

ALCOVED CONVEX POLYHEDRA: NEW SHAPES FOR DESIGN María Jesús de la Puente

Fac. Matemáticas, Depto. Álgebra, Geometría y Topología, Universidad Complutense de Madrid UCM, Spain

Two descriptions of alcoved polyhedra

- by facets: $a_{i4} \leq x_i \leq -a_{4i}$ and $a_{ij} \leq x_i - x_j \leq -a_{ji}$ or
- by 4 generators in \mathbb{R}^3 : $\underline{1}, \underline{2}, \underline{3}, \underline{4}$

Alcoved polyhedra to matrices

- facet equation constants a_{ij} give a matrix A
- 4 generators give columns of a matrix A_0 (with zero last row)
- to pass from A to A_0 and back is trivial
- can always assume A is NI (normal idempotent: $a_{ii} = 0, \ a_{ij} \leq 0 \text{ and } a_{ij} + a_{jk} \leq a_{ik}$
- sometimes can assume $A = A_0$

Generators? In tropical sense

- \oplus := max is tropical addition and \odot := + is tropical multiplication, coordinatewise
- to span is to make tropical linear combinations

Tropical Planes

- three generic points span a unique plane
- a generic plane in 3–space has one vertex
- label this vertex taxonomically (parents/children)

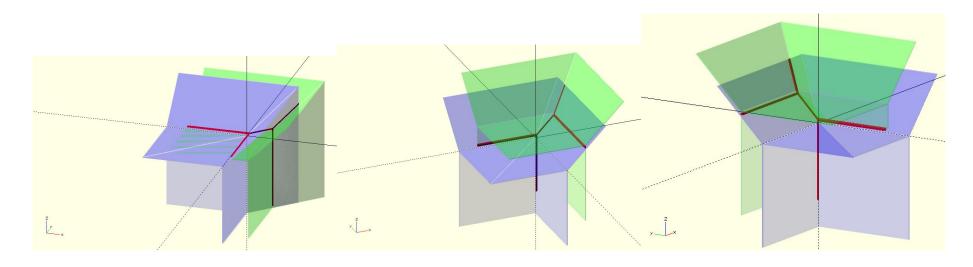


Figure 1: Tropical lines as intersection of pairs of tropical planes.

Tropical Lines

- two different points span a unique line
- a generic line in 3–space has two vertices
- label these vertices taxonomically (parents/children) + proximity criterion
- the intersection of two generic planes is a line

Objectives

- Alcoved polyhedra are convex bodies having facet equations of only two types: $x_i = cnst$ or $x_i - x_j = cnst$
- Represent an alcoved polyhedron by a 4×4 matrix
- Compute with matrices/manipulate alcoved polyhedra
- Translate properties from alcoved polyhedra to matrices and back: make a dictionary

Orientation of an alcoved polyhedron in 3-space

- Place South Pole (i.e., vertex <u>4</u>) and North Pole (i.e., vertex $\underline{123}$), Notice Polar Axis
- Locate other generators: <u>1</u> minimum in right facet, $\underline{2}$ minimum in back facet and $\underline{3}$ minimum in top facet
- Locate 3–generated vertices and 2–generated vertices

Maximal alcoved polyhedra are Dodecahedra

An alcoved polyhedron has, at most, 12 facets, 30 edges and 20 vertices. Facets can be 4-gons, 5–gons or 6–gons.

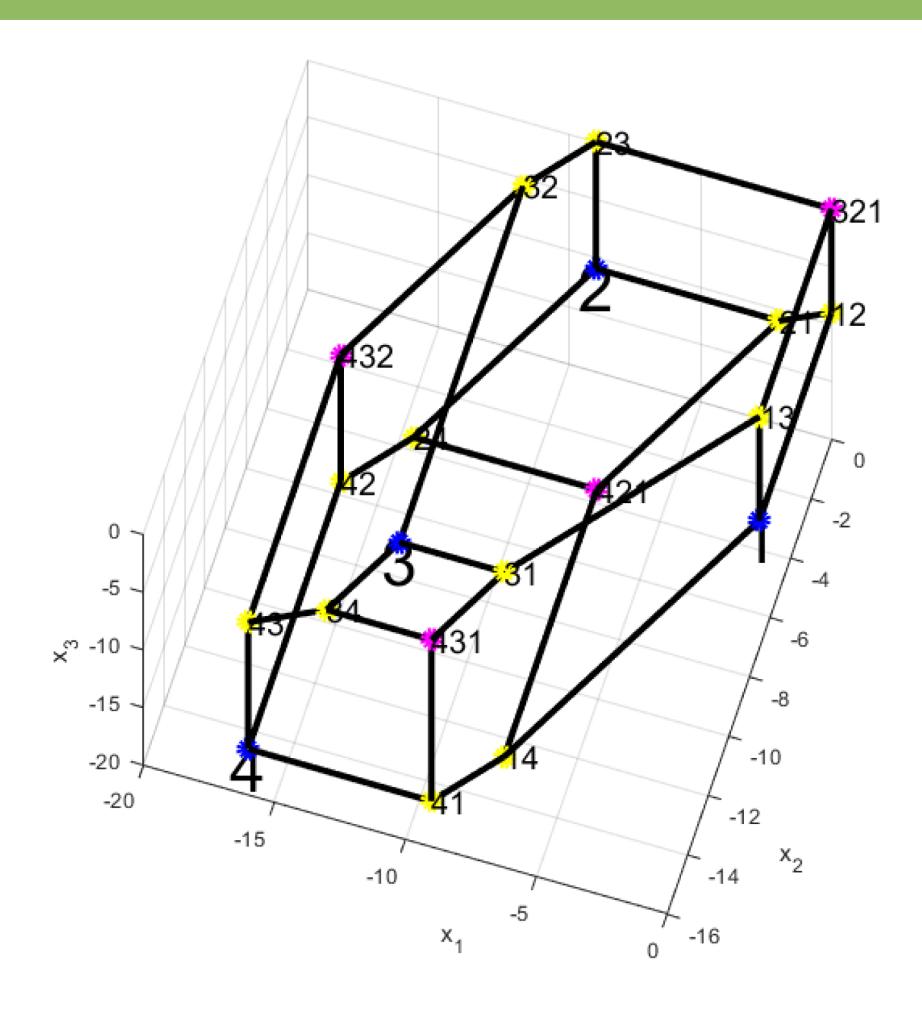


Figure 2: Green model: \mathcal{N} is (4.5.6), \mathcal{S} is (4.5.6), EB is (4.5.6.4.5.6)

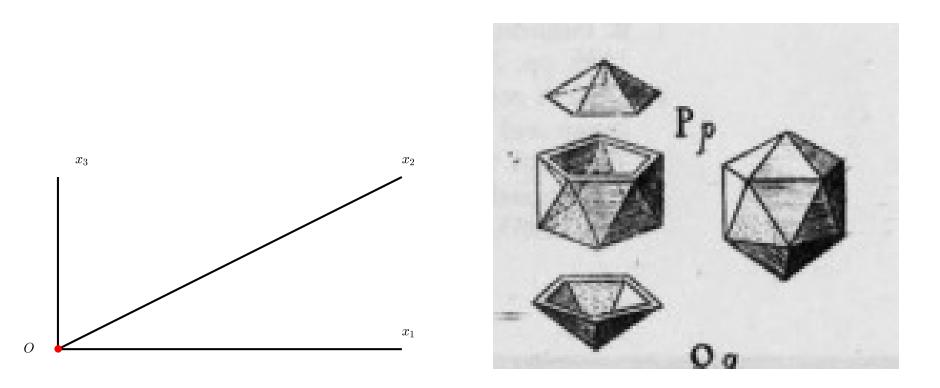


Figure 3: Coordinate axes in \mathbb{R}^3 ; the red dot marks the origin (left). North and South Casks and Equatorial Belt in an icosahedron in figure from Kepler's *Harmonices Mundi*, 1691 (right).

Polar Casks and Equatorial Belt

- North Cask is the union of facets meeting the North Pole
- South Cask is the union of facets meeting the South Pole
- Remaining facets make Equatorial Belt: a cycle of facets (q_1, q_2, \ldots, q_6) , i.e., a q_1 -gon followed by a q_2 -gon, ... q_6 -gon, traveling westwards, beginning front.

Polar Cask types

- type is (4.5.6) if $x_1 = cnst$ is 4-gon, $x_2 = cnst$ is 5-gon and $x_3 = cnst$ is 6-gon,
- permutations of above
- type is (5.5.5) if $x_1 = cnst$, $x_2 = cnst$ and $x_3 = cnst$ are 5-gons (occurs in left or right) states)

Theorems

- Theorem 1: North and South Cask types determine and alcoved polyhedron
- Theorem 2: Volume formula exists

Figure 4: Matlab computations for model in figure 2

Box, perturbation and cant tuple

- canted box
- from E

[thank P.L. Clavería for providing figure 1 and 3D models. Work partially supported by Proyecto I+D MTM 2016–76808– P and 910444 UCM group.

8 (
DATA MATRIX											
0 -9 -7 0											
-7 0											
0 0											
MATLAB RESULTS	FOR	MATRIX	ABOVE	OF GRI	EEN MOI	DEL ARE	:				
3-GENERATED (MAGENTA DOTS)											
3-GENERATED (MA	AGE N.T.	A DOTS)								
-16 -9	-7	0									
-7 -16	-5	0									
-5 -2	-16	0									
0 0	0	0									
2 1	1	1									
3 3	2	2									
4 4	4	3									
2-generated (ye	T.T.OW	DOTS									
Z-GENERATED (II		<i>D</i> 015,									
0 -2	-9	-11	-7	0	-9	-7	-16	-14	-16	-13	
0 0	0	-2	-14	-7	-16	-14	-7	-5	-16	-16	5
-9 -11			0	0					-5		
0 0	0	0	0		0			0		0	
2 1	3	2	1	3	1	4	2	4	3	4	
1 2	2	3	3	1	4	1	4	2	4	3	
0 0	0	0	0	0	0	0	0	0	0	0	
PERTURBATION MATRIX E =											
0 -7											
-9 0											
-7 -5	0										
CANT TUPLE c =	= -2	-5	-7	-5	-7	-9	-2				
	_	0	,	0		-	-				
p_vector = 0	4	4	4								
	-	-	_								
h_{-} vector = 0	0	0	1								
N_cask_type = 4	L	5	6	1							
S_cask_type = 4	L	5	6	1							
EB = 4 5	6	4	5	6							
$\mathbf{EB} = 4$ 5	0	4	5	0							
volume is (rour	ded)	W =	2621								
baricenter = -	-8.6	-8.1	-7.5								
8}											
~ J											

• To cant means to bevel, to form an oblique surface upon something

A box is a convex polyhedron with facet equations $x_i = cnst$

• To obtain an alcoved polyhedron, one must cant six edges in a box: those not meeting the poles • An alcoved polyhedron is a perturbed box, a

• If $A_0 = A$ express A = B - E with B (box) matrix) and E (perturbation matrix)

• Cant tuple (i.e., list of cant parameters) obtained

Acknowledgements

Web: http://www.mat.ucm.es/ mpuente/ Email: mpuente@ucm.es