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Abstract
An algorithm to solve any tropical linear system A ¯ x = B ¯ x is pre-

sented. The given system is converted into two classical linear systems: a
system of equations and a system of inequalities, each item (equation or in-
equality) involving exactly two variables, one with coefficient 1, and another
with coefficient −1. The two classical linear systems are solved, essentially,
by triangulation and backward substitution.

1 Introduction

Consider the set R ∪ {−∞}, denoted T for short, endowed with tropical addition
⊕ and tropical multiplication ¯, where these operations are defined as follows:

a⊕ b = max{a, b}, a¯ b = a + b,

for a, b ∈ T. Here, −∞ is the neutral element for tropical addition and 0 is the
neutral element for tropical multiplication. Notice that a ⊕ a = a, for all a, i.e.,
tropical addition is idempotent. Notice also that a has no inverse with respect to
⊕. We will write ⊕ or max, (resp. ¯ or +) at our convenience. In this paper we
will use the adjective classical as opposed to tropical. Most definitions in tropical
mathematics just mimic the classical ones. Very often, working with (T,⊕,¯) leads
to working with min, which will be denoted ⊕′.

Assume n > 1. Given matrices A,B ∈ Mm×n(T), we want to compute all
x ∈ Tn such that A¯ x = B ¯ x. This means

max{aij + xj : 1 ≤ j ≤ n} = max{bij + xj : 1 ≤ j ≤ n}, i = 1, 2, . . . , m.

∗Partially supported by a La Caixa grant.
†Partially supported by UCM research group 910444.
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Using the notion of win sequence (introduced in this paper; see definition 4), the
given problem is reduced to solving two classical linear systems: a system of equa-
tions and a system of inequalities, each item (equation or inequality) being bivariate,
i.e., it involves exactly two variables, one with coefficient 1, and another with coef-
ficient−1. Then we give a procedure (a Gaussian–like elimination method) to solve
these two systems. More precisely, by elementary transformations of rows, we can
triangulate and then apply backward substitution to the system of equations. This is
exactly the Gaussian method. For the system of inequalities, strictly speaking, we
cannot achieve a triangular form, but nearly so: we can reduce the given matrix to a
sub–special matrix (see definition 6) by row transformations, and then we can solve
the resulting system of inequalities by backward substitution. We need not use the
simplex algorithm or other well–known ones to solve our system of inequalities.

The problem A ¯ x = B ¯ x has been addressed before. Indeed, in [3], a
strongly polynomial algorithm is found which either finds a solution or it tells us that
no solution exists. In [1] sec. 3.5, it is solved by a technique called symmetrization
and resolution of balances. In [2], the problem is solved by finding generators for
the solution set. The idea of finding (a minimal family of) generators is pursued
in [9, 10] for the closely related problem A ¯ x ≤ B ¯ x. An iterative method
in presented in [5] for another closely related problem, namely A ¯ x = B ¯ y,
where x and y are unknown, here. Also, there is a technique in [11] to solve the
problem A¯ x⊕ a = B ¯ x⊕ b, relying on a recursive formulation of the closure
operator (also called Kleene star operator) on matrices. In [6] ch. 4, the closely
related problem A ¯ x ⊕ b = x (similar to the classical Jacobi iterative method) is
solved using Kleene stars.

Let m,n, p ∈ N be given. The following are kindred problems in tropical linear
algebra:

• P1: A¯ x = 0,

• P2: A¯ x = b,

• P3: A¯ x ≤ b,

• P4: A¯ x = B ¯ x,

• P5: A¯ x ≤ B ¯ x,

• P6: C ¯ x = D ¯ y,

• P7: A¯ x⊕ a = B ¯ x⊕ b.

Here the data are matrices A,B ∈ Mm×n(T), C ∈ Mp×n(T), D ∈ Mp×m(T)
and vectors a, b, c, d over T, and the jth problem is finding all vectors x ∈ Tn,
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y ∈ Tm, such that Pj holds. Some references since 1984 are [1, 2, 4, 5, 9, 10, 11].
Earlier books and papers can be found there.

Of course, x = −∞, y = −∞ are solutions to P3, P4, P5 and P6. These are
the trivial solutions.

Only if the vector b is real, problem P2 reduces to P1. More generally, one
must realize that, contrary to classical linear algebra, problems P7 and P4 do not
reduce to problem P2 or P1, because there are no inverses for tropical addition,
so there is no tropical analogue for the matrix −B. Nevertheless, there are well–
known connections among these problems, i.e., being able to solve some of them
is equivalent to being able to solve some other. By deciding a problem we mean
finding all the solutions, if any, or declaring that the problem has no (non–trivial)
solution.

We need some notations:

• For c, d ∈ T, c⊕′ d means min{c, d} and c¯′ d means c + d.

• For c, d ∈ Tn, c¯′ dT means min{c1 + d1, c2 + d2, . . . , cn + dn}.

• If A = (aij) ∈Mm×n(R) then A∗ = (−aji) is the conjugate matrix.

The relationship among these problems is as follows:

• Deciding P3 is possible, if A is real.

Indeed, x# = A∗ ¯′ b is a solution (called principal solution) and x ≤ x#

if and only if x is a solution; see [4], p. 31; in [1] this process is called
residuation.

• Deciding P3 helps with deciding P3, if A is real.

Indeed, P3 might be incompatible but, if it has a solution, then x# is the
greatest one; see [4], p. 31.

• Deciding P6 implies deciding P2.

Given A and b, we decide A ¯ x = I ¯ y. For each pair of solutions x, y, if
any, we set y = b, if possible.

• Deciding P4 is equivalent to deciding P6.

Suppose x is a solution to P4 and write A¯ x = y. Concatenating matrices,
write C =

[
A
B

]
∈ M2m×n(T), D =

[
I
I

]
∈ M2m×n(T), where I is the

tropical identity matrix, so that C ¯ x = D ¯ y. Therefore, if we can decide
P6, then we can decide P4.
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Suppose now x, y are solutions to P6 and write z =
[

x
y

]
, A =

[
C −∞
−∞ D

]
,

B =
[ −∞ D

C −∞
]

so that A ¯ z = B ¯ z. Therefore, if we can decide

P4, then we can decide P6.

• Deciding P5 implies deciding P4.

Obvious.

• Deciding P3 and P4 implies deciding P5.

If x is a solution to P4 and we write A¯ x = y, then we find all z such that
A¯ z ≤ y.

• Deciding P4 implies deciding P7.

We introduce a new scalar variable z and write A¯x⊕a¯z = B¯x⊕b¯z.
Concatenating matrices, write t =

[
x
z

]
, C = [A, a], D = [B, b] so that

C ¯ t = D ¯ t. After solving P4, set tn+1 = z = 0.

2 The problem

Assume n > 1. Given matrices A,B ∈Mm×n(T), we want to compute all x ∈ Tn

such that
A¯ x = B ¯ x. (1)

Notations:

• [n] = {1, . . . , n}, for n ∈ N.

• For any c ∈ T, x = c ∈ Tn means xj = c, for all j ∈ [n].

• A = (aij), B = (bij), with

aij =

{
aij if aij ≥ bij ,
−∞ otherwise

bij =

{
bij if aij ≤ bij ,
−∞ otherwise

• M = A⊕B = A⊕ B = (mij) is the maximum matrix.

• If k ∈ [m] and j, l ∈ [n], then

dif(M ; j, l)k =

{
mkj −mkl, if mkl 6= −∞,

undetermined, otherwise.

The undetermined case will never appear in the following. Notice that for
fixed k, dif(M ; j, l)k has the cocycle properties:
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1. dif(M ; j, l)k = −dif(M ; l, j)k,

2. dif(M ; i, j)k + dif(M ; j, l)k = dif(M ; i, l)k.

• |I| denotes the underlying set of an ordered pair I .

Let
A¯ x = B¯ x. (2)

Notice that (1) is equivalent to (2) and (2) is simpler than (1) because it involves
fewer real coefficients. Thus, we will assume that A = A and B = B, in the
following.

Remark 1. 1. x = −∞ satisfies (1). This is the trivial solution.

2. If row(A, i) > row(B, i) or row(A, i) < row(B, i) for some i ∈ [m], then
x = −∞ is the only solution to (1).

3. If row(A, i) = row(B, i) for some i ∈ [m], then these two rows can be
erased, so that m can be decreased to m− 1.

4. If col(A, j) = col(B, j) = −∞ for some j ∈ [n], then no restriction is
imposed on xj . Then these two columns and xj can be erased, so that n
decreases to n− 1.

We will assume that row(A, i) 6= row(B, i), row(A, i) ≮ row(B, i) and row(A, i) ≯
row(B, i), for all i ∈ [m], and col(A, j) = col(B, j) = −∞, for no j ∈ [n], in the
following.

The sets in the next definition are denoted I, J,K,L in [2].

Definition 1. For each i ∈ [m], let

1. WA(i) = {j : aij > bij}, WB(i) = {j : aij < bij}.

2. E(i) = {j : aij = bij 6= −∞}, F (i) = {j : aij = bij = −∞}.

3. win(i) = (WA(i)×WB(i)) ∪ (E(i)×E(i)) ⊂ [n]× [n]. Each element of
win(i) is called a winning pair.

For each i ∈ [m], WA(i) ∪ WB(i) ∪ E(i) ∪ F (i) = [n] is a disjoint union.
By our assumptions, F (i) 6= [n] and win(i) 6= ∅. Therefore, if system (1) has a
non–trivial solution then win(i) 6= ∅, for all i ∈ [m]. The converse is not true;
some compatibility is required among pairs in win(i), for different i’s, in order for
(1) to have a non–trivial solution.

Notice that ∩m
h=1F (h) = ∅, by our assumptions.

How are non–trivial solutions to (1) related to winning pairs? Let us see. Recall
that M = A⊕B = (mij).
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Definition 2. Consider i ∈ [m] and I ∈ win(i). Let x ∈ Tn, y ∈ Tm be any
vectors satisfying A¯x = B¯x = y. We say that the solution x to (1) arises from
I if

mij + xj ≤ yi, (3)

for all j ∈ [n] \ F (i), with equality for all j ∈ |I|.
Write |I| = {i1, i2}. Then mii1 +xi1 = yi = mii2 +xi2 , whence we obtain the

bivariate equation
xi2 = dif(M ; i1, i2)i + xi1 . (4)

Notice that j ∈ F (i) if and only if mij = −∞. Thus, if j ∈ F (i), then the
inequality (3) is obvious and, if j /∈ F (i), then mij 6= −∞ and, working in T, we
will be able to subtract mij from the right–hand–side. Also, if i1 = i2, we need not
consider this equation, since it is trivially true.

Remark 2. Suppose i, k ∈ [m], i < k, I ∈ win(i),K ∈ win(k). Assume that the
solution x arises from I and from K. Then for all i ∈ |I| and k ∈ |K|

mii + xi = yi,

mik + xk ≤ yi,

mkk + xk = yk,

mki + xi ≤ yk.

Adding up, mik + mki + xi + xk ≤ mii + mkk + xi + xk = yi + yk, whence

mik + mki ≤ mii + mkk.

In other words, the value of the 2× 2 tropical minor of M , denoted M(i, k; i, k),
∣∣∣∣

mii mik

mki mkk

∣∣∣∣
trop

= max{mii + mkk, mik + mki}, (5)

is attained at the main diagonal. One more way to put it is

dif(M ; i, k)k ≤ dif(M ; i, k)i. (6)

Definition 3. Consider i, k ∈ [m], i < k, I ∈ win(i),K ∈ win(k). We say that K
is compatible with I if inequality (6) holds, for all i ∈ |I| and all k ∈ |K|.

Compatibility means that if i and k are fixed, then dif(M, i, k) is decreasing on
the subscripts. Then

[dif(M ; i, k)k, dif(M ; i, k)i]
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is a non–empty closed interval, denoted int(M ; i, k; i, k). By abuse of language,
some interval might actually be a half–line, if the left end point is −∞. Moreover,
from the inequalities in remark 2, we get the following (at most four different)
interval relations

xk ∈ int(M ; i, k; i, k) + xi, i ∈ |I|, k ∈ |K|. (7)

This is trivially true for i = k, and we will disregard this case.

Four tropical minors of the maximum matrix M must be checked out, in order
to decide compatibility of K with I . We can erase repeated minors. We say that
(some of) these minors are dependent if the fact that one of them attains its value at
the main diagonal follows from the fact that the rest attain their values at the main
diagonals. We will keep track only of independent minors. We say that the minor
M(i, k; i, i) is trivial. Trivial minors will be disregarded. A minor is tropically
singular if it attains its value at both diagonals. Of course, M(i, k; i, i) is tropically
singular. Now, if i 6= k, the minor M(i, k; i, k) is tropically singular if and only if
the interval relation (7) reduces to the non–trivial bivariate equation

xk = dif(M ; i, k)k + xi (= dif(M ; i, k)i + xi). (8)

With the former notations, if K is compatible with I , notice the following:

• If card |I| ∪ |K| = 1, then all four minors are identical and trivial. Then (7)
reduces to the empty set.

• Suppose card |I| ∪ |K| = 2. If |I| = |K|, say |I| = {1, 2}, then two minors
are trivial, and the other two minors determine a point, because int(M ; i, k; 1, 2) =
int(M ; i, k; 2, 1). Then (7) reduces to one bivariate equation. If |I| 6= |K|,
then (7) reduces to just one interval relation.

• If card |I| ∪ |K| = 3, and if, say |I| = {i1, i2} and |K| = {i1, k2}, then one
minor is trivial, and the other three minors are dependent: then M(i, k; i1, k2)
and M(i, k; i2, i1) attain their values at the main diagonals, and this implies
that the same is true for M(i, k; i2, k2), by the cocycle condition. Then (7)
reduces to two interval relations. If, say |I| = {i1, i1} and |K| = {k1, k2}, it
is similar.

• If card |I|∪ |K| = 4, then the four minors are tropically regular and indepen-
dent. The four interval relations in (7) are meaningful.

Summing up, if 1 ≤ i < k ≤ m, then the conditions |I| = {i1, i2}, I ∈ win(i),
|K| = {k1, k2}, K ∈ win(k) and K compatible with I provide two equations
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and, at most, four interval relations (some of which may actually degenerate into
bivariate equations), namely

xi2 = dif(M ; i1, i2)i + xi1 , (9)

xk2
= dif(M ; k1, k2)k + xk1

, (10)

xk1
∈ int(M ; i, k; i1, k1) + xi1 , (11)

xk2
∈ int(M ; i, k; i1, k2) + xi1 , (12)

xk1
∈ int(M ; i, k; i2, k1) + xi2 , (13)

xk2
∈ int(M ; i, k; i2, k2) + xi2 . (14)

Lemma 1. If 1 ≤ h < l ≤ m, Ih, Il are winning pairs, |Ih| = {i, j}, |Il| = {i, k},
Il compatible with Ih, then D = dif(M ; j, i)h + dif(M ; i, k)l satisfies the double
inequality

dif(M ; j, k)l ≤ D ≤ dif(M ; j, k)h.

Proof. We have

dif(M ; j, i)l + dif(M ; i, k)l ≤ D ≤ dif(M ; j, i)h + dif(M ; i, k)h,

by the decreasing property on subscripts, so that the double inequality holds, by the
cocycle condition.

Notation: D = D(M ; j, i, k)h,l. Warning: this notation is complicated, but we
will use it very little.

Lemma 2 (Reduction lemma). If 1 ≤ i < k ≤ m, |I| = {i1, i2}, I ∈ win(i),
|K| = {k1, k2}, K ∈ win(k), then K is compatible with I if and only if

xi2 = dif(M ; i1, i2)i + xi1 , (15)

xk2
= dif(M ; k1, k2)k + xk1

, (16)

xk1
∈ [D(M ; i1, i2, k1)ik, D(M ; i1, k2, k1)ik] + xi1 , (17)

xk2
∈ [D(M ; i1, i2, k2)ik, D(M ; i1, k1, k2)ik] + xi1 . (18)

Proof. Combine (9), (10), (12) and (13) to obtain (17). Similar for (18). This proves
one implication. Notice that

[D(M ; i1, i2, k1)ik, D(M ; i1, k2, k1)ik] ⊆ int(M ; i, k; i1, k1),
[D(M ; i1, i2, k2)ik, D(M ; i1, k1, k2)ik] ⊆ int(M ; i, k; i1, k2),

by lemma 1, proving that (15)–(18) imply (9)–(12). Moreover, (15) and (17) imply
(13). Similar for (14).
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Corollary 1 (Reduction corollary). Assume that 1 ≤ i < k ≤ m, |I| = {i1, i2},
I ∈ win(i), |K| = {k1, k2}, K ∈ win(k) and K is compatible with I .

• If card |I| ∪ |K| = 1, then the relations (15)–(18) reduce to one bivariate
equation.

• If card |I| ∪ |K| = 2, and |I| = |K|, then the relations (15)–(18) reduce to
two bivariate equations.

• If card |I| ∪ |K| = 2, |I| 6= |K| and card |I| = card |K| = 1, then the
relations (15)–(18) reduce to one interval relation.

• If card |I| ∪ |K| = 2, |I| 6= |K| and card |I| 6= 1 or card |K| 6= 1, then the
relations (15)–(18) reduce to one bivariate equation and one interval relation.

• If card |I| ∪ |K| = 3 and card |I| = 1 or card |K| = 1, then the relations
(15)–(18) reduce to one bivariate equation and two interval relations.

• If card |I| ∪ |K| = 3 and card |I| 6= 1 6= card |K|, then the relations (15)–
(18) reduce to two bivariate equations and two interval relations.

In addition to the expressions in the former corollary, a solution x to (1) arising
from I and from K satisfies the following half–line relation:

xj ≤ (yi −mij)⊕′ (yk −mkj), (19)

for all j /∈ |I| ∪ |K| ∪ F (i) ∪ F (k). This follows from remark 2.

Definition 4. Let I = (I1, . . . , Im) be an m–tuple with Ih ∈ win(h), for all h ∈
[m]. We say that I is a win sequence if Ih is compatible with Ii, for all 1 ≤ i < h ≤
m.

For a win sequence I = (I1, . . . , Im), write

|I| =
m⋃

h=1

|Ih| .

Given i, j ∈ |I|, write i ∼ j if there exist k, l ∈ [m] such that i ∈ |Ik|, j ∈ |Il| and
|Ik| ∩ |Il| 6= ∅. Closing up under transitivity, we obtain an equivalence relation on
|I|.
Definition 5. Let I = (I1, . . . , Im) be a win sequence.

1. An index i ∈ [n] is free in I if i /∈ |I|.
2. An equivalence class for the relation above is called a cycle in I .
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Consider a win sequence I = (I1, . . . , Im). Let c denote the number of cycles
in I . We have 1 ≤ c ≤ card |I| ≤ min{2m,n}. After relabeling columns, we can
suppose that the cycles in I are

C1 = [k1],
C2 = [k2] \ [k1],

. . .

Cc = [kc] \ [kc−1],

for some 1 ≤ c ≤ card |I|, some 1 ≤ k1 < · · · < kc ≤ n and that [n] \ [kc] are the
free indices. Write

F =
m⋃

h=1

F (h).

Theorem 1. Each win sequence I = (I1, . . . , Im) provides a convex set, solI , of
solutions to the system (1). The set solI consists of all the solutions x arising from
Ih, for all h ∈ [m]. Moreover,

dim (solI) ≤ n− card |I|+ c.

All solutions to (1) are obtained this way.

Proof. The last statement follows from remark 2. Convexity follows from the fact
that solI will be the solution set of a system of classical linear inequalities. In order
to prove the rest, we reason by induction on the number m of rows of A.

1. Suppose m = 1 and consider a winning pair I ∈ win(1).

If card |I| = 2, say I = (1, 2), then a solution x ∈ solI satisfies

m11 + x1 = y1,

m12 + x2 = y1,

m1j + xj ≤ y1, j ≥ 3, j 6∈ F (1).

Each time we fix x1 ∈ T, we obtain a fixed value for y1 and the bivariate
equation

x2 = dif(M ; 1, 2)1 + x1.

Moreover, for each j ≥ 3, j 6∈ F (1)

xj ≤ y1 −m1j = dif(M ; 1, j)1 + x1.

The dimension of solI is n − 1. Here, c = 1, C1 = [2], [n] \ [2] are the free
indices, S1 = {x1 − x2 + dif(M ; 1, 2)1 = 0} and T1 is empty (see notations
in p. 11 below).
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If card |I| = 1, say I = (1, 1), then a solution x ∈ solI satisfies

m11 + x1 = y1,

m1j + xj ≤ y1, j ≥ 2, j 6∈ F (1).

Each time we fix x1 ∈ T, we obtain a fixed value for y1 and, for each j ≥
2, j 6∈ F (1)

xj ≤ y1 −m1j = dif(M ; 1, j)1 + x1.

In this case, solI has dimension n. Here, c = 1, C1 = [1], [n] \ [1] free, S1

and T1 are empty.

2. Suppose m ≥ 2 and consider a win sequence I = (I1, . . . , Im). Write I ′ =
(I1, . . . , Im−1). We will add a prime symbol to c, Si etc., to denote that these
correspond to I ′. By induction hypothesis, the theorem is true for I ′. In
particular,

dim (solI′) ≤ n− card |I ′|+ c′.

We have the following:

(a) For each i ∈ [c′], a system S′i of, at most, k′i − k′i−1 − 1 bivariate equa-
tions, the coefficients of the variables being 1 and −1; it is a collection
of equations as in (4). For instance, for i = 1, S′1 will be

xi1−xi2 +dif(M ; i1, i2)l = 0, |Il| = {i1, i2} ⊆ [k′1], i1 6= i2. (20)

S′i might be incompatible, for some i.

(b) For each i ∈ [c′], a system T ′i of, at most, m− 3 interval relations; it is
the collection of relations as in (17) with i1 ∈ C ′

i fixed and k1 running in
C ′

i, with the condition that i1, k1 do not form a winning pair. The system
T ′i might be incompatible, for some i. Moreover, T ′i can be converted
into a system of, at most, 2(m − 3) bivariate linear inequalities, the
coefficients of the variables being 1 and −1.

(c) For each index j free in I ′ and j /∈ F ′, we have a half–line relation:

xj ≤
′⊕m−1

h=1
(yh −mhj) .

Any member of solI′ satisfies the three items above. Of course, solI ⊆ solI′ .
Several cases arise.

(a) If |I| = |I ′|. Then c = c′.
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If, say |Im| = {1, 2}, then a solution x ∈ solI′ belongs to solI only if x
satisfies

mm1 + x1 = ym,

mm2 + x2 = ym,

mmj + xj ≤ ym, j 6∈ [2] ∪ F (m).

A new equation involving x1, x2 is added to S′1 to form S1. New interval
relations are added to T ′1 to form T1 and new half–line relations on xj

are added, for each j 6∈ [2] ∪ F (m). This can only make de dimension
decrease.
If, say Im = (1, 1), then a solution x ∈ solI′ belongs to solI only if x
satisfies

mmj + xj ≤ ym, 1 6= j 6∈ F (m).

A new half–line relation on xj is introduced, for each 1 6= j /∈ F (m).
Here dim(solI) = dim(solI′).

(b) If card |I| = card |I ′|+ 1.
Suppose, in addition, that c = c′. If, say |Im| = {1, n}, with 1 6= n free
index in I ′, then a solution x ∈ solI′ belongs to solI only if x satisfies

mm1 + x1 = ym,

mmn + xn = ym,

mmj + xj ≤ ym, j 6= 1, n, j 6∈ F (m).

Here, C ′
1 ∪ {n} = C1. One equation, involving x1, xn is added to S′1

to form S1. New interval relations are added to T ′1 to form T1. A new
half–line relation on xj is introduced, for j 6= 1, n, j 6∈ F (m).
Suppose now that c = c′ + 1. If, say Im = (n, n), with n free index in
I ′, then a solution x ∈ solI′ belongs to solI only if x satisfies

mnn + xn = yn,

mnj + xj ≤ yn, j 6= n, j 6∈ F (n).

The new cycle is Cc = {n} and Sc, Tc are empty. A new half–line
relation on xj is introduced, for j 6= n, j 6∈ F (m). Here dim(solI) =
dim(solI′).

(c) If card |I| = card |I ′| + 2, then c = c′ + 1. If, say |Im| = {n − 1, n},
with n− 1, n free indices in I ′, then a solution x ∈ solI′ belongs to solI

12



only if x satisfies

mm,n−1 + xn−1 = ym,

mmn + xn = ym,

mmj + xj ≤ ym, j 6= n− 1, n, j 6∈ F (m).

The new cycle is Cc = {n − 1, n}, Sc contains just one equation (in-
volving xn−1 and xn) and Tc is empty. A new half–line relation on xj

is introduced, for j 6= n− 1, n, j 6∈ F (m).

We see that, in all the cases, dim(solI) ≤ dim(solI′) and the dimension
formula holds for I .

3 The algorithm

If no win sequences exist, then the only solution to the system (1) is trivial. The
number p of win sequences is no bigger that rm, where r = max{dn

2 e2, n}. Even
if some win sequence does exist, it may happen that the only solution to the system
(1) is trivial.

More notations:

• If C ∈ Mm×(n+1)(R), let C ′ ∈ Mm×n(R) be obtained from C by deleting
the last column.

• A plus–half–line means an inequality of the form xj − xl + a ≤ 0, for some
1 ≤ j < l ≤ n and a ∈ R; it will be encoded by the triple (j, l, a).

• A minus–half–line means an inequality of the form −xj + xl + a ≤ 0, for
some 1 ≤ j < l ≤ n and a ∈ R; it will also be encoded by the triple (j, l, a).

• An interval means two inequalities xj + a ≤ xl ≤ xj + b, for some 1 ≤ j <
l ≤ n and a < b ∈ R; it will be encoded by the tuple (j, l, a, b).

Definition 6. Let S = (sij) ∈Mm×(n+1)(R).

1. The matrix S is special if each row of S′ is a permutation of the n–vector
(1,−1, 0, . . . , 0).

2. The special matrix S is super–special if the first non–zero entry of each row
is 1.

3. The special matrix S is sub–special if

13



(a) all rows in S are different and different from rows in −S,

(b) all rows in S′ are different,

(c) if row(S′, i) = − row(S′, k), for some i < k, then k = i + 1,

si,n+1 < −si+1,n+1

and row(S′, i) = (

j−1︷ ︸︸ ︷
0, . . . , 0, 1,

l−1︷ ︸︸ ︷
0, . . . , 0,−1, 0, . . . , 0), for some j, l ∈

[n],

(d) if row(S′, i) 6= − row(S′, i + 1), for some i, then min{j : sij 6= 0} ≤
min{j : si+1,j 6= 0}.

Notice that condition (3c) in definition 6 corresponds to the pair of inequalities

xj − xl + si,n+1 ≤ 0,

−xj + xl + si+1,n+1 ≤ 0,

meaning that xl ∈ [si,n+1,−si+1,n+1] + xj is an interval relation.

Example: the following matrix S is sub–special but not super–special



1 0 −1 0 3
−1 0 1 0 −8

0 −1 1 0 −4
0 0 1 −1 0


 .

The solutions to the classical linear system of inequalities S[x, 1] ≤ 0 are en-
coded in the plus–half–line (3, 4, 0), the minus–half–line (2, 3,−4) and the interval
(1, 3, 3, 8).

An algorithm must find first all win sequences. Then, for each win sequence I ,
the algorithm must find matrices CI , DI ∈Mm×(n+1)(R) and must solve

CI [x, 1] = 0, DI [x, 1] ≤ 0. (21)

These are systems of linear equations and inequalities, where classical matrix
operations are used. The matrices CI and DI are special. The set of solutions to
(21), denoted solI = solCI

∩ solDI
, is convex, possibly empty. The non–trivial

solutions to (1) is the union of solI , as I runs over all win sequences.

ALGORITHM

• STEP 1: compute the matrices A, B and M . Replace A and B by A and B.

14



• STEP 2: Compute all winning pairs, for all i ∈ [m]. Store them in a tridimen-
sional array W (r rows, 2 columns, m pages). In page i we store all members
of win(i). Blanks are padded with zeros.

• STEP 3: Compute all win sequences. Store them in a tridimensional array
WS (m rows, 2 columns, p pages), with 0 ≤ p ≤ rm. No entry of WS is
zero. If WS is empty, then the only solution to system (1) is trivial, RETURN.

• FOR each win sequence I

– STEP 4: Compute the special matrices CI and DI .

– STEP 5: By elementary row transformations, work on DI to obtain
special matrices EI , NI such that

DI [x, 1] ≤ 0 ⇔ EI [x, 1] = 0 and NI [x, 1] ≤ 0

and
2 card rows(EI) + card rows(NI) ≤ card rows(DI).

Either matrix EI or NI could be empty. By elementary row transfor-
mations, work on NI to make it sub–special. Solve the classical linear
system of inequalities NI [x, 1] ≤ 0, by backward substitution. The so-
lution set, denoted solNI

, is expressed in terms of half–lines (plus and
minus) and intervals. If solNI

is empty, go to work with the next win
sequence.

– STEP 6: Concatenate the matrices CI and EI into a matrix, which we
can denote again by CI . By elementary row transformations, work on
CI to make it super–special and upper triangular. Solve the classical
linear system CI [x, 1] = 0, by backward substitution. The solution set
is denoted solCI

; if it is empty, go to work with the next win sequence.

– STEP 7: Substitute solCI
into solNI

to obtain a new system of linear
inequalities, which we can denote again by DI [x, 1] ≤ 0.

– STEP 8: By elementary row transformations, work on DI to obtain
special matrices EI , NI such that

DI [x, 1] ≤ 0 ⇔ EI [x, 1] = 0 and NI [x, 1] ≤ 0

and
2 card rows(EI) + card rows(NI) ≤ card rows(DI).

Either matrix EI or NI could be empty. By elementary row transfor-
mations, work on NI to make it sub–special. Solve the classical linear
system of inequalities NI [x, 1] ≤ 0, by backward substitution. The so-
lution set, denoted solNI

, is expressed in terms of half–lines (plus and
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minus) and intervals. If solNI
is empty, go to work with the next win

sequence. Otherwise, if EI is empty, then

solI = solCI
∩ solNI

.

Otherwise, GOTO STEP 6.

• ENDFOR

All the solutions to (1) are
⋃

I∈WS solI .

We have programmed the former algorithm to solve system (1). Working on
Q ∪ {−∞}, let us compute the complexity of it. The arithmetic complexity counts
the number of arithmetic operations (+,−, max, min, <,= and >, in our situation)
in the worst possible case.

Our programme is divided into two parts. In the first part, we determine all the
win sequences. Say we get p win sequences. The arithmetical complexity of this
part is

O(m2n3p).

In the second part, we compute the matrices CI , DI and all the solutions (if any),
for each win sequence I . The arithmetic complexity of the second part is

O(m(m2 + n)p).

Since the maximum number of winning pairs is r = max{dn
2 e2, n}, then p ≤ rm,

where r is O(n2). This gives an exponential arithmetical complexity! But, let us
take a closer look. Clearly, the bigger n, the more winning pairs we have, for each
i ∈ [m]. On the other hand, the bigger m, the fewer win sequences we have, in
probability. Indeed, given winning pairs I ∈ win(i), K ∈ win(k) with 1 ≤ i <
k ≤ m, let us define the probability of K being compatible with I as 1/2 (since this
a yes/no event). Thus, given any sequence of pairs I = (I1, . . . , Im), the probability
of I being a win sequence is, roughly,

1

2(m
2 )
∼ 1

2m2 .

This proves that if m is big, then we expect p small. In particular, the worst case
(p big) is unlikely to happen. With this in mind, an average complexity for the first
part is

O(m2n3+2m/2m2
) = O(m22(3+2m) log2 n−m2

)

and it will be, at most polynomial, if log2 n ≤ m2

3+2m . For the second part we get
two terms:

O(m3n2m/2m2
) = O(m322m log2 n−m2

)
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and it will be, at most polynomial, if log2 n ≤ m
2 , and

O(mn1+2m/2m2
) = O(m2(1+2m) log2 n−m2

)

and it will be, at most polynomial, if log2 n ≤ m2

1+2m .

Notice that we could define a much finer probability (based on each of the four
tropical minor attaining (or not) its value on the main diagonal; see expression 5) so
that the probability of I being a win sequence would be smaller.

4 Some examples

Example 1. Given

A =




1 3 −∞
5 0 −∞
−∞ 3 −∞


 , B =



−∞ −∞ 3
5 0 2
3 −∞ 2


 ,

we get

M =




1 3 3
5 0 2
3 3 2


 .

The only win sequence is I = ((2, 3), (1, 1), (2, 1)).
The solutions arising from I are

x =




x3

x3

x3


 .

Example 2. Given

A =




3 7 −1 −∞
6 7 −∞ −∞
1 0 1 −∞


 , B =



−∞ −∞ −∞ 8
−∞ −∞ 5 1
1 0 1 2


 ,

we get

M =




3 7 −1 8
6 7 5 1
1 0 1 2


 .

The win sequences are I = ((1, 4), (1, 3), (3, 3)) and J = ((2, 4), (1, 3), (3, 3)).
The solutions arising from I are

x =




x4 + 5
x2

x4 + 6
x4


 , s.t. x2 − x4 − 1 ≤ 0.
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The solutions arising from J are

x =




x3 − 1
x4 + 1

x3

x4


 , s.t. x3 − 6 ≤ x4 ≤ x3 − 3.

Example 3. (From [9]) Given

A =
[ −∞ −∞ −∞ 0 4 2 6
−∞ 5 6 −∞ −∞ −∞ 2

]
,

B =
[

0 1 5 −∞ −∞ −∞ −∞
3 −∞ −∞ 0 2 4 −∞

]
,

we get

M =
[

0 1 5 0 4 2 6
3 5 6 0 2 4 2

]
.

The win sequences are I1 = ((4, 1), (2, 1)), I2 = ((4, 3), (2, 1)), I3 = ((5, 1), (2, 1)),
I4 = ((5, 3), (2, 1)), I5 = ((6, 1), (2, 1)), I6 = ((6, 3), (2, 1)), I7 = ((7, 1), (2, 1))
and I8 = ((7, 3), (2, 1)).

The solutions arising from I1 are

x =




x4

x4 − 2
x3

x4

x5

x6

x7




, s.t.

x3 − x4 + 5 ≤ 0,

−x4 + x5 + 4 ≤ 0,

−x4 + x6 + 2 ≤ 0,

−x4 + x7 + 6 ≤ 0.

The solutions arising from I2 are

x =




x2 + 2
x2

x4 − 5
x4

x5

x6

x7




, s.t.

x2 + 2 ≤ x4 ≤ x2 + 4,

−x2 + x5 − 3 ≤ 0,

−x2 + x6 − 1 ≤ 0,

−x2 + x7 − 3 ≤ 0,

−x4 + x5 + 4 ≤ 0,

−x4 + x6 + 2 ≤ 0,

−x4 + x7 + 6 ≤ 0.
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The solutions arising from I3 are

x =




x5 + 4
x5 + 2

x3

x4

x5

x6

x7




, s.t.

x3 − x5 + 1 ≤ 0,

x4 − x5 − 4 ≤ 0,

−x5 + x6 − 2 ≤ 0,

−x5 + x7 + 2 ≤ 0.

The solutions arising from I4 are

x =




x2 + 2
x2

x5 − 1
x4

x5

x6

x7




, s.t.

x2 − 2 ≤ x5 ≤ x2,

x4 − x5 − 4 ≤ 0,

−x2 + x4 − 5 ≤ 0,

−x2 + x6 − 1 ≤ 0,

−x2 + x7 − 3 ≤ 0,

−x5 + x6 − 2 ≤ 0,

−x5 + x7 + 2 ≤ 0.

The solutions arising from I5 are

x =




x6 + 2
x6

x3

x4

x5

x6

x7




, s.t.

x3 − x6 + 3 ≤ 0,

x4 − x6 − 2 ≤ 0,

x5 − x6 + 2 ≤ 0,

−x6 + x7 + 4 ≤ 0.

The solutions arising from I6 are

x =




x2 + 2
x2

x6 − 3
x4

x5

x6

x7




, s.t.

x2 ≤ x6 ≤ x2 + 1,

x4 − x6 − 2 ≤ 0,

x5 − x6 + 2 ≤ 0,

−x2 + x4 − 5 ≤ 0,

−x2 + x5 − 3 ≤ 0,

−x2 + x7 − 3 ≤ 0,

−x6 + x7 + 4 ≤ 0.
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The solutions arising from I7 are

x =




x7 + 6
x7 + 4

x3

x4

x5

x6

x7




, s.t.

x3 − x7 − 1 ≤ 0,

x4 − x7 − 6 ≤ 0,

x5 − x7 − 2 ≤ 0,

x6 − x7 − 4 ≤ 0.

The solutions arising from I8 are

x =




x2 + 2
x2

x7 + 1
x4

x5

x6

x7




, s.t.

x2 − 4 ≤ x7 ≤ x2 − 2,

x4 − x7 − 6 ≤ 0,

x5 − x7 − 2 ≤ 0,

x6 − x7 − 4 ≤ 0,

−x2 + x4 − 5 ≤ 0,

−x2 + x5 − 3 ≤ 0,

−x2 + x6 − 1 ≤ 0.
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