Ejercicios de Álgebra Lineal

- 162. ¿A qué intervalo debe pertenecer el parámetro a para que la forma cuadrática $\Phi(x,y)^t = 2x^2 + axy + 6y^2$ sea definida positiva?
- 163. Clasificar las siguientes formas cuadráticas sobre \mathbb{R}^3
 - a) $\Phi(x, y, z)^t = x^2 z^2 2xy + xz$
 - b) $\Phi(x, y, z)^t = 2x^2 + y^2 + 5z^2 2xy 2yz + 6xz$
 - c) $\Phi(x, y, z)^t = -x^2 2y^2 z^2 + 2xy + 2yz$.
- 164. Dada la familia de formas cuadráticas $\Phi_a(x, y, z)^t = x^2 + y^2 + (a+1)z^2 + 2ayz + 2xz$, clasificar Φ_a según los valores del parámetro a.
- 165. ¿Tiene solución no nula en $\mathbb R$ la ecuación $x^2+y^2+z^2+2xy=0$? ¿Y la ecuación $2x^2+2y^2+z^2+2xy=0$?
- 166. Dada la forma bilineal $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida por

$$f(x,y)^t = x_1y_1 + x_1y_2 + x_1y_3 + x_2y_1 + x_2y_2 - x_3y_1 + 2x_3y_3$$

hallar su forma cuadrática asociada $\Phi,$ la forma polar, la matriz asociada y la signatura de $\Phi.$

- 167. Dadas las matrices $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$, ¿pueden representar la misma forma cuadrática en distintas bases?
- 168. Probar que las siguientes expresiones definen productos escalares en \mathbb{R}^3 .
 - 1. $\langle x, y \rangle = 2x_1y_1 + 2x_2y_2 + 2x_3y_3 + x_1y_2 + x_1y_3 + x_2y_1 + x_2y_3 + x_3y_1 + x_3y_2$.
 - 2. $\langle x, y \rangle = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3 + 2x_2 y_3 + 2x_3 y_2$.
- 169. Estudiar, según los valores de a, el carácter de la forma cuadrática real

$$g(x, y, z)^{t} = x^{2} + 2y^{2} + 2z^{2} - 2xy + 2ayz.$$

170. Sea f la forma bilineal en \mathbb{R}^3 definida por

$$f(x,y)^t = x_1y_1 - 2x_2y_2 + x_3y_3 + x_1y_2 + x_1y_3 + x_2y_1 - 2x_2y_3 + x_3y_1 - 2x_3y_2.$$

1. Dar la forma cuadrática Φ asociada a f y su matriz.

2. Encontrar una base $\mathcal{B} = \{v_1, v_2, v_3\}$ de \mathbb{R}^3 que verifique

$$f(v_i, v_j) = 0$$
, $si \ i \neq j$, $f(v_i, v_i) = 1$, $i = 1, 2$ y $f(v_3, v_3) = -1$.

- 3. ¿Cuál es la signatura de Φ ?
- 4. ¿Cuál es el subespacio conjugado de $U = L((1,0,1)^t)$ respecto de f? ¿Es autoconjugado el vector $(1,0,1)^t$?
- 171. Consideremos la familia de formas cuadráticas sobre \mathbb{R}^3

$$\Phi_a = x^2 + 4y^2 + 2z^2 + 2xy + 2axz,$$

donde $a \in \mathbb{R}$.

- 1. Hallar la matriz A_a asociada a Φ_a .
- 2. Hallar los valores de b y c para que $\{(1,0,0)^t, (1,b,0)^t, (-4a,a,c)^t\}$ sea una base de vectores conjugados respecto de Φ_a , para $a \neq 0$.
- 3. Encontrar una matriz P_a regular tal que $P_a^t A_a P_a$ sea diagonal.
- 4. Clasificar Φ_a según los valores de a.
- 172. Sea $L \subset \mathbb{R}^5$ la variedad afín cuyas ecuaciones paramétricas respecto del sistema de referencia canónico son:

$$\left. \begin{array}{rcl} x & = & 1+\alpha+\beta+3\gamma \\ y & = & 6+2\beta+2\gamma \\ z & = & -\alpha-\beta-3\gamma \\ t & = & 1+\alpha+2\gamma \\ u & = & \beta+\gamma \end{array} \right\}.$$

Hallar la dimensión, el espacio de dirección y unas ecuaciones implícitas de L.

173. Hallar unas ecuaciones paramétricas de la variedad afín $L \subset \mathbb{R}^4$ definida por

Hallar $\dim L$ y la dirección de L. Encontrar un conjunto de puntos afínmente independientes que generen L.

- 174. En un espacio afín de dimensión 2 sobre \mathbb{R} , se tienen los sistemas de referencia $R = \{O; u_1, u_2\}$ y $R' = \{A, B, C\}$ (en R' se entiende que el origen es el punto A y la base está formada por los vectores \overrightarrow{AB} , \overrightarrow{AC}) con $A = (2, 1)_R^t$, $B = (3, 3)_R^t$ y $C = (1, 4)_R^t$. Hallar la expresión del cambio de referencia y la ecuación en el sistema R' de la recta r cuya ecuación respecto de R es 3x 5y = 7.
- 175. En un espacio afín de dimensión 3 sobre \mathbb{R} , se tienen los sistemas de referencia $R = \{O; u_1, u_2, u_3\}$ y $R' = \{O', A_1, A_2, A_3\}$, donde $O' = (1, 2, 1)_R^t$, $A_1 = (2, 3, 1)_R^t$, $A_2 = (2, 2, 2)_R^t$ y $A_3 = (4, 3, 1)_R^t$. Hallar la expresión del cambio de sistema de referencia.

176. Se consideran las rectas de \mathbb{R}^4

$$r: \begin{cases} x + 2y - z &= 0 \\ 2x - y + 2z - 3t &= -1 \\ y + z - t &= -2 \end{cases} \qquad s: \begin{cases} y + z &= 1 \\ 2x + y + z - t &= -2 \\ 2x + 2y + z + t &= 0 \end{cases}$$

Hallar la mínima variedad afín que contiene a r y s. Dar un conjunto de puntos afínmente independientes que generen esta variedad.

177. Hallar unas ecuaciones paramétricas, la dimensión y la dirección de la intersección de los planos de \mathbb{C}^3 siguientes:

$$\pi: \left\{ \begin{array}{l} x = 1 - \alpha - \beta \\ y = 2 - \alpha + 2\beta \\ z = \alpha \end{array} \right. \qquad \pi': \left\{ \begin{array}{l} x = 1 + 2\alpha - \beta \\ y = 1 + \beta \\ z = 1 - \alpha \end{array} \right.$$

- 178. Dados los planos π , π' del ejercicio anterior, y el plano π'' de ecuación x-y-z=1, hallar la intersección de los tres planos. ¿Cuál es la ecuación del plano paralelo a $\pi \cap \pi'$ y $\pi \cap \pi''$ que pasa por el punto $(1,1,-1)^t$? Hallar la distancia entre este plano y las variedades afines $\pi \cap \pi'$, $\pi \cap \pi''$ y $\pi \cap \pi' \cap \pi''$.
- 179. En el espacio afín \mathbb{R}^3 se considera una referencia afín R, en la que las coordenadas de un punto X son $(x,y,z)_R^t$. Se considera otra referencia cartesiana $R' = \{O'; B\}$, donde $O' = (-2,1,-1)^t$ y $\mathcal{B} = \{u_1,u_2,u_3\}$, con $u_1 = (1,2,3)^t$, $u_2 = (0,1,1)^t$ y $u_3 = (2,-3,0)^t$. Hallar las coordenadas $(x',y',z')_{R'}^t$ de X.
- 180. ¿Cuál es la recta paralela a los planos $\pi: x+y+2z=4, \, \pi': x-y-z=1$ que pasa por el punto $(0,1,0)^t$?