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Tropical conics for the layman

M. Ansola and M.J. de la Puente

ABSTRACT. We present a simple and elementary procedure to sketch the tropical conic
given by a degree–two homogeneous tropical polynomial. These conics are trees of a
very particular kind. Given such a tree, we explain how to compute a defining polyno-
mial. Finally, we characterize those degree–two tropical polynomials which are reducible
and factorize them. We show that there exist irreducible degree–two tropical polynomials
giving rise to pairs of tropical lines.

1. Introduction

In recent years, there has been a growing interest in projective tropical geometry,
[3, 8, 9, 12, 20, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 36, 41, 42]. This new geometry is
related to toric geometry, [15, 19, 31]. Several authors have searched for tropical versions
of some classical theorems of projective geometry, [13, 35, 37, 38, 39, 40]. Some of these
old theorems involve conics.

The aim of this paper is to present tropical conics to non–experts, using only tropical
algebra (also called max–algebra, max–plus algebra, semirings, moduloı̈ds, dioı̈ds, pseu-
dorings, pseudomodules, band spaces over belts, idempotent mathematics). But first, one
word of advise is in order. Tropical conics are, of course, fairly well understood by experts
(in terms of combinatorics: secondary polytopes of matrices, Gale dual spaces, etc.), see
[10]. Also, there exist algorithms and computer programs to deal with them. Our point is,
nonetheless, that all of this can be done in elementary terms, easily and fast, just by hand.

This paper originated as an attempt to explain in full detail and give proofs for all
statements made in example 3.4 in [32].

Our polynomials will be either homogeneous in three variables or non–necessary ho-
mogeneous in two variables. To a degree–two tropical polynomial p, we associate a point
in the tropical plane and a triple of non–negative real numbers, s+

21, s
+
32, s

+
31, which com-

pletely determine the tropical conic C(p). These data are simply computed from p and
they are all that is needed to know in order to sketch C(p). It is known that the regular
subdivision of the Newton polygon of p determines the combinatorial type of C(p) but, to
our knowledge, nothing precise has been said about the exact coordinates of the vertices of
C(p).

There are two types (with several sub–types) of tropical conics: degenerate and non–
degenerate ones. We explain how they are classified according to the values of the in-
variants s+

21, s
+
32, s

+
31 and certain alternating sums d1, d2, d3 of the s+

ij’s. Degenerate (also
called improper) tropical conics are classified in theorem 2.8. It turns out that pairs of trop-
ical lines are degenerate tropical conics, but the converse is not true. And non–degenerate

1We would like to thank the anonymous referee for pointing out a better way to present this material.
2000 Mathematics Subject Classification. Primary 05C05; Secondary 12K99.
Key words and phrases. Tropical conics, factorization of tropical polynomials, tropically singular matrix.
Partially supported by MTM 2005–02865 and by UCM 910444.

c©0000 (copyright holder)

1

Contemporary Mathematics
Volume 495, 2009

c©2009 American Mathematical Society

87



2 M. ANSOLA AND M.J. DE LA PUENTE

(also called proper) tropical conics are classified in theorem 2.6, into one–point central and
two–point central ones.

Given a degree–two tropical polynomial p, the values s+
21, s

+
32, s

+
31 can be arranged

into a 3 × 3 symmetric non–negative real matrix denoted shape(p)+. We characterize
those tropical conics C(p) having tropically singular associated matrix shape(p)+ (corol-
lary 2.11). These are pairs of tropical lines and, surprisingly enough, one–point central
conics.

In the last section of the paper, we address the question of irreducibility of degree–
two tropical polynomials, also in elementary terms. We show that there exist irreducible
degree–two tropical polynomials giving rise to pairs of tropical lines.

Some of the results in this paper have already appeared in [2], while other are new.
The idea of considering shape matrices comes, somehow, from [21]. The values sij come
from [32].

Many results in tropical algebra have been discovered since the late fifties so that
the literature on this topic is vast. Some references are the books [4, 6, 16, 17, 45] and
the papers [1, 5, 7, 14, 43, 44]. The factorization problem for tropical polynomials in one
variable has been investigated in [24]. The tropical version of the existence and uniqueness
of a tropical conic passing through five given points in the plane in general position can be
found in [32].

2. Tropical conics

2.1. Tropical planes. Tropical geometry arises when one works over T, the tropical
semi–field. By definition, T is the set R ∪ {−∞} endowed with two operations: max and
+. Tropical addition is max and + is taken as tropical multiplication. They are denoted
⊕ and �, respectively. The neutral element for tropical addition is −∞ and zero is the
neutral element for tropical multiplication. It is noticeable that a ⊕ a = a, for a ∈ T, that
is, tropical addition is idempotent. However, there does not exist an inverse element, with
respect to ⊕, for a ∈ T. This is all that T lacks in order to be a field.

R≥0 will denote the set of non–negative real numbers. For a ∈ T, we will set a+ =
max{a, 0} = a ⊕ 0, the non–negative part of a. For a matrix A, the matrix obtained
by replacing every entry a of A by a+ will be denoted A+. For a polynomial P , the
polynomial obtained by replacing every coefficient a of P by a+ will be denoted P+.

The tropical affine 2–space is T
2, where addition and multiplication are defined coor-

dinatewise. Here we can define translations in the standard way; every point (t1, t2) ∈ R
2

defines the map: (X, Y ) �→ (X + t1, Y + t2).

In the space T
3 \ {(−∞,−∞,−∞)} we define an equivalence relation ∼ by letting

(b1, b2, b3) ∼ (c1, c2, c3) if there exists λ ∈ R such that

(b1 + λ, b2 + λ, b3 + λ) = (c1, c3, c3).

The equivalence class of (b1, b2, b3) is denoted [b1, b2, b3]. Its elements are obtained by
adding multiples of the vector (1, 1, 1) to the point (b1, b2, b3). The tropical projective
2–space, TP

2, is the set of such equivalence classes. Notice that, at least, one of the
coordinates of any point in TP

2 must be finite.

Points in T
2 (resp. TP

2) having finite coordinates will be called interior points. The
rest of the points will be called boundary points. The boundary of T

2 (resp. TP
2) is the

union of its boundary points. We will use X, Y, Z as variables in TP
2. Any permutation

of the variables X, Y, Z provides a change of projective tropical coordinates. Translations
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TROPICAL CONICS FOR THE LAYMAN 3

are also natural changes of projective tropical coordinates: given [t1, t2, t3] ∈ R
3, the point

[X, Y, Z] maps to [X ′, Y ′, Z ′] = [X + t1, Y + t2, Z + t3]. We may write

(2.1) [X ′, Y ′, Z ′] = [X, Y, Z] � D, D =

⎛
⎝

t1 −∞ −∞
−∞ t2 −∞
−∞ −∞ t3

⎞
⎠ .

A particular case is the tropical identity matrix

I =

⎛
⎝

0
−∞ 0
−∞ −∞ 0

⎞
⎠ .

Here, tropical matrix multiplication is defined in the usual way, but using ⊕ and �.

The plane TP
2 is covered by three copies of T

2 as follows. There exist injective maps

j3 : T
2 → TP

2, (x, y) �→ [x, y, 0], j2 : T
2 → TP

2, (x, z) �→ [x, 0, z],

j1 : T
2 → TP

2, (y, z) �→ [0, y, z]
and TP

2 = im j3 ∪ im j2 ∪ im j1. The complementary set of, say, im j3 is

{[x, y,−∞] : x, y ∈ T}.
Moreover, we have j3(x, x) = [x, x, 0] = [0, 0,−x], for x ∈ T. This means that the
coordinate axis Z in TP

2 is transformed by j−1
3 into the usual line X = Y in T

2. The
negative Z half–axis in TP

2 corresponds to the north–east direction in T
2. Similarly for

j2, j1.

It is easy to check that the set of interior points of TP
2 equals the intersection im j3 ∩

im j2 ∩ im j1.

For simplicity, we will consider the Euclidean metric in T
2. Notice that the composite

maps j−1
l ◦ jk are NOT isometries, for k, l ∈ {1, 2, 3}, k �= l.

The projective tropical coordinates of a point in TP
2 are not unique. In order to avoid

this inconvenience, we choose a normalization, that is we fix a rule that allows us to have
unique coordinates for all (but perhaps a small set of) points in TP

2, according to this
rule. For instance, setting the last coordinate equal to zero is a normalization. We call
it the Z = 0 normalization and say that we work in Z = 0. To consider the Z = 0
normalization is the same thing as passing to the affine tropical plane, via j3. Other possible
normalizations are setting Y = 0, or setting X = 0, or setting X, Y, Z all non–negative
and, at least, one equal to zero, or setting X + Y + Z = 0, etc.

2.2. Tropical conics are trees. A tropical polynomial is a tropical sum of tropical
monomials. For instance, a tropical homogeneous degree–two polynomial in the variables
X, Y, Z is
(2.2)

P (X, Y, Z) =

a11 � X�2 ⊕ a22 � Y �2 ⊕ a33 � Z�2 ⊕ a21 � X � Y ⊕ a32 � Y � Z ⊕ a31 � X � Z

= max {a11 + 2X, a22 + 2Y, a33 + 2Z, a21 + X + Y, a32 + Y + Z, a31 + X + Z} .

For us, degree–two means that the Newton polygon of P is the triangle determined by the
points (2, 0), (0, 2), (0, 0); in other words, that a21, a32, a31 ∈ T but a11, a22, a33 ∈ R.
The tropical conic C(P ) given by P is, by definition, the set of points in TP

2 where the
maximum is attained, at least, twice. A simple computer program (done in MAPLE, for
instance) may be used in order to sketch this conic, say in Z = 0. But we want to show
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4 M. ANSOLA AND M.J. DE LA PUENTE

that one can easily sketch C(P ) without a computer! Indeed, it is well–known that C(P ) is
a tree, see [12, 27, 29, 32] and so, all we need to compute is the coordinates of its vertices.

So let us recall here some facts about trees; see [11, 18] for details. A graph G is an
ordered pair (V, E), where V is a finite set of points, called vertices of G, and E is a set of
cardinality–two subsets of V . The elements of E are called edges of G. The edge joining
vertices u, w will be denoted uw. The degree of a vertex w of G is the number of edges of
G incident with w. Degree–one vertices are called pendant vertices and edges incident to
pendant vertices are called pendant edges.

A tree is a connected graph without cycles. A tree G = (V, E) naturally carries a
discrete metric; it is the function d : V × V → N, where d(u, w) is the least number of
edges to be passed through when going from u to w. If d(u, w) = 1, we say that u, w
are consecutive vertices. The eccentricity of a vertex w is e(w) = maxu∈V d(u, w) and
the radius of the graph G is r(G) = minw∈V e(w). A vertex w in G is central in G if
e(w) = r(G) and the center of G is the set of all central points in G. It is known that
every tree has a center and it consists either of just one vertex or two consecutive vertices.
This explains the names one–point central and two–point central conics, given below in
theorem 2.6.

A tropical projective plane curve C of degree d > 0 is a weighted tree of a very
particular sort. Each vertex of C is determined by its tropical projective coordinates. The
pendant vertices of C are precisely the points in C which lie on the boundary of TP

2. There
are 3d such vertices, counted with multiplicity. They are grouped in 3 families of d vertices
each: d vertices have the X (resp. Y ) (resp. Z) coordinate equal to −∞. Every pendant
edge in C has infinite length. There are 3d such edges, counted with multiplicity, and they
are grouped in 3 families of d edges each. The rest of the edges in C have finite lengths.
Edges in C may carry a multiplicity, which is a natural number, no greater than d. The
multiplicity of a vertex is deduced from the multiplicities of the edges incident to it.

A tropical projective plane curve C can be represented in Z = 0 (or in Y = 0 or
X = 0). More precisely, this means that we represent j−1

3 (C) (and still denote it C) (or
j−1
2 (C) or j−1

1 (C)) in T
2. Say, we choose to work in Z = 0. Then the slope of every edge

of finite length in C is a rational number and at each non–pendant vertex w the balance
condition holds. This means that

∑s
j=1 λjej = 0, where u1, . . . , us are all the vertices

in C consecutive to w, λ1, . . . , λs ∈ N are the weights of the edges wu1, . . . wus and
e1, . . . , es ∈ Z

2 are the primitive integral vectors at the point w in the directions of such
edges.

2.3. Matrices and points associated to a tropical degree–two polynomial. Let

P = max {a11 + 2X, a22 + 2Y, a33 + 2Z, a21 + X + Y, a32 + Y + Z, a31 + X + Z}
be a homogeneous tropical polynomial of degree two. As explained in subsection 2.2, the
tropical conic C(P ) has six pendant edges, counted with multiplicities. These multiplicities
are either one or two. Without loss of generality, we may work in Z = 0. Then C(P ) has
two pendant edges in the west direction, two in the south direction and two in the north-
east direction, all counted with multiplicity. In order to sketch the conic C(P ) we must
determine the non–pendant vertices of C(P ). We will see that there are four such points,
at most.

Just like in usual geometry, to P we associate the symmetric matrix A(P ) = (aij),
bearing in mind that we need not divide the coefficients of mixed terms by two, since trop-
ical addition is idempotent. Conversely, to such a matrix A, we can associate a polynomial
P (A) and, eventually, a tropical conic C(A).
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TROPICAL CONICS FOR THE LAYMAN 5

Most matrices considered in this paper are 3 × 3 and have entries in T = R ∪ {−∞}
but their diagonal elements belong to R (the only exception appears in the definition of
tropical determinant) and are symmetric. Therefore, we only write their lower triangular
parts. To the symmetric matrix

A =

⎛
⎝

a11

a21 a22

a31 a32 a33

⎞
⎠

we associate the diagonal matrix

D = D(A) =

⎛
⎝

a11/2
−∞ a22/2
−∞ −∞ a33/2

⎞
⎠ ,

which corresponds to a translation of coordinates, as we have seen in p. 3. The tropical
inverse matrix of D is obtained by negating the signs of its diagonal entries. Obviously,
it corresponds to the inverse translation. We define the shape matrix associated to A as
S = shape(A) = D�−1 � A � D�−1. Clearly, the shape matrix corresponds to the
given conic C(P ), after translation. It is crucial and easy to check that the shape matrix
S = (sij) is symmetric and has zero diagonal. The remaining entries of S are related to A
by the following formulas:

(2.3) 2s21 = 2a21 − a11 − a22, 2s32 = 2a32 − a22 − a33, 2s31 = 2a31 − a33 − a11.

Therefore the shape matrix is invariant, in the sense that it does not change if A is replaced
by A = α + U , for any α ∈ R, where U denotes the 3 × 3 matrix all whose entries are
one. Notice also that the matrices A and S are/are not simultaneously real. Back to the
polynomial P , let shape(P ), D(P ) denote the polynomials associated to the matrices S
and D.

The tropical determinant of an arbitrary 3 × 3 matrix A = (aij) is defined as

|A|trop = max
σ∈S3

{a1σ(1) + a2σ(2) + a3σ(3)},

where S3 denotes the permutation group in 3 symbols. A matrix is tropically singular if
the maximum in the tropical determinant is attained, at least, twice. For the matrices above
we have

2|D|trop = a11 + a22 + a33

and D is tropically non–singular. Moreover, A and S are/are not simultaneously tropically
singular, because

3∑
i=1

aiσ(i) =
3∑

i=1

siσ(i) + 2|D|trop,

for all σ ∈ S3. The tropical determinant of S is max{0, s, s, 2s21, 2s32, 2s31}, where

(2.4) s = s21 + s32 + s31.

In addition, |A|trop = 2|D|trop + |S|trop.

LEMMA 2.1. shape(shape(A)) = shape(A).

PROOF. It follows from the formulas (2.3). �

In the following, we assume A = shape(A) (or equivalently, P = shape(P )), mean-
ing that a11 = a22 = a33 = 0 and aij = sij , if i �= j. Now, the next crucial lemma tells
us that the matrices A and A+ give rise to the same tropical conic.
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6 M. ANSOLA AND M.J. DE LA PUENTE

LEMMA 2.2. If P = shape(P ), then C(P ) = C(P+).

PROOF. By hypothesis,

P = max {2X, 2Y, 2Z, s21 + X + Y, s32 + Y + Z, s31 + X + Z} .

If −∞ ≤ s21 ≤ 0 then

P+ = max
{
2X, 2Y, 2Z, X + Y, s+

32 + Y + Z, s+
31 + X + Z

}
.

It is obvious that

max{2X, 2Y, s21 + X + Y } = max{2X, 2Y } = max{2X, 2Y, X + Y }.
Moreover, these three maxima are attained at least twice at exactly the same points in R

2.
Therefore, the term s21 + X + Y is irrelevant in P , as far as C(P ) is concerned.

We can reason similarly with s32, s31, and thus conclude that the tropical conics
C(P ), C(P+) are equal. �

In the former paragraphs, we have reduced the study of tropical conics to the case
A = shape(A)+, a non–negative real matrix. Now, what does such a tropical conic C(A)
look like, say in Z = 0? To answer this question, we define the points v1(A), v2(A), v3(A)
which arise from the rows of A:

v1(A) = [−s11,−s21,−s31], v2(A) = [−s21,−s22,−s32], v3(A) = [−s31,−s32,−s33]

and one more point v0(A) by

v0(A) = [s32, s31, s21].

The points will be denoted v0, v1, v2, v3, for short.

LEMMA 2.3. Suppose A = shape(A)+. Then, in Z = 0,

(1) the segment v0v1 is parallel to the X axis,
(2) the segment v0v2 is parallel to the Y axis,
(3) the segment v0v3 is parallel to the line X = Y .

PROOF. Taking differences, we have v1 − v0 = [−s32,−s21 − s31,−s21 − s31] and
the coordinates of this point in Z = 0 are (−s32 + s21 + s31, 0). The rest is similar:
v2−v0 = (0,−s31 +s32 +s21) and v3−v0 = (−s31−s32 +s21,−s31−s32 +s21). �

Notice how the lengths of the segments v0vj depend on alternating sums of the entries
of the matrix A = shape(A)+. More precisely, set

(2.5)

⎛
⎝

d1

d2

d3

⎞
⎠ =

⎛
⎝

1 −1 1
1 1 −1
−1 1 1

⎞
⎠

⎛
⎝

s21

s32

s31

⎞
⎠

in terms of the ordinary matrix multiplication. Hence

(2.6) sij =
di + dj

2
, i �= j.

The length of v0vj is |dj |, for j = 1, 2, and the length of v0v3 is
√

2|d3| (the factor
√

2
is due to our choice of normalization Z = 0). Moreover, the angle ∠v1v0v2 is

π

2
. In

addition, ∠v1v0v3 is 3π
4 (resp. π

4 ) if d1d3 > 0 (resp. d1d3 < 0). Notice that the vertices
v1, v0, v3 determine a right triangle in Y = 0. Similarly, the vertices v2, v0, v3 determine
a right triangle in X = 0.

LEMMA 2.4. If A = shape(A)+, then dj is negative for, at most, one j ∈ {1, 2, 3}.
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TROPICAL CONICS FOR THE LAYMAN 7

PROOF. Suppose d1 < 0. By the hypothesis and relations (2.6), 0 ≤ d1 + d2 and
0 ≤ d1 + d3, whence 0 < −d1 ≤ d2 and 0 < −d1 ≤ d3. The other cases are similar. �

LEMMA 2.5. If A = shape(A)+, then the following are equivalent:

(1) A is tropically singular,
(2) the maximum of s21, s32, s31 is no greater than the sum of the other two,
(3) d1, d2, d3 are all non–negative.

PROOF. Equivalence between (2) and (3) follows from (2.5). We show that (1) and
(2) are equivalent. Note that only one of the numbers 2s21, 2s32, 2s31 can be greater than
s = s21+s32+s31, so that the maximum is attained twice in max{0, s, s, 2s21, 2s32, 2s31}
if and only if it equals s. Now note that this happens if and only if (2) is satisfied. �

Any tropical conic C has some non–pendant vertices. These are the points in C where
the maximum is attained, at least, three times.

If C has more than two non–pendant vertices, let us consider two consecutive ones
u1, u2. If these points come together, a new tropical conic C′ arises. Obviously, if C
has parallel pendant edges e1, e2 such that ej is incident to uj , then e1 is a pendant edge
with multiplicity two in C′. Let C′ be a tropical conic which can be obtained from C by
successively collapsing one or more pairs of consecutive non–pendant vertices. Then we
will say that C′ is a degeneration of C. Such a conic C′ is called degenerate.

Now we get our two main theorems. In page 9 we explain why theorem 2.6 deals with
non–degenerate tropical conics while theorem 2.8 classifies degenerate tropical conics.

In the second part of the following theorem, superscripts work modulo 3, and ti,j

stands for the point in TP
2 whose i–th coordinate is −2sij and the rest are null.

THEOREM 2.6. Let A = shape(A)+ = (sij). Suppose that sij > 0 for all i �= j and
dj �= 0, for j = 1, 2, 3. Then the following mutually exclusive cases arise, for the tropical
conic C = C(A).

(1) One–point central conic. If d1, d2, d3 are all positive, then C has four non–
pendant vertices; these are v1, v2, v3 and v0.

(2) Two–point central conic. If dj < 0 for some j ∈ {1, 2, 3}, then C has four
non–pendant vertices; these are vj−1, vj+1, wj−1 = vj−1 + tj−1,j and wj+1 =
vj+1 + tj+1,j .

PROOF. We may assume that d1 > 0 and d2 > 0 by a permutation of variables and
lemma 2.4. For simplicity, let us work in Z = 0 and let us evaluate

P = max{2X, 2Y, 0, s21 + X + Y, s31 + X, s32 + Y }
in v1 = (s31, s31 − s21) and v2 = (s32 − s21, s32). Using that d1 > 0 and d2 > 0, we
obtain that

max{2s31, 2(s31 − s21), 0, 2s31, 2s31, d3} = 2s31

max{2(s32 − s21), 2s32, 0, 2s32, d3, 2s32} = 2s32

both attained three times. This means that v1 and v2 are non–pendant vertices of C. Now
we evaluate P in v3 = (−s31,−s32) and v0 = (s32 − s21, s31 − s21) and obtain

max{−2s31,−2s32, 0,−d3, 0, 0}
max{2(s32 − s21), 2(s31 − s21), 0, d3, d3, d3}.

It follows that v3 and v0 are also non–pendant vertices of C, if d3 > 0 and, no further non–
pendant vertices of C arise, by symmetry in the variables; see figure 1, right. The center of
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8 M. ANSOLA AND M.J. DE LA PUENTE

C is v0 and we say that C is a one–point central conic. Six pendant edges hang from the
v1, v2, v3 as explained in subsection 2.2, completing the picture of C; see figure 2 line 1,
column 3. If we work in X = 0, (resp. Y = 0) we obtain other representations of C; see
figure 2 line 1, column 1 (resp. column 2).

�
�

�
��

v3

v0 v1

v2

�
�

� v1

v2

w1

w2

�

�

v0

v3

FIGURE 1. Non–pendant vertices: cases d3 < 0 and d3 > 0.

Now, if d3 < 0, we consider w1 = v1 + [−2s31, 0, 0] and w2 = v2 + [0,−2s32, 0].
Working in Z = 0 and evaluating P in w1 = (−s31, s31−s21) and w2 = (s32−s21,−s32)
we get

max{−2s31, 2(s31 − s21), 0, 0, 0, d3} = 0

max{2(s32 − s21),−2s32, , 0, 0, d3, 0} = 0

both attained three times. It follows that w1 and w2 are non–pendant vertices of C (in
addition to v1 and v2), if d3 < 0. No more non–pendant vertices of C arise also in this
case. In particular, v3, v0 are NOT vertices in C, if d3 < 0; see figure 1, left. The center
of C consists of w1 and w2 and we say that C is a two–point central conic. Six pendant
edges of C hang from v1, v2, w1, w2. Such a tropical conic is represented in figure 2 line
2, column 3.

If d1 < 0 or d2 < 0, other two–point central conics are obtained, and they are repre-
sented in figure 2 line 2, columns 1 and 2. Notice that a factor

√
5 appears in the length of

edges of slope 1
2 or 2, due to our choice of Euclidean metric. �

COROLLARY 2.7. Let A = shape(A)+ = (sij). Suppose that sij > 0 for all i �= j,
d1 > 0, d2 > 0 and d3 �= 0. Then in Z = 0, the tropical conic C = C(A) has two different
pendant edges in the north–east direction (resp. west direction) (resp. south direction) and
they are

√
d2
1 + d2

2 (resp. 2s32) (resp. 2s31) apart.

PROOF. The previous theorem applies and the statement follows from the equalities
(2.6). �

Notice that
√

d2
1 + d2

2 tends to zero if and only if 2s21 = d1 + d2 tends to zero.

Suppose that A = shape(A)+ and sij > 0, for i �= j and dj �= 0, for j = 1, 2, 3.
Then the degenerations of the tropical conic C(A) arise by letting sij = 0 or dj = 0 for
some indices. We have the following classification theorem.
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TROPICAL CONICS FOR THE LAYMAN 9

THEOREM 2.8. If A = shape(A)+ and sij = 0 or dj = 0 for some indices, then the
following cases arise (up to a permutation of variables) for the tropical conic C(A):

(1) s21 > 0, s32 > 0, s31 = 0, d1 > 0, d2 > 0 and d3 < 0.
(2) s21 > 0, s32 = s31 = 0, d1 > 0, d2 > 0 and d3 < 0.
(3) Double tropical line. s21 = s32 = s31 = 0 (equivalently, d1 = d2 = d3 = 0 or,

yet equivalently, d3 = s32 = s31 = 0).
(4) Pair of tropical lines. s21 > 0, s32 > 0, s31 > 0, d1 > 0, d2 > 0 and d3 = 0.
(5) Pair of tropical lines. s21 > 0, s32 = 0, s31 > 0, d1 > 0 and d2 = d3 = 0.

PROOF. (1) This situation arises when v1 and w1 collapse, in a two–point cen-
tral conic.

(2) This situation arises when, in addition to the former, v2 and w2 collapse, in a
two–point central conic.

(3) This situation arises when v1, w1, v2 and w2 all collapse to one point, in a two–
point central conic. It also arises when vj all collapse to one point, for j =
0, 1, 2, 3, in a one–point central conic.

(4) This situation arises when w1 and w2 collapse, in a two–point central conic. It
also arises when v0 and v3 collapse, in a one–point central conic.

(5) This situation arises when v2, w2 and w1 all collapse, in a two–point central
conic. It also arises when v0, v2 and v3 collapse, in a one–point central conic.

�

These conics are represented in figure 2, lines 3 to 8, where a thick segment represents
a multiplicity–two edge.

Let us summarize. Up to translation, tropical conics are determined by a non–negative
real matrix S+ = (sij) with zero diagonal. We have gone through all the possibilities
for the sij , in the two theorems above. This means that no more tropical conics do ex-
ist! Therefore, theorem 2.6 classifies non–degenerate tropical conics, while theorem 2.8
classifies degenerate tropical conics.

A procedure to sketch, say in Z = 0, the tropical conic C(P ) defined by an arbi-
trary homogeneous degree–two polynomial P is the following

• From P , compute the matrices A and S+ = shape(A)+.
• Sketch the conic C(S+), according to the classification given by the theorems

above and translate this conic to the point
1
2

(a33 − a11, a33 − a22) in R
2 to

obtain C(P ).
The following are all direct consequences of our discussion.

COROLLARY 2.9. A tropical conic is non–degenerate if and only if it is not the union
of two tropical lines and all of its pendant edges have multiplicity one. �

COROLLARY 2.10 (Pairs of tropical lines). For a tropical conic C = C(A), the fol-
lowing statements are equivalent:

• C is a pair of lines,
• d1, d2, d3 are all non–negative and, at least, one dj equals zero,
• the maximum of s+

21, s
+
32, s

+
31 equals the sum of the other two,

• v0 ∈ {v1, v2, v3} for the matrix shape(A)+. �
Notice that the number of different pendant edges in a pair of tropical lines is six, five

or three. Pairs of tropical lines are represented in figure 2, lines 6 to 8.

95



10 M. ANSOLA AND M.J. DE LA PUENTE

����
�

��
�

��

�
��

�
��

v1

v0

v2

v3

√
2 d1 d2

d3

����
�

��
�

��

�
��

�
��

v2

v0

v1

v3

√
2 d2 d1

d3

����
�

��
�

��

�
��

�
��

v3

v0

v1

v2

√
2 d3 d1

d2

�
�
�

�
�
�

����

�
��

�
���
��

�
��

v3

v2

w3

w2

−
√

5 d1

2
√

2 s31

2s21

���
���

����

�
��

�
��

�
��

�
��

v3

v1

w3

w1

−
√

5 d2

2
√

2 s32

2s21

���� �
��

�
��

�
��

�
��

v1

v2

w1
w2

−
√

2 d3

2s32

2s31

�
�
�

�
�
�

����

�
��

�
��

�
��

�
��

�
��

�
��

v3

w3

w2 = v2

−
√

5 d1

2
√

2 s31 �
�
�

�
�
�

�
��

�
��

�
��

�
��

w3 = v3

v2

−
√

5 d1

2s21
w2

���
���

����

�
��

�
��

�
��

�
��

�
��

�
��

v3

w1 = v1

w3

−
√

5 d2

2
√

2 s32

���
����

�
�

�
�

�

����

w3 = v3

v1w1

−
√

5 d2 2s21 ���� �
��

�
���

�
�

�
�

�

v1w1
w2 = v2

−
√

2 d3
2s31

�����
�

�

�
�

�

����

w1 = v1

v2

w2

−
√

2 d3

2s32

�
�
�

�
�
�
�

��
�

��
�

��
�

��
�

��
�

��

w3 = v3

w2 = v2

−
√

5 d1

���
����

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

w3 = v3

w1 = v1−
√

5 d2 �����
�

�

�
�

��
�

�

�
�

�

w1 = v1

w2 = v2

−
√

2 d3

�
�

��

�
�

��

�
��

�
��

v3

v0 = v1

v2

√
2 d3

d2

�
�

�
��

�
�

�
��

�
�

�

�
�

�
v0 = v2

v1

v3

√
2 d3

d1

�
��

�
��

�
��

�
��

v0 = v3 v1

v2

d1

d2

��
�

��
�

��
�

��
�

��
�

��
�

��

v3

v0 = v1 = v2

√
2 d3 �

��
�

��

�
��

�
��

v0 = v1 = v3

v2

d2
�

��
�

��
�

�
�

�
�

�

v0 = v2 = v3 v1
d1

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

v0 = v1 = v2 = v3

FIGURE 2. Tropical conics. Line 1 is occupied by one–point central
conics, line 2 is occupied by two–point central conics, lines 3 to 8 are
occupied by degenerate conics, where lines 6 to 8 are occupied by pairs
of lines.
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COROLLARY 2.11. A tropical conic C = C(P ) has tropically singular associated
matrix shape(P )+ if and only if C is either a pair of tropical lines or a one–point central
conic.

PROOF. This follows from lemma 2.5, part 1 of theorem 2.6 and corollary 2.10. �

A tropical conic C(P ) is determined by a triple (s+
21, s

+
32, s

+
31) of real non–negative

numbers and any row of the matrix A = A(P ). The null triple corresponds to a double
tropical line. Let (s+

21, s
+
32, s

+
31) �= (0, 0, 0) be the coordinates of a point in the non–

negative octant O = R
3
≥0. In figure 3 we see the plane section of O given by s+

21 + s+
32 +

s+
31 = s, for some positive s. According to corollary 2.11, tropical conics having tropi-

cally singular matrix shape(A)+ correspond to the shaded closed triangle, the boundary
of which corresponds to pairs of lines. Other degenerate tropical conics correspond to the
boundary of the section.

(0,0,s) (s,0,0)

(0,s,0)

(0,s/2,s/2)

(s/2,0,s/2)

(s/2,s/2,0)

d
2
<0 d

3
<0

d
1
<0

d
1
>0

d
2
>0

d
3
>0

FIGURE 3. Section of octant O given by s+
21 + s+

32 + s+
31 = s.

It is known that every balanced weighted tree is a tropical curve, see [12, 26, 27].
When d = 2, here is a procedure to find a defining polynomial P for a balanced graph
C.

• From the edges of C, compute the values s+
21, s

+
32, s

+
31 and classify C (degenerate

or non–degenerate and type).
• From the vertices of C, compute symmetric matrices A and shape(A), using as

many unknowns as necessary.
• Solve for the unknowns, according to the classification.

EXAMPLE 2.12. In Z = 0, let the weighted tree C in figure 4 be given. Here thick seg-
ments represent edges of multiplicity two. The non–pendant vertices of C are v1 = (4, 2) =
[4, 2, 0], v3 = (0, 0) = [0, 0, 0] and the balance condition is satisfied at both. Indeed, at v1

the primitive vectors are (1, 1), (0, 1), (−2,−1) and 2(1, 1) + (0, 1) + (−2,−1) = (0, 0).
Similarly, for v3. Therefore, this tree corresponds to a tropical conic. It is a degenerate
tropical conic (not a pair of lines) and, by corollary 2.7 and theorem 2.8, s+

21 = s+
32 = 0

and s+
31 = 2. Then s21, s32 are non–positive and s31 = 2. We fill the negated coordinates
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12 M. ANSOLA AND M.J. DE LA PUENTE

of v1, v3 into the rows of a symmetric matrix A and compute the matrices D = D(A) and
shape(A) = D�−1 � A � D�−1 obtaining:

A =

⎛
⎝

−4
−2 a22

0 0 0

⎞
⎠ , shape(A) =

⎛
⎝

0
−a22/2 0

2 −a22/2 0

⎞
⎠ ,

for some a22 ∈ R. Therefore s21 = s32 = −a22/2 ≤ 0. The points associated to
shape(A) are v1′ = [0, a22/2,−2] = [2, 2 + a22/2, 0] and v3′ = [−2, a22/2, 0] and the

slope of the segment v3′v1′ is 1
2 (in Z = 0), independently of the precise value of a22.

Then, any a22 ≥ 0 will do. We may take a22 = 0 and we conclude that C is given by the
tropical polynomial P = (−4)�X�2⊕Y �2 ⊕Z�2 ⊕ (−2)�X �Y ⊕Y �Z ⊕X �Z.

������

�������
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

(0, 0)

(4, 2)

FIGURE 4. A weighted tree C in Z = 0.

3. Factorization of degree–two tropical polynomials

A tropical polynomial p (homogeneous or not) in any number of variables is called
reducible if it is the tropical product of two non–constant tropical polynomials. A tropical
hypersurface C (affine or projective) is called reducible if it is the union of two hyper-
surfaces (affine or projective, accordingly) C1, C2 with C1 �= C �= C2. It is clear that the
reducibility of a polynomial causes the reducibility of the corresponding hypersurface but,
in the tropical setting, the converse is NOT true; see corollary 3.3 below.

Let P be a homogeneous degree–two tropical polynomial in three variables. The
simplest example of a reducible polynomial arises when aij = 0, for all i �= j. Then P
is the tropical square of the linear form a11/2 � X ⊕ a22/2 � Y ⊕ a33/2 � Z, because
in tropical algebra the freshman’s dream (a ⊕ b)�n = a�n ⊕ b�n holds for all n! The
corresponding matrices and points are easy to compute:

A =

⎛
⎝

a11

−∞ a22

−∞ −∞ a33

⎞
⎠ = D�2,

shape(A) = I is the tropical identity matrix, shape(A)+ is the zero matrix and the tropical
conic C(P ) is a double line with vertex at v = 1

2 [−a11,−a22,−a33].

LEMMA 3.1. P is reducible if and only if shape(P ) is.

PROOF. Consider the associated matrix A = A(P ). The factorization A = D�S�D
corresponds to a change of variables [X, Y, Z] �→ [X ′, Y ′, Z ′] = [X, Y, Z] � D. �

The former lemma allows us to reduce our discussion to the case P = shape(P ).
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THEOREM 3.2. If P = shape(P ) = X�2 ⊕ Y �2 ⊕ Z�2 ⊕ s21 � X � Y ⊕ s32 �
Y � Z ⊕ s31 � X � Z, then the following statements hold.

(1) If −∞ ≤ sij < 0, for some i �= j, then P is irreducible.
(2) If sij ≥ 0, for all i �= j, then P is reducible if and only if the maximum of

s21, s32, s31 equals the sum of the other two.

PROOF. Up to tropical multiplication by a real constant, a tropical factorization of P
must have the form

(3.1) (a � X ⊕ b � Y ⊕ Z) � ((−a) � X ⊕ (−b) � Y ⊕ Z) ,

for a, b ∈ R, where s21 = |a−b|, s32 = |b|, s31 = |a| ∈ R≥0. The irreducibility statement
now follows. For the second statement, let us assume that sij ≥ 0, for all i �= j and,
without loss of generality, that s31 = max{s21, s32, s31}. Suppose that s31 = s21 + s32.
Then we take a = s31 and b = s32, so that P equals the product (3.1). The converse is
easy. �

COROLLARY 3.3. If P = shape(P ) and −∞ ≤ sij < 0, for all i �= j, then the
polynomial P is irreducible, but the conic C(P ) is a double line. �

Summing up, here is a procedure to determine whether a given tropical degree–
two homogeneous polynomial P in three variables is reducible and, in such a case, to
obtain a factorization.

• Compute the polynomial shape(P ) and decide whether it is reducible or not,
using theorem 3.2.

• If shape(P ) is reducible, we can factor it, as explained in the proof of theorem
3.2. Then, a change of coordinates provides a factorization of P , by lemma 3.1.

EXAMPLE 3.4. Let P = X�2⊕12�Y �2⊕Z�2⊕7�X�Y ⊕6�Y �Z⊕1�X�Z.
The associated matrices are

A =

⎛
⎝

0
7 12
1 6 0

⎞
⎠ , D =

⎛
⎝

0
−∞ 6
−∞ −∞ 0

⎞
⎠ , S = S+ =

⎛
⎝

0
1 0
1 0 0

⎞
⎠ .

Then s21 = s31 = 1, s32 = 0 and max{s21, s32, s31} = s31 = s21 + s32. By theorem 3.2,
the polynomial shape(P ) = X�2 ⊕ Y �2 ⊕Z�2 ⊕ 1�X � Y ⊕ Y �Z ⊕ 1�X �Z is
reducible and a factorization is given by (3.1) with a = 1, b = 0. Then the translation given
by the point [0,−6, 0] provides (1 � X ⊕ (−6) � Y ⊕ Z)� ((−1) � X ⊕ 6 � Y ⊕ Z) as
a factorization of P .
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