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Introduction

• The demand of safe and minimally processed food,
prepared for immediate consumption has increased significantly
in order to give service to the needs of restaurants, collective
dining rooms, domestic consumption, etc.

• One of the technologies that can be used for the processing
of food is high pressure. These treatments have the great
advantage of not being based on the incorporation of additives
and they allow to avoid treatments with high temper-
atures which have adverse effects on some nutritional and
organoleptic properties of the food.

• Here we focus on the modelling and simulation of the
effect of the combination of high pressure with thermal
treatments on food, considering the inactivation that may
take place on certain enzymes, as well as on the stability of
the model.

• Due to the high computational complexity needed for solving the
full models, we also consider and study a simplified version
of them.

Mathematical model for inactivation of enzymes

The evolution of the activity A of an enzyme can be described by a first–order kinetic equation of the following type:

dA(t)

dt
= −κ(P (t), T (t)) A(t), (1)

where t is the time (min), P (t) is the pressure (MPa) at time t, T (t) is the temperature (K) at time t and κ(P, T ) is the inactivation rate (min−1).
Here κ(P, T ) is chosen, depending on the considered enzyme, among the following expressions:
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where Tr is a reference temperature (K), Pr is a reference pressure (MPa), κr is the inactivation rate at reference conditions (min−1), B is the
parameter (K) expressing the temperature dependence of κ and C is the parameter (MPa−1) expressing the pressure dependence of κ.
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where R = 8.314 (J mol−1 K−1) is the universal gas constant, ∆Vr is the volume change at reference conditions (cm3 mol−1), ∆Sr is the entropy change
at reference conditions (J mol−1 K−1), ∆Cp is the heat capacity change (J mol−1 K−1), ∆ζ is the thermal expansibility factor (cm3 mol−1 K−1)

and ∆ν is is the compressibility factor (cm6 J−1 mol−1).

Considered high pressure device
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Heat and mass transfer modelling

Considering a liquid food sample in Ω∗
F, the governing equations inside the whole domain Ω∗ are:
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(2)

where uF is the food velocity field, uP is the pressurizing fluid velocity field, ρ is the density (kg m−3), Cp is the heat capacity

(J kg−1 K), k is the thermal conductivity (W m−1 K−1), tf (min) is the final time, g is the gravity vector (m min−2), η is the
dynamic viscosity (Pa min), P is the pressure (Pa) applied by the equipment, p is the pressure (Pa) generated by the mass transfer
inside the fluid and α is the thermal expansion coefficient (K−1). * means 3D-domains obtained by rotating around the (0,H)–axis.

We also consider a simplified version of previous model considering the Boussinesq approximation (i.e. considering the incom-
pressible Navier-Stokes equations and constant model coefficients). This approximation allows to reduce the computational
time by 3.

Numerical tests

•Processes: We consider two 15–minute pro-
cesses:

– Process PA: For initial temperature T0=40◦C
in ΩS and 22◦C in Ω\ΩS, a constant pressure
increase in the first 305 seconds until reaching
600 MPa is considered.

– Process PB: Considering initial temperature
T0 = 40◦C in the whole domain Ω and applying
the same constant pressure increase in the first
183 seconds until reaching 360 MPa.

•Numerical Models: The axial symmetry of
the model allows us to work in a 2D–domain.
The heat and mass transfer model (2) is coupled
with the kinetic equation (1). Velocity and pres-
sure spacial discretization is based on P2–P1 la-
grange finite elements satisfying the LBB sta-
bility condition.

•Enzymes: We study the impact of the two pro-
cesses PA and PB on the inactivation of three dif-
ferent enzymes: Bacillus Subtilis α–Amylase
(BSAA), Lipoxygenase (LOX) and Carrot
Pectin Methyl–Esterase (CPE).

• Sensitivity analisis: In practice, the model co-
efficients are usually approximated using ex-
perimental data. Furthermore, due to equip-
ment limitations, some experimental discrep-
ancies could occur during the process. In order
to study the impact of these errors on the enzy-
matic activity evolutions, we perform a sensitiv-
ity study of the models considering a standard
deviation less than ±5% of the parameters.

Numerical results
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CPE
LOX
BSAA

Model Enzyme

BSAA LOX CPE

Full model 49% 64% 12%

Boussinesq 51% 66% 12%

Sensitivity analisis

Minimum 41% 50% 9%

Maximum 54% 77% 18%
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CPE
LOX
BSAA

Model Enzyme

BSAA LOX CPE

Full model 52% 16% 5%

Boussinesq 53% 17% 5%

Sensitivity analisis

Minimum 44% 11% 4%

Maximum 60% 23% 5%


