ALCOVED CONVEX POLYHEDRA: NEW SHAPES FOR DESIGN

María Jesús de la Puente
Fac. Matemáticas, Depto. Álgebra, Geometría y Topología, Universidad Complutense de Madrid UCM, Spain

Two descriptions of alcoved polyhedra
" by facets: $a_{i 4} \leq x_{i} \leq-a_{4 i}$ and
$a_{i j} \leq x_{i}-x_{j} \leq-a_{j i}$ or

- by 4 generators in $\mathbb{R}^{3}: \underline{1}, \underline{2}, \underline{3}, \underline{4}$

Alcoved polyhedra to matrices

- facet equation constants $a_{i j}$ give a matrix A
- 4 generators give columns of a matrix A_{0} (with zero last row)
- to pass from A to A_{0} and back is trivial - can always assume A is NI (normal idempotent: $a_{i i}=0, a_{i j} \leq 0$ and $a_{i j}+a_{j k} \leq a_{i k}$
- sometimes can assume $A=A_{0}$

Generators? In tropical sense

- $\oplus:=$ max is tropical addition and $\odot:=+$ is tropical multiplication, coordinatewise
- to span is to make tropical linear combinations

Tropical Planes

- three generic points span a unique plane - a generic plane in 3 -space has one vertex - label this vertex taxonomically (parents/children)

Figure 1: Tropical lines as intersection of pairs of tropical planes.
Tropical Lines

- two different points span a unique line - a generic line in 3 -space has two vertices - label these vertices taxonomically (parents/children) + proximity criterion - the intersection of two generic planes is a line

Objectives

- Alcoved polyhedra are convex bodies having facet equations of only two types: $x_{i}=$ cnst or
- Translate properties from alcoved polyhedra to matrices and back: make a dictionary

Figure 2: Green model: \mathcal{N} is (4.5.6), \mathcal{S} is (4.5.6), $E B$ is (4.5.6.4.5.6)

Figure 3: Coordinate axes in \mathbb{R}^{3}; the red dot marks the origin (left). North and South Casks and Equatorial Belt in an icosahedron in figure from Kepler's Harmonices Mundi, 1691 (right)

Polar Casks and Equatorial Belt

- North Cask is the union of facets meeting the North Pole
- South Cask is the union of facets meeting the South Pole
- Remaining facets make Equatorial Belt: a cycle of facets $\left(q_{1}, q_{2}, \ldots, q_{6}\right)$, i.e., a $q_{1}-$ gon followed by a q_{2}-gon, $\ldots q_{6}$-gon, traveling westwards, beginning front

Polar Cask types

- type is (4.5.6) if $x_{1}=$ cnst is $4-$ gon, $x_{2}=$ cnst is 5-gon and $x_{3}=$ cnst is 6-gon,
- permutations of above
- type is (5.5.5) if $x_{1}=c n s t, x_{2}=c n s t$ and $x_{3}=$ cnst are 5 -gons (occurs in left or right states)

Theorems

- Theorem 1: North and South Cask types determine and alcoved polyhedron
Theorem 2: Volume formula exists

Figure 4: Matlab computations for model in figure 2
Box, perturbation and cant tuple

- To cant means to bevel, to form an oblique surface upon something
A box is a convex polyhedron with facet equations $x_{i}=$ cnst
- To obtain an alcoved polyhedron, one must cant six edges in a box: those not meeting the poles
An alcoved polyhedron is a perturbed box, a canted box
If $A_{0}=A$ express $A=B-E$ with B (box matrix) and E (perturbation matrix)
- Cant tuple (i.e., list of cant parameters) obtained from E

Acknowledgements
I thank P.L. Clavería for providing figure 1 and 3D models. Work partially supported by Proyecto I+D MTM 2016-76808 P and 910444 UCM group.

- Web: http://www.mat.ucm.es/ mpuente/
- Email: mpuente@ucm.es

