Ejercicios de Curvas Algebraicas

- Cúbica racional normal. Consideremos la curva $\mathcal{C} \subseteq \mathbb{C}^3$ dada por la parametrización 31. $(t, t^2, t^3).$
 - a. Demostrar que \mathcal{C} es lisa, i.e., \mathcal{C} no posee puntos de autointersección ni puntos en los que se anule el vector derivado.
 - b. Hallar las proyecciones de \mathcal{C} sobre los planos coordenados y dar ecuaciones implícitas de las mismas. Representar estas curvas en \mathbb{R}^2 . ¿Son lisas?
 - c. Hallar la provección de \mathcal{C} sobre el plano Π de ecuación

$$X + Y + Z = 0$$

en la dirección

$$X = Y = Z$$
.

Es lisa?

En los siguientes ejercicios hay que estudiar, en primer lugar, la minimalidad de los polinomios dados.

- Encontrar los puntos singulares, sus órdenes y el cono tangente en ellos de las 32. siguientes curvas:
 - a. $\mathcal{C}\subseteq\mathbb{C}^2$ de ecuación $Y^3-Y^2+X^3-X^2+3Y^2X+3X^2Y+2XY=0,$ b. $\mathcal{C}\subseteq\mathbb{C}^2$ de ecuación $X^4+Y^4-X^2Y^2=0,$

 - c. $\mathcal{C} \subseteq \mathbb{C}^2$ de ecuación $Y^2 X^3 X = 0$.
- 33. Encontrar los puntos singulares, sus órdenes y las tangentes en dichos puntos de las siguientes curvas:
 - a. $\mathcal{C} \subseteq \mathbb{P}^2(\mathbb{C})$ de ecuación $XY^4 + YZ^4 + XZ^4 = 0$,
 - b. $\mathcal{C} \subseteq \mathbb{P}^2(\mathbb{C})$ de ecuación $X^2Y^3 + X^2Z^3 + Y^2Z^3 = 0$,

 - c. $C_{\lambda} \subseteq \mathbb{P}^{2}(\mathbb{C})$ de ecuación $Y^{2}Z X(X Z)(X \lambda Z) = 0$, con $\lambda \in \mathbb{C}$, d. $C_{n} \subseteq \mathbb{P}^{2}(\mathbb{C})$ de ecuación $X^{n} + Y^{n} \pm Z^{n} = 0$, con $n \in \mathbb{N}$, (curva de Fermat n-sima).

Nótese que las propiedades de las curvas $V(X^n + Y^n - Z^n)$ y $V(X^n + Y^n + Z^n)$ son esencialmente las mismas, cuando se trabaja sobre C y que, por simetría, es más cómoda la ecuación que lleva signo positivo en \mathbb{Z}^n . En cambio, si se trabaja sobre \mathbb{R} y se escoge signo positivo, se obtienen curvas vacías, para los valores pares de n; por ello es usual el signo negativo para \mathbb{Z}^n , en el caso real.

34. Para cada $\lambda \in \mathbb{C}$, se considera el polinomio cuadrático

$$F_{\lambda} = X^2 + Y^2 + Z^2 + \lambda (X + Y + Z)^2.$$

- a. ¿Para qué valores de λ posee la curva $V(F_{\lambda})$ algún punto singular? Calcular dichos puntos singulares.
- b. Calcular las tangentes L, L' a la curva $V(F_{-1/3})$ en su único punto singular y comprobar que

$$V(F_{-1/3}) = L \cup L'.$$

c. Reformular el ejercicio en términos de haces de cónicas.

35. Segundo criterio de las formas. Sean $D, E \in \mathbb{C}[X, Y]$ formas no nulas de grados respectivos $2 \le d < e$ y primas entre sí. Consideremos el polinomio

$$f = D + E$$

y la curva $\mathcal{C} = V(f) \subseteq \mathbb{C}^2$. Demostrar que f es minimal para \mathcal{C} y que Sing $\mathcal{C} = \{(0,0)\}$.

36. Curvas elípticas e hiperelípticas. Consideremos la curva $\mathcal{C} \subset \mathbb{C}^2$ de ecuación

$$Y^2 - \phi(X) = 0,$$

donde $\phi \in \mathbb{C}[X]$ tiene grado $d \geq 3$ y no es un cuadrado. Demostrar las siguientes propiedades.

- a. f es irreducible.
- b. Cada punto singular (x, y) de \mathcal{C} satisface y = 0; más aún, el punto (a, 0) es singular si y sólo si a es raíz múltiple de ϕ .
- c. \mathcal{C} tiene un único punto en el infinito y que dicho punto es liso si y sólo si d=3. ¿Es dicho punto de inflexión? ¿Tiene asíntotas o ramas parábolicas la curva \mathcal{C} ?
- d. Para $\phi = (5 X^2)(4X^4 20X^2 + 25)$, hallar el lugar singular de \mathcal{C} .

Si d=3 o 4, la curva se dice *elíptica*; si $d\geq 5$, la curva se dice *hiperelíptica*.