A map \(f = (f_1, \ldots, f_n) : \mathbb{R}^n \to \mathbb{R}^m \) is polynomial if its components \(f_i \) are polynomials. Analogously, \(f \) is regular if its components can be represented as quotients \(f_i = \frac{g_i}{h_i} \) of two polynomials \(g_i, h_i \) such that \(h_i \) never vanishes on \(\mathbb{R}^n \). By Tarski-Seidenberg’s principle the image of an either polynomial or regular map is a semialgebraic set, that is, it has a description by a finite boolean combination of polynomial equalities and inequalities. In 1990 Oberwolfach talk algebraische Geometrie week Gamboa proposed:

Main Problem. Characterize the semialgebraic sets in \(\mathbb{R}^n \) which are either polynomial or regular images of some \(\mathbb{R}^m \).

Two approaches to this problem: (1) **Explicit construction** of polynomial and regular representations for large families of semialgebraic sets, so far with piecewise linear boundary, and (2) **Search for obstructions** to be polynomial/regular images of \(\mathbb{R}^n \). Potential applications. Optimization. Positivstellens"atze or parametrizations of semialgebraic sets.

The Open Quadrant Problem

Is the set \(Q = \{ x > 0, y > 0 \} \subset \mathbb{R}^2 \) a polynomial image of \(\mathbb{R}^2 \)? Answer: **YES**

First solution. The initial answer was presented in 2002 Oberwolfach talk algebraische Geometrie week. Required computer assistance for Sturm’s algorithm.

Second solution. The shortest proof (sketched below).

\[f(x,y) = (x^2 - y^2 + x^2 - y^2 + x^2 - y^2) \]

Third solution. The sparsest (known) polynomial map. A topological argument shows that the image of the map below is \(Q \).

\[f(x,y) = ((x^2 + x^2 - y^2 - 1)^2 + x^2)^{2n} + (x^2)^{2n} - x^2 - 1)^2 + x^2 \]

On Convex Polyhedra

Theorem 1. An \(n \)-dimensional convex polyhedron and its interior are regular images of \(\mathbb{R}^n \) (\(n \geq 2 \)).

Definition. Let \(\mathcal{X} \subset \mathbb{R}^n \) be a convex polyhedron. Its recession cone is
\[\mathcal{R}(\mathcal{X}) = \{ f \in \mathbb{R}^n : p + \lambda \vec{e} \in \mathcal{X}, \ \forall p \in \mathcal{X}, \ \lambda > 0 \}. \]

Theorem 2. Let \(\mathcal{X} \subset \mathbb{R}^n \) be an unbounded, \(n \)-dimensional convex polyhedron whose recession cone \(\mathcal{R}(\mathcal{X}) \) is \(n \)-dimensional. Then \(\mathcal{X} \) is a polynomial image of \(\mathbb{R}^n \). In addition, if \(\mathcal{X} \) has not bounded faces, then \(\text{Int}(\mathcal{X}) \) is also a polynomial image of \(\mathbb{R}^n \).

Theorem 3. Let \(\mathcal{X} \subset \mathbb{R}^n \) be an \(n \)-dimensional convex polyhedron that is not affinely equivalent to a layer \([a, a] \times \mathbb{R}^{n-1}\). Then the semialgebraic sets \(\mathcal{X} \setminus \text{Int}(\mathcal{X}) \) and \(\text{Int}(\mathcal{X}) \) are polynomial images of \(\mathbb{R}^n \).

Full picture for convex polyhedra

Definition of \(p \) and \(t \) invariants:
\[p(\mathcal{X}) = \min\{n \in \mathbb{N} : \mathcal{X} = f(\mathbb{R}^n) \}, \ f(\text{polynomial}) \]
\[t(\mathcal{X}) = \min\{n \in \mathbb{N} : \mathcal{X} = f(\mathbb{R}^n), \ f(\text{regular}) \} \]

Related Problems

A map \(f : \mathbb{R}^n \to \mathbb{R}^m \) is **Nash** if each component of \(f \) is a Nash function. that is, a smooth function with semialgebraic graph. Let \(\mathcal{S} \subset \mathbb{R}^n \) be a semialgebraic set of dimension \(d \).

Shiota’s conjecture. \(\mathcal{S} \) is a Nash image of \(\mathbb{R}^d \) if and only if \(\mathcal{S} \) is pure dimensional and there exists an analytic path \(\alpha : [0, 1] \to \mathcal{S} \) whose image meets all connected components of the set of regular points of \(\mathcal{S} \).

Corollary 8. Assume \(\mathcal{S} \) is pure dimensional, irreducible and with arc-regularized closure. Then \(\mathcal{S} \) is a Nash image of \(\mathbb{R}^d \).

Corollary 9. Assume \(\mathcal{S} \) is Nash path connected. Then \(\mathcal{S} \) is the projection of an irreducible algebraic set \(X \subset \mathbb{R}^n \) whose connected components are Nash diffeomorphic to \(\mathbb{R}^d \). In addition, each connected component of \(X \) maps onto \(\mathcal{S} \).

Characterization for the 1-Dimensional Case

Let \(\mathcal{S} \subset \mathbb{R}^n \) be a 1-dimensional semialgebraic set.

Theorem 6. The following assertions are equivalent:
(i) \(\mathcal{S} \) is a polynomial image of \(\mathbb{R}^n \) for some \(n \geq 1 \).
(ii) \(\mathcal{S} \) is irreducible, unbounded and \(Cl_{\text{zar}}(\mathcal{S}) \) is an invariant rational curve such that \(Cl_{\text{zar}}(\mathcal{S}) \cap H_0(\mathcal{S}) = \{ p \} \) and the germ \(Cl_{\text{zar}}(\mathcal{S}) \) is irreducible.

If that is the case, \(p(\mathcal{S}) \leq 2 \). In addition, \(p(\mathcal{S}) = 1 \iff \mathcal{S} \) is closed in \(\mathbb{R}^n \).

Theorem 7. The following assertions are equivalent:
(i) \(\mathcal{S} \) is a regular image of \(\mathbb{R}^n \) for some \(n \geq 1 \).
(ii) \(\mathcal{S} \) is irreducible and \(Cl_{\text{zar}}(\mathcal{S}) \) is a rational curve.

If that is the case, then \(t(\mathcal{S}) \leq 2 \). In addition, \(t(\mathcal{S}) = 1 \iff \text{either } Cl_{\text{zar}}(\mathcal{S}) = \mathcal{S} \) or \(Cl_{\text{zar}}(\mathcal{S}) \setminus \mathcal{S} = \{ p \} \) and the analytic closure of the germ \(\mathcal{S} \) is irreducible.

Tables:

<table>
<thead>
<tr>
<th>(\mathcal{S})</th>
<th>(R) or (0, +\infty)</th>
<th>(\mathbb{R})</th>
<th>([0, +\infty))</th>
<th>((0, +\infty))</th>
<th>((0, 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(\mathcal{S}))</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(t(\mathcal{S}))</td>
<td>2</td>
<td>+\infty</td>
<td>2</td>
<td>+\infty</td>
<td>+\infty</td>
</tr>
</tbody>
</table>

Relevant Papers

Selected References

MEGA 2015

Title: Polynomial and Regular Images of \(\mathbb{R}^n \)

Authors: José F. Fernández, Carlos Ueno

Affiliation: Universidad Complutense de Madrid • Università di Pisa