) ∩B =
{
(a, b, z) : z2 ≥ 2− r2

r2 − 1

}
=

{
{(a, b)} × R if r2 ≥ 2,

{(a, b)} × Ir if 1 < r2 < 2,

where Ir :=] −∞,−cr] ∪ [cr,+∞[. Notice that for a2 + b2 > 1 the last coordinate
ψ(a, b, z) of f3(a, b, z) is a polynomial of odd degree whose leading coefficient is
negative, so limz→±∞ ψ(a, b, z) = ∓∞. In particular, f3(�(a,b) ∩ B) = �(a,b) if

r2 ≥ 2. Assume next 1 < r2 < 2. We have f3(a, b,±cr) = (a, b,±cr). Thus,

[−cr,+∞[ ⊂ ψ({(a, b)}×]−∞,−cr]) and ]−∞, cr] ⊂ ψ({(a, b)} × [cr,+∞[),

so ψ({(a, b)} × Ir) = R. Therefore f3(�(a,b) ∩ B) = �(a,b) for each (a, b) with

a2 + b2 > 1. Consequently, S ⊂ f3(B), as claimed.
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0

A

f2
0

f3
0

Int(A)

Figure 1. Effect of f3 ◦ f2 on each plane vertical section of A

containing the line {x = 0, y = 0}.

4.B.4. By 4.B.2 and 4.B.3 we have S ⊂ f3(B) ⊂ f3(f2(A)) ⊂ f3(S) ⊂ S, so we
conclude f3(f2(f1(R

3))) = f3(f2(A)) = S, as required. �

4.C. Connexion by polynomial and regular paths. It is difficult in gen-
eral to determine precisely if an arbitrary semialgebraic set S whether satisfies or
not the property: given a finite set F ⊂ S, there exists a regular semiline L such
that F ⊂ L ⊂ S, even if we restrict to finite sets F with only two points. This type
of semialgebraic sets may be called rationally connected as a generalization of ratio-
nally connected complex algebraic sets [K, Ch. IV]. Analogously, a semialgebraic
set S such that given any pair of points p, q ∈ S there exists a parametric semiline
L ⊂ S through p, q will be called polynomially connected. The reader can check that
every polynomially connected semialgebraic set S ⊂ Rm is irreducible, pure dimen-
sional, and its image under any polynomial map h : Rm → R is either unbounded
or a singleton. In fact, polynomial images of an Euclidean space are polynomially
connected, whereas regular images of an Euclidean space are rationally connected.

Lemma 4.4. Let S ⊂ Rm be a semialgebraic set. We have:

(i) Assume p(S) is finite. Then, given a finite set F ⊂ S, there exists a
parametric semiline L such that F ⊂ L ⊂ S.

(ii) Assume r(S) is finite. Then, given a finite set F ⊂ S, there exists a regular
semiline L such that F ⊂ L ⊂ S.

Proof. We prove only (i) because (ii) is analogous. Write F := {q1, . . . , qr} ⊂
S and let f : Rn → Rm be a polynomial map such that f(Rn) = S. Let G :=
{p1, . . . , pr} ⊂ Rn be such that f(pi) = qi for i = 1, . . . , r. Let us construct a
polynomial involution h : Rn → Rn that maps each pi to a point (a1i, 0) ∈ R×Rn−1.

After a linear change of coordinates in Rn we may assume that the first coordi-
nates of the points pi are pairwise different, that is, if pi = (a1i, . . . , ani) then
a1i �= a1j if i �= j. Let Pj ∈ R[t] be an interpolating polynomial such that
Pj(a1i) = aji for j = 2, . . . , n, so

h : Rn → Rn, (x1, x2, . . . , xn) �→ (x1, P2(x1)− x2, . . . , Pn(x1)− xn)

is a polynomial involution of Rn that satisfies h(a1i, 0) = pi for i = 1, . . . , r.
The parametric semiline L := im(f ◦h ◦α) where α : R → Rn, t → (t, 0, . . . , 0)

satisfies F ⊂ L ⊂ S as required. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

POLYNOMIAL, REGULAR AND NASH IMAGES OF EUCLIDEAN SPACES 159

Examples 4.5. (i) The reader can check that the semialgebraic set

S := {0 < x < 1, y ≥ 0} ∪ {0 ≤ x ≤ y} ⊂ R2

is polynomially connected and δS is a finite union of parametric semilines. By
Thm. 4.6 below p(S) = +∞ because its “set of points at infinity” is not connected.

(ii) A rationally connected semialgebraic set is irreducible and pure dimen-
sional. An open connected semialgebraic set A ⊂ Rm is rationally connected. Use
Stone-Weierstrass approximation Theorem and recall that an interval [a, b] is by
Thm. 2.6 a regular image of R.

(iii) The situation is different for general semialgebraic sets. It is proved in
[C,V] that for everym ≥ 4 and d ≥ 2m−2 a generic complex algebraic hypersurface
in CPm of degree d contains no rational projective algebraic curves and the same
holds if m = 2, 3 and d ≥ 2m−1. Thus, if the Zariski closure of a semialgebraic set
S ⊂ Rm is a generic complex algebraic hypersurface of big enough degree it follows
from Cor. 4.4 that r(S) = +∞.

(iv) A semialgebraic set T ⊂ Rm is generically uniruled if there is a dense open
semialgebraic subset U ⊂ T such that for each point x ∈ U there exists a regular
semiline through x contained in T. If S ⊂ Rm is an open semialgebraic set such
that the Zariski closure of δS in RPm is a generic algebraic hypersurface of RPm of
high degree, then its Zariski closure Z in CPm does not contain rational projective
algebraic curves, so (δS)(m−1) is not generically uniruled and by Prop. 4.1 r(S) > m.

4.D. Set of points at infinity. The most general obstruction we have found
for a semialgebraic set S ⊂ Rm with p(S) < +∞ is the following result from
[FU2]. Its proof is long and involved and it requires deep knowledge of resolution of
singularities, complex algebraic geometry and algebraic topology. Thm. 4.6 provides
a new evidence of the differences between regular and polynomial images of Rn (see
Ex. 4.9).

Theorem 4.6. Let S ⊂ Rm be a semialgebraic set such that p(S) < +∞ and it
is not a singleton. Then, the set S∞ := ClRPm(S) ∩ H∞(R) of points at infinity of
S is nonempty and connected.

Once Thm. 4.6 is known the next question arises naturally.

Question 4.7. Let S0 be a connected closed semialgebraic subset of H∞(R). Is
there a polynomial map f : Rn → Rm such that f(Rn)∞ = S0?

For m = 2 the answer is affirmative, as we show in the next example, but we
have no further information for higher dimension.

Example 4.8. Let us denote by �∞(R) the line of infinite of the real projective
plane RP2. Then, for every connected closed semialgebraic subset S0 ⊂ �∞(R) there
exists a polynomial map f : R2 → R2 such that dim(f(R2)) = 2 and (f(R2))∞ = S0.

If S0 is a singleton it suffices to observe that f(R2)∞ = {[0 : 1 : 0]} where

f : R2 → R2, (x, y) �→ (x, y2 + x2),

and if S0 is not a singleton the result follows straightforwardly from Cor. 1.5.

The behavior at infinity of regular images of Rn is not so rigid as in the poly-
nomial case. Let us see this in some elementary examples.
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Examples 4.9. (i) The 1-dimensional semialgebraic set S := {x > 0, xy = 1}
is the image of the regular map

f : R2 → R2, (x, y) �→
(
(xy − 1)2 + x2,

1

(xy − 1)2 + x2

)
.

Thus S∞ = {[0 : 1 : 0], [0 : 0 : 1]} is disconnected, r(S) = 2 and p(S) = +∞.
(ii) The image of the regular map

f : R2 → R2, (x, y) �→
( x2

1 + y2
,

y2

1 + x2

)
is S := {x ≥ 0, y ≥ 0, xy < 1}, so S∞ = {[0 : 1 : 0], [0 : 0 : 1]} is disconnected too.
Thus, r(S) = 2 and p(S) = +∞.

(iii) In [FU2, Prop. 4.3] we construct for each finite set F ⊂ �∞(R) a regular
map f : R2 → R2 whose 2-dimensional image S satisfies S∞ = F. Consequently,
r(S) = 2 and p(S) = +∞.

(iv) Consider the regular map

g : R2 → R2, (x, y) �→
( x2 + 1

1 + x2y2
,

y2 + 1

1 + x2y2

)
whose image is contained in the open quadrant Q := {x > 0, y > 0}. Define

h0(x, y) := 1 + x(x− 1)2y(y− 1)2, h1(x, y) := x((y− 1)2y2 + 2(x− 1)2x),

h2(x, y) := y((x− 1)2x2 + 2(y− 1)2y).

Notice that h0 does not vanish in Q, so

h : Q → R2, (x, y) �→
(h1(x, y)

h0(x, y)
,
h2(x, y)

h0(x, y)

)
is a regular map and the composition f := h ◦ g : R2 → R2 is a regular map too. It
is proved in [FU2, 4.4] that the set S∞ of points at infinity of S := f(R2) satisfies

S∞ = {[0 : x : 1] ∈ RP2 : 0 ≤ 2x ≤ 1} ∪ {[0 : 1 : y] ∈ RP2 : 0 ≤ 2y ≤ 1},
that has two connected components of dimension 1. Thus, r(S) = 2 and p(S) = +∞.

Question 4.10. Let S0 be a closed semialgebraic subset of the hyperplane at
infinity H∞(R). Is there a regular map f : Rn → Rm such that (f(Rn))∞ = S0?

5. Piecewise linear semialgebraic sets as polynomial and regular images

In this section we provide a complete answer to the problem of calculating
p(S) and r(S) in case S is either a polyhedron K ⊂ Rm, its interior Int(K), its
complementary set Rm \K and the complementary Rm \ Int(K) of its interior.

5.A. Convex polyhedra. After the results in the 2-dimensional case in Sec-
tion 3, we approached in [FGU1] the regular case for arbitrary dimension:

Theorem 5.1. Let K ⊂ Rn be a convex polyhedron of dimension d ≥ 2. Then,
r(K) = r(Int(K)) = d.

As the image of a non constant polynomial map is an unbounded semialgebraic
set, it is not possible to represent an arbitrary convex polyhedron as a polynomial
image of an Euclidean space. This is not the unique obstruction and we need to

recall the concept of recession cone �C(K) of a convex polyhedron K, see [R, II.§8]
and [Z, Ch.1]. Fix a point p ∈ K and let �C(K) := {�v ∈ Rm : {p+λ�v, ∀λ ≥ 0} ⊂ K}.
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Then �C(K) is a convex cone and it does not depend on the choice of p. The facets
of a d-dimensional polyhedron are its faces of dimension d− 1. The main results in
[FGU4] can be summarized as follows:

Theorem 5.2. Let K be a convex polyhedron of dimension d ≥ 2. We have

(i) p(K) = d if and only if dim(�C(K)) = d. Otherwise, p(K) = +∞.

(ii) p(Int(K)) is finite if and only if dim(�C(K)) = d. In addition, p(Int(K)) ≤
d+ 1 and p(Int(K)) = d if and only if K has no bounded facets.

We collect in the Table below the values of the invariants r(K), r(Int(K)), p(K)
and p(Int(K)) for a convex polyhedron K of dimension d ≥ 1.

K bounded K unbounded

d = 1 d ≥ 2 d = 1 d ≥ 2

r(K) 1
d

1
d

r(Int(K)) 2 2

p(K)
+∞

1 d, +∞

p(Int(K)) 2 d, d+ 1, +∞

5.B. Open and closed balls. A d-dimensional closed ball B and its relative
interior B can be understood as ‘limits of bounded convex polyhedra and their
interiors, when the number of facets tends to infinity. We proved in [FGU1] that

both are regular images of Rm and in fact r(B) = r(B) = d.

5.C. Complements of convex polyhedra. Next we are concerned with
the complements S := Rm \ K and S := Rm \ Int(K) of a convex polyhedron
K � Rm. These semialgebraic sets are unbounded, so it is reasonable to wonder
it they are polynomial images of Euclidean spaces. We see below that the unique
obstruction for the finiteness of p(S) and p(S) is that S and/or S are connected. A
layer in Rm is a convex polyhedron K ⊂ Rm affinely equivalent to [−a, a]× Rm−1

for some a ≥ 0. Layers are the unique convex polyhedra of Rm that disconnect
Rm. The main results in this direction are collected in [FU3,FU4,FU5] and
can be summarized as follows. We point out that we proved first in [FU3] that
r(Rm \K) = r(Rm \ Int(K)) = m whenever K ⊂ Rm is a convex polyhedron that is
not a layer. Recently, we have improved that result in [FU5] showing the following.

Theorem 5.3. Let m ≥ 2 and let K ⊂ Rm be a convex polyhedron that is not
a layer. Then p(Rm \K) = p(Rm \ Int(K)) = m.

We summarize in the Table below the previous information concerning p(S),

p(S), r(S) and r(S) when dim(K) = m and we include what happens with the
1-dimensional case. For simplicity we exclude the case when K is a layer if m ≥ 2.

5.D. Complements of open and closed balls. Again we deal with an m-
dimensional closed ball Bm in Rm and its interior Bm. In [FU4, Prop. 8.1] we

have proved that p(Rm \ Bm) = m. Although Rm \ Bm can be understood as the
limit of the complements of suitable unions of simplices of a triangulation of the
closed ball Bm, it is not a polynomial image of Rm by Prop. 4.1 (i). However, we

proved in [FU4, Cor. 8.2] that p(Rm \B) = m+ 1.
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K bounded K unbounded

m = 1 m ≥ 2 m = 1 m ≥ 2

r(S)

+∞ m

2

mr(S) 1

p(S) 2

p(S) 1

6. Nash images of Rn

The rigidity of polynomial and regular maps makes really difficult to obtain a
satisfactory geometric characterization of those semialgebraic sets that are either
polynomial or regular images of some Rn. Shiota suggested in 1990 the following
variant of the problem stated above concerning the representability of semialgebraic
sets as polynomial and/or regular images of Euclidean spaces:

Problem 6.1. To characterize the subsets of Rm that are Nash images of Rn.

A Nash map on S with values in Rn is a map f := (f1, . . . , fn) : S → Rn such
that each fi is a Nash function on S (see Def. 2.3). Images of semialgebraic sets
under Nash maps are semialgebraic sets. Shiota outlined a vague schedule that
sustains the following conjecture (wrongly announced in [G,FG1] as proved by
Shiota) in order to provide a satisfactory answer to Problem 6.1.

Conjecture 6.2 (Shiota). Let S ⊂ Rm be a semialgebraic set of dimension d.
Then S is a Nash image of Rd if and only if S is pure dimensional and there exists
an analytic path α : [0, 1] → S whose image meets all connected components of the
set Reg(S) of regular points of S.

The set Reg(S) of regular points of a semialgebraic set S ⊂ Rm is defined as

follows. Let X be the Zariski closure of S in Rm and let X̃ be the complexification
of X, that is, the smallest complex algebraic subset of Cm that contains X. Define

Reg(X) := X \ Sing(X̃) and let Reg(S) be the interior of S \ Sing(X̃) in Reg(X).
In 2004 we met again with Shiota and discussed about possible ways to attack

his conjecture. It was not clear how to follow certain parts of his 1990 schedule.
However, that fruitful meeting was the starting point for the achievement by the
first author of this article of a positive answer to the conjecture in [Fe] and some
related results [BFR,FGR]. The latter include useful tools concerning:

(i) Extension of Nash functions on a Nash manifold with boundary to a Nash
manifold of its same dimension that contains it as a closed subset [FGR].

(ii) Approximation results on a Nash manifold relative to a Nash subset with
monomial singularities [BFR].

(iii) Equivalence of Nash classification and C2-semialgebraic classification for
Nash manifolds with boundary [BFR].

We will state next the main result in [Fe] and some of its consequences. A
Nash manifold is a pure dimensional semialgebraic subset M of some affine space
Rm that is a smooth submanifold with or without boundary of an open subset of
Rm. In addition, when we refer to a Nash manifold with boundary, we assume that
the boundary is a Nash submanifold.
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6.A. Main results. The main result concerning Nash images of Euclidean
spaces is Thm. 6.3, that includes a positive solution to Shiota’s Conjecture. Its
statement requires some preliminary definitions. Let α : [0, 1] → Rm be a semialge-
braic path, that is, a continuous map whose graph is semialgebraic. Let A ⊂ (0, 1)
be the smallest subset of (0, 1) such that the restriction α|(0,1)\A is a Nash map.
The set A is finite and we write η(α) := α(A). A semialgebraic set S ⊂ Rm is well-
welded if it is pure dimensional and for each pair of points x, y ∈ S there exists a
semialgebraic path α : [0, 1] → S such that α(0) = x, α(1) = y and η(α) ⊂ Reg(S).

Theorem 6.3 (Nash images of Euclidean spaces). Let S ⊂ Rm be a semialge-
braic set of dimension d. The following assertions are equivalent:

(i) S is a Nash image of Rd.
(ii) S is a Nash image of Rm for some m ≥ d.
(iii) S is connected by Nash paths.
(iv) S is connected by analytic paths.
(v) S is pure dimensional and there exists a Nash path α : [0, 1] → S that

meets all the connected components of Reg(S).
(vi) S is pure dimensional and there exists an analytic path α : [0, 1] → S that

meets all the connected components of Reg(S).
(vii) S is well-welded.

The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) and (i) =⇒ (ii) =⇒ (v) =⇒
(vi) are straightforward. It requires more work to show that a semialgebraic set
S satisfying either condition (iii), (iv), (v) or (vi) is well-welded but the really
demanding part of the proof is (vii) =⇒ (i). An important milestone for the proof
of Thm. 6.3 is the following result, which has its own interest.

Theorem 6.4. Let N ⊂ Rm be a connected d-dimensional Nash manifold with
boundary. Then N is a Nash image of Rd.

Compare Prop. 6.5 below with the restrictive characterizations for 1-dimensional
polynomial and regular images of Euclidean spaces (see Thms. 2.4 and 2.6).

Proposition 6.5 (The 1-dimensional case). Let S ⊂ Rm be a 1-dimensional
semialgebraic set. Then S is a Nash image of some Rm if and only if S is irreducible.
In addition, if such is the case S is a Nash image of R.

6.B. Consequences. We present three remarkable consequences of Thm. 6.3.
6.B.1. Arc-symmetric semialgebraic sets. Arc-symmetric semialgebraic sets

were introduced by Kurdyka in [Ku] and subsequently studied by many authors.
Recall that a semialgebraic set S ⊂ Rm is arc-symmetric if γ((−1, 1)) ⊂ S for each
analytic arc γ : (−1, 1) → Rm with γ((−1, 0)) ⊂ S. In particular, arc-symmetric
semialgebraic sets are closed subsets of Rm. An arc-symmetric semialgebraic set
S ⊂ Rn is irreducible (as an arc-symmetric semialgebraic set) if it cannot be written
as the union of two proper arc-symmetric semialgebraic subsets [Ku, §2]. This is
equivalent to the following fact: S is irreducible if and only if the ring N (S) is an
integral domain (see Def. 2.3). It follows from Thm. 6.3 and [Ku, Cor.2.8] that a
pure d-dimensional irreducible arc-symmetric semialgebraic set is a Nash image of
Rd. In addition:

Corollary 6.6. Let S ⊂ Rm be a pure d-dimensional irreducible semialgebraic
set whose closure Cl(S) is arc-symmetric. Then S is a Nash image of Rd.
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6.B.2. Elimination of inequalities. Tarski-Seidenberg principle on elimination
of quantifiers can be restated geometrically by saying that the projection of a semi-
algebraic set is again semialgebraic. A converse problem, to find an algebraic set
in Rm+k whose projection is a given semialgebraic subset of Rm, is known as the
problem of eliminating inequalities. Motzkin proved in [Mo] that this problem al-
ways has a solution for k = 1. However, his solution is rather complicated and is
generally a reducible algebraic set. In another direction Andradas–Gamboa proved
in [AG1,AG2] that if S ⊂ Rm is a closed semialgebraic set whose Zariski clo-
sure is irreducible, then S is the projection of an irreducible algebraic set in some
Rm+k. In [P] Pecker obtained some improvements on both results: for the first
by finding a construction of an algebraic set in Rm+1 that projects onto the given
semialgebraic subset of Rm, far simpler than the original construction of Motzkin;
for the second by proving that if S is a locally closed semialgebraic subset of Rm

with non-empty interior, then S is the projection of an irreducible algebraic subset
of Rm+1. Pecker’s construction plays an important role in [FGU4].

In [Fe] it is proved the following result that looks for a non-singular algebraic
set with the simplest possible topology that projects onto a semialgebraic set.

Corollary 6.7. Let S ⊂ Rm be a semialgebraic set of dimension d. We have:

(i) If S is Nash path-connected there exist a non negative integer k and an
irreducible non-singular algebraic set X ⊂ Rm+k whose connected compo-
nents are Nash diffeomorphic to Rd such that S = πk(X) where

πk : Rm+k → Rm, (x1, . . . , xm+k) �→ (x1, . . . , xm).

In addition, each connected component of X projects onto S and given any
two of the connected components of X there exists an automorphism of X
that swaps them.

(ii) In general, there exist a nonnegative integer k and an algebraic set X ⊂
Rm+k that is Nash diffeomorphic to a finite pairwise disjoint union of
affine subspaces of Rd+1 such that S = πk(X).

Even for dimension 1, it is not possible to require the connectedness of X:

Example 6.8. Let X ⊂ Rn be a real algebraic curve that is Nash diffeomorphic
to R. Let π : Rn → R be a linear projection. Then π(X) is not a proper open
interval of R.

Note that Y := ClRPn(X) = X ∪ {p∞} where p∞ is a point of the hyperplane
of infinity of RPn. Note that π is the restriction to Rn of a central projection
Π : RPn ��� RP1 with center a projective (n − 2)-dimensional subspace L of the
hyperplane of infinity H∞(R).

If p∞ �∈ L, then Π(Y ) is a compact subset of RP1 and Π(p∞) is the point at
infinity of RP1. Thus, π(X) is a closed semialgebraic subset of R.

If p∞ ∈ L, we assume by contradiction that π(X) is a proper open interval of
R. Then Y has at least two different tangents at p∞. However, as X is Nash diffeo-
morphic to R, the analytic germ Yp∞ has only one branch, which is a contradiction.
Thus, π(X) is not a proper open interval of R.

Remark 6.9. Let S := (0, 1) ⊂ R. By Cor. 6.7 there exist n > 0 and an
algebraic set X ⊂ Rn+1 whose connected components are Nash diffeomorphic to R

and a projection π : Rn+1 → R such that π(X) = (0, 1). By Ex. 6.8 we know that
X is not connected.
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6.B.3. Representation of connected compact differentiable manifolds. A classi-
cal result of Nash [N] states that every compact smooth manifold M is diffeo-
morphic to a finite union of connected and compact components of a non-singular
algebraic set, that is, M is diffeomorphic to a compact Nash manifold. Later
Akbulut-King proved in [AK, Thm.1.1] that a pair (M,N) constituted by a com-
pact smooth manifold M and a closed smooth submanifold N is diffeomorphic to a
pair (X,Z) constituted by a compact non-singular real algebraic set X and a non-
singular algebraic subset Z. This combined with Thm. 6.4 provides the following.

Corollary 6.10. Let N be a connected d-dimensional compact smooth mani-
fold with boundary. Then N is the image of Rd under a smooth map.
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[FGU2] José F. Fernando, J. M. Gamboa, and Carlos Ueno, The open quadrant problem: a topo-
logical proof, A mathematical tribute to Professor José Maŕıa Montesinos Amilibia, Dep.
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