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Abstract

Consider the space Mnor
n of square normal matrices X = (xij) over R ∪

{−∞}, i.e., −∞ ≤ xij ≤ 0 and xii = 0. Endow Mnor
n with the tropical

sum ⊕ and multiplication ⊙. Fix a real matrix A ∈ Mnor
n and consider the

set Ω(A) of matrices in Mnor
n which commute with A. We prove that Ω(A)

is a finite union of alcoved polytopes; in particular, Ω(A) is a finite union of
convex sets. The set ΩA(A) of X such that A ⊙ X = X ⊙ A = A is also
a finite union of alcoved polytopes. The same is true for the set Ω′(A) of X
such that A⊙X = X ⊙A = X .

A topology is given to Mnor
n . Then, the set ΩA(A) is a neighborhood of

the identity matrix I . If A is strictly normal, then Ω′(A) is a neighborhood
of the zero matrix. In one case, Ω(A) is a neighborhood of A. We give an
upper bound for the dimension of Ω′(A). We explore the relationship between
the polyhedral complexes spanA, spanX and span(AX), when A and X
commute. Two matrices, denoted A and A, arise from A, in connection with
Ω(A). The geometric meaning of them is given in detail, for one example.
We produce examples of matrices which commute, in any dimension.

1 Introduction

Let n ∈ N and K be a field. Fix a matrix A ∈ Mn(K) and consider K[A], the
algebra of polynomial expressions in A. In classical mathematics, the set Ω(A) of
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matrices commuting with A is well–known: Ω(A) equals K[A] if and only if the
characteristic and minimal polynomials of A coincide. Otherwise, K[A] is a proper
linear subspace of Ω(A); see [27], chap. VII.

In this paper we study the analogous of Ω(A) in the tropical setting. Moreover,
we restrict ourselves to square normal matrices over R := R∪{−∞}, i.e., matrices
A = (aij) with aii = 0 and−∞ ≤ aij ≤ 0, for all i, j. The set of all such matrices,
endowed with the tropical operations ⊕ = max and ⊙ = +, is denoted Mnor

n .

For any r ∈ R≤0, the half–line [−∞, r) := {x : −∞ ≤ x < r} is open in R≤0

with the usual interval topology. A Cartesian product of such half–lines is open in

Rn2−n
≤0 with the usual product topology. The half–line (r, 0] := {x : r < x ≤ 0} is

open in R≤0. A Cartesian product of such half–lines is open in Rn2−n
≤0 .

The set Mnor
n can be identified with Rn2−n

≤0 and, via this identification, Mnor
n

gets a topology. Consider a matrix X ∈ Mnor
n and a subset V ⊆ Mnor

n . We say
that V is a neighborhood of X if there exists an open subset U ⊆ Mnor

n such that
X ∈ U ⊆ V (we do not require V to be open).

Let Ω(A) be the subset of matrices commuting with a given real matrix A, i.e.,
X ∈ Mnor

n such that A ⊙X = X ⊙ A. The tropical analog of K[A] inside Mnor
n

is the set P(A) of tropical powers of A. In general, Ω(A) is larger than P(A) (see
proposition 1).

Our new results are gathered in sections 3, 4 and 5. In section 3 we prove that

Ω(A) =
∪
w

Ωw(A)

is a finite union of alcoved polytopes, (see corollary 5). In particular, Ω(A) is a
finite union of convex sets.

Two important subsets of Ω(A) are

ΩA(A) = {X ∈ Ω(A) : X ⊙A = A⊙X = A}

and
Ω′(A) = {X ∈ Ω(A) : X ⊙A = A⊙X = X}.

Both are finite unions of alcoved polytopes (see theorems 9 and 12). Moreover,
ΩA(A) is a neighborhood (not necessarily open) of the identity matrix I . If A is
strictly normal, then Ω′(A) is a neighborhood of the zero matrix 0 (see propositions
7 and 8).

The study of ΩA(A) and Ω′(A) lead us to two matrices arising from A, denoted
A and A, and we prove

A ≤ A ≤ A,
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(see proposition 17). Moreover, X ≤ A is a necessary condition for A ⊙ X =
X ⊙ A = A, and A ≤ X is a necessary condition for A ⊙ X = X ⊙ A =
X (see corollary 15). This provides an upper bound for the dimension of Ω′(A)
(see corollary 16). The matrix A is explicitly given in expression (19), while the
definition and computation of A is more involved (see definition 14).

In section 4 we study some instances of commutativity of matrices under per-
turbations. Theorem 20 is an easy way to produce two real matrices in Mnor

n which
commute. Another way to obtain two such matrices is given in theorem 22. The
geometry is different in both instances: in the first case, the polyhedral complexes
(i.e., tropical column spans) associated to the matrices are convex, but not so in the
second. Under certain hypothesis we prove that Ω(A) is a neighborhood of A (see
corollary 21).

Section 5 has an exploratory nature. We examine the relationship among the
complexes spanA, spanB, span(AB) and span(BA) when commutativity is present
or absent. In addition, the geometric meaning of the matrices A,A and A is given
in full detail, for one example in the paper. We believe that classical convexity of
spanA depends on the matrices A and A. We suspect that this is related to the
question of commutativity. We leave two open questions in pages p. 15 and 20.

Alcoved polytopes play a crucial role in this paper. By definition, a polytope P
in Rn−1 is alcoved if it can be described by inequalities ci ≤ xi ≤ bi and cik ≤
xi−xk ≤ bik , for some i, k ∈ [n−1], i ̸= k, and ci, bi, cik, bik ∈ R∪{±∞}. They
are classically convex sets. Alcoved polytopes have been studied in [22, 23]. In
connection with tropical mathematics, they appeared in [17, 18, 19, 29, 36]. Kleene
stars are matrices A such that A = A∗, where ∗ is the so–called Kleene operator.
Alcoved polytopes and Kleene stars are closely related notions; see [29, 32, 33].
See also [10] for tropical convexity issues.

By definition, a matrix A = (aij) over R is normal if aii = 0 and −∞ ≤ aij ≤
0, for all i, j. It is strictly normal if, in addition, −∞ ≤ aij < 0, for all i ̸= j.
There are FOUR REASONS for us to restrict to normal matrices. First, it is not
all too restrictive. Indeed, by the Hungarian Method (see [5, 6, 21, 26]), for every
matrix A there exist a (not unique) similar matrix N which is normal. In practice,
this means that by a relabeling of the columns of A and a translation, any A can be
assumed to be normal. Second, normality of A has a clear geometric meaning in
Rn−1. Consider the alcoved polytope

CA :=

{
x ∈ Rn−1 :

ain ≤ xi ≤ −ani
aik ≤ xi − xk ≤ −aki

; 1 ≤ i ̸= k ≤ n− 1

}
. (1)

Then, A is normal if and only if the zero vector belongs to CA and the columns of
the matrix A0 (see definition in p. 5), viewed as points in Rn−1, lie around the zero
vector and are listed in a predetermined order (and this order is a kind of orientation
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in Rn−1); see [29] and also [14, 15, 16]. Third, when computing examples, normal
matrices are easy to handle, due to inequalities (2). Fourth and last, normal matrices
satisfy many max–plus properties (e.g., they are strongly definite; see [6, 7]).

Some aspects of commutativity in tropical algebra (also called max–plus alge-
bra or max–algebra) have been addressed earlier. It is known that two commuting
matrices have a common eigenvector; see [7], sections 4.7, 5.3.5 and 9.2.2. In [20]
it is proved that the critical digraphs of two commuting irreducible matrices have a
common node.

2 Background and notations

For n ∈ N, set [n] := {1, 2, . . . , n}. Let R≤0, R≥0, R≤0, etc. have the obvious
meaning. On R≤0, i.e., on the closed unbounded half–line [−∞, 0], we consider the
interval topology: an open set in [−∞, 0] is either a finite intersection or an arbitrary
union of sets of the form [−∞, a) or (b, 0], with −∞ < a, b < 0.

⊕ = max is the tropical sum and ⊙ = + is the tropical product. For instance,
3 ⊕ (−7) = 3 and 3 ⊙ (−7) = −4. Define tropical sum and product of matrices
following the same rules of classical linear algebra, but replacing addition (multi-
plication) by tropical addition (multiplication). Consider order n square matrices.
The tropical multiplicative identity is I = (αij), with αii = 0 and αij = −∞, for
i ̸= j. The zero matrix is denoted 0 (every entry of it is null). We will never use
classical multiplication of matrices; thus A ⊙ X will be written AX , for matrices
A,X , for simplicity.

If A = (aij) and B = (bij) are matrices of the same order, then A ≤ B means
aij ≤ bij , for all i, j.

By definition, a square matrix A = (aij) over R is normal if aii = 0 and
−∞ ≤ aij ≤ 0, for all i, j. Thus, A is normal if and only if I ≤ A ≤ 0. Let us
define A0 to be the identity matrix I . So we have

I = A0 ≤ A ≤ A2 ≤ A3 ≤ · · · ≤ 0 (2)

since tropical multiplication by any matrix is monotonic (because it amounts to
computing certain sums and maxima). By a theorem of Yoeli’s (see [37]), we have
An−1 = An = An+1 = · · · and we denote this matrix by A∗ and call it the Kleene
star of A. A matrix A is a Kleene star if A = A∗.

A normal matrix A is strictly normal if aij < 0, whenever i ̸= j.

Let Mnor
n denote the family of order n normal matrices over R. It is in bijective

correspondence with Rn2−n
≤0 . We consider the product interval topology on Rn2−n

≤0 .
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The bijection carries this topology onto Mnor
n . The border of Mnor

n is the set of
matrices A such that aij = 0 or −∞, for some i ̸= j.

We will write the coordinates of points in Rn in columns. Let A ∈ Rn×m and
denote by a1, . . . , am ∈ Rn the columns of A. The (tropical column) span of A is,
by definition,

spanA : = {(µ1 ⊙ a1)⊕ · · · ⊕ (µm ⊙ am) ∈ Rn : µ1, . . . , µm ∈ R} (3)

= max{µ1u+ a1, . . . , µmu+ am : µ1, . . . , µm ∈ R}

where u = (1, . . . , 1)t and maxima are computed coordinatewise. We will never use
classical linear spans in this paper. Clearly, the set spanA is closed under classical
addition of the vector µu, for µ ∈ R, since ⊙ = +. Therefore, the hyperplane
section {xn = 0} ∩ spanA determines spanA completely. The set {xn = 0} ∩
spanA is a connected polyhedral complex of impure dimension ≤ n − 1 and it is
not convex, in general. Let A be normal. Then spanA = CA in (1) (and so it is
convex) if and only if A is a Kleene–star; see [29, 32]. Throughout the paper, we
will identify the hyperplane {xn = 0} inside Rn with Rn−1. In particular, columns
of order n matrices having zero last row are considered as points in Rn−1.

For any d ∈ Rn, diag d denotes the square matrix whose diagonal is d and is
−∞ elsewhere.

For any real matrix A, the matrix A0 is defined as the tropical product

Adiag(− row(A,n)). (4)

Thus, the j–th column of A0 is a tropical multiple of the corresponding column of
A (i.e., the j–th column of A0 is the sum of the vector −anju and the j–th column
of A). The last row of A0 is zero. Therefore, the matrix A0 is used to draw the
complex {xn = 0}∩ spanA inside Rn−1. The sets spanA and {xn = 0}∩ spanA
determine each other.

The simplest objects in the tropical plane R2 are lines. Given a tropical linear
form

p1 ⊙X ⊕ p2 ⊙ Y ⊕ p3 = max{p1 +X, p2 + Y, p3}

a tropical line consists of the points (x, y)t where this maximum is attained, at
least, twice. Such twice–attained–maximum condition is the tropical analog of the
classical vanishing point set. Denote this line by Lp, where p = (p1, p2, p3) ∈ R3.
Lines in the tropical plane are tripods. Indeed, Lp is the union of three rays meeting
at point (p3 − p1, p3 − p2)

t, in the directions west, south and north–east. The point
is called the vertex of Lp.

Take p = 0. The line L0 splits the plane R2 into three closed sectors S1 := {x ≥
0, x ≥ y}, S2 := {x ≤ y, y ≥ 0} and S3 := {x ≤ 0, y ≤ 0}. An order 3 real
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matrix A is normal if and only if (omitting the last row in A0, which is zero) each
column of A0 lies in the corresponding sector i.e., col(A0, j) ∈ Sj , for j = 1, 2, 3.
For instance, consider the normal matrix B and take B0 in example 11, figure 3 top
centre, p. 20. Notice that (5, 1)t ∈ S1, (−3, 0)t ∈ S2 and (−1,−6)t ∈ S3. An
analogous statement holds for Rn−1 and order n matrices. See [3, 4, 11, 12, 13, 24,
25, 30, 34] for an introduction to tropical geometry. See [1, 2, 5, 7, 8, 9, 35, 38] for
an introduction to tropical (or max–plus) algebra.

3 Normal matrices which commute with A

The set Mnor
2 is commutative, since AB = BA = A ⊕ B, for any A,B ∈ Mnor

2 .
Thus, we will study the set

Ω(A) := {X ∈Mnor
n : AX = XA}, (5)

for a real matrix A ∈Mnor
n and n ≥ 3.

If A ∈ Mnor
n is real and λ ∈ R, then λ ⊙ A = λu + A is normal if and only if

λ = 0, where u denotes the order n one matrix. Together with (2), this means that
the tropical analog of K[A] inside Mnor

n is the set of powers of A together with the
zero matrix

P(A) := {I = A0, A,A2, . . . , An−1 = A∗, 0}. (6)

For A ∈Mnor
n real, set

m(A) := min
i,j∈[n]

aij = min
i̸=j∈[n]

aij ∈ R≤0, M(A) := max
i ̸=j∈[n]

aij ∈ R≤0. (7)

For each r ∈ R, and i, j ∈ [n], i ̸= j, let Eij(r) ∈ Mnor
n denote the matrix

whose (i, j) entry equals r, being zero everywhere else. For a generic A ∈ Mnor
n

the matrix Eij(r) is not a power of A.

The following proposition shows that, in general, Ω(A) is larger than P(A).

Proposition 1. For any real A ∈ Mnor
n there exist ϵ > 0 and i, j ∈ [n] with i ̸= j

such that Eij(−ϵ) ∈ Ω(A).

Proof. Fix i, j and ϵ. We have AEij(−ϵ) = Eij(α) and Eij(−ϵ)A = Eij(β),
where

α = max{ai1, . . . , ai,i−1,−ϵ, ai,i+1, . . . , ain} and
β = max{a1j , . . . , aj−1,j ,−ϵ, aj+1,j , . . . , anj}.
If aij = 0, then α = β = aij = 0, whence AEij(−ϵ) = Eij(−ϵ)A = 0.
Assume now that A is strictly normal. Then M(A) < 0. For any ϵ with

M(A) < −ϵ < 0 and any i ̸= j, we have α = β = −ϵ, whence AEij(−ϵ) =
Eij(−ϵ)A = Eij(−ϵ).
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Let Wn be the set of empty–diagonal order n matrices with entries in [n]2 (the
diagonal is irrelevant in these matrices). Each w ∈ Wn is called a winning position
or a winner. Set

Ωw(A) := {X ∈ Ω(A) :(AX)ij = ai,w(i,j)1 + xw(i,j)1,j =

(XA)ij = xi,w(i,j)2 + aw(i,j)2,j , for i, j ∈ [n], i ̸= j}.
(8)

Example 2. Consider

A =


0 −4 −6 −3
−6 0 −4 −3
−3 −6 0 −3
−6 −3 −3 0

 , B =


0 −4 −4 −6
−2 0 −3 −4
−5 −6 0 −5
−6 −5 −2 0

 .

Then

AB = BA =


0 −4 −4 −3
−2 0 −3 −3
−3 −6 0 −3
−5 −3 −2 0


so that B ∈ Ωw(A) with

w =


(1, 1) (1, 3) (4, 1)

(2, 1) (2, 3) (4, 2)
(1, 3) (2, 2) (4, 3)
(2, 3) (2, 4) (4, 3)

 .

Example 3. For any real A ∈Mnor
n ,

• if tr denotes the transposition operator, then I ∈ Ωtr(A),

• if id denotes the identity operator, then 0, A∗ ∈ Ωid(A).

Proposition 4. For any real A ∈Mnor
n , Ωw(A) is an alcoved polytope.

Proof. Fix i, j ∈ [n], i ̸= j. Then (8) means that

ai,w(i,j)1 + xw(i,j)1,j = xi,w(i,j)2 + aw(i,j)2,j (9)

and the following 2n− 2 inequalities hold

ais + xsj ≤ ai,w(i,j)1 + xw(i,j)1,j , for s ̸= w(i, j)1, (10)

xit + atj ≤ xi,w(i,j)2 + aw(i,j)2,j , for t ̸= w(i, j)2. (11)

Equalities and inequalities (9), (10) and (11) show that X ∈ Ωw(A) if and only if

X = (xij) belongs to certain alcoved polytope in Rn2−n
≤0 ≃Mnor

n .
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Remark 1: Given a winner w, if there exist i, j, s, t ∈ [n] with i ̸= j and s ̸= t
such that

(i, j) ̸= (s, t) ̸= (j, i), w(i, j) = (s, t), w(s, t) = (i, j), ais+asi ̸= ajt+atj ,
(12)

then Ωw(A) is empty. Indeed, by (9), the following two parallel hyperplanes

ais + xsj = xit + atj , asi + xit = xsj + ajt,

take part in the description of Ωw(A).
For instance, back to A in example 2, if τ ∈ Wn is such that τ(1, 3) = (2, 4)

and τ(2, 4) = (1, 3), then Ωτ (A) = ∅, because a12+a21 = −10 ̸= a34+a43 = −6.
Remark 2: Given a winner w and i, j ∈ [n], i ̸= j, if

w(i, j) = (i, j) or w(i, j) = (j, i), (13)

then equality (9) is tautological. In particular,

dimΩw(A) ≤ n2 − n− cardP c
w, (14)

where Pw := {(i, j) : 1 ≤ i < j ≤ n with w(i, j) = (i, j) or w(i, j) = (j, i)} and
c denotes complementary.

Example 2. (Continued) For w, the pairs which do not satisfy (13) are w(1, 2) =
(1, 1), w(3, 2) = (2, 2) and w(4, 1) = (2, 3), so that P c

w = {(1, 2), (3, 2), (4, 1)}.
It follows that x12 = −4, x32 = −6 and x21 = x43 are some of the equations
describing Ωw(A). Besides, condition (12) is satisfied for no pairs, whence

0 < dimΩw(A) ≤ 16− 4− 3 = 9.

Clearly,
Ω(A) =

∪
w∈Wn

Ωw(A) (15)

and the set Wn is finite, whence the following corollary is a straightforward conse-
quence of proposition 4.

Corollary 5. For any real A ∈ Mnor
n , Ω(A) is a finite union of alcoved polytopes.

The sets Ωw(A) are not too natural. On the contrary, the sets ΩS(A) described
below are more natural but harder to study. For any S ∈Mnor

n , let

ΩS(A) := {X ∈ Ω(A) : XA = AX = S}, (16)
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so that
Ω(A) =

∪
S∈Mnor

n

ΩS(A) (17)

is a disjoint union. For instance, B ∈ ΩS(A), for S := BA in example 2. We also
consider the set

Ω′(A) := {X ∈ Ω(A) : XA = AX = X}. (18)

It is immediate to see that

1. Aj−1 ∈ ΩAj
(A), for j ∈ [n]. In particular, I = A0 ∈ ΩA(A), i.e., AI =

IA = A.

2. A∗ ∈ Ω′(A), i.e., AA∗ = A∗A = A∗.

3. 0 ∈ Ω′(A), i.e., A0 = 0A = 0.

Proposition 6. For any real A,B ∈ Mnor
n , if that An−2 ≤ B ≤ A∗, then B ∈

ΩA∗
(A).

Proof. An−1 = An = An+1 = · · · = A∗, by Yoeli’s theorem, and left or right
multiplication by A is monotonic, so that An−2 ≤ B ≤ A∗ implies A∗ ≤ AB ≤ A∗

and A∗ ≤ BA ≤ A∗.

Recall m(A) and M(A) defined in (7). Recall the topology in Mnor
n , defined in

p. 2.

For r ∈ R, denote by K(r) = (αij) the constant matrix such that αii = 0 and
αij = r, for all i ̸= j. For instance, I = K(−∞) and 0 = K(0).

Proposition 7. For any real A ∈ Mnor
n , if I ≤ B ≤ K(m(A)), then B ∈ ΩA(A).

In particular, ΩA(A) is a neighborhood of the identity matrix I .

Proof. The hypothesis I ≤ B ≤ K(m(A)) means that B is normal and bij ≤
m(A), for all i ̸= j.

If i ̸= j, we have (AB)ij = maxk∈[n] aik + bkj = aij , since aik + bkj ≤ aik +
m(A) ≤ m(A) ≤ aij , when k ̸= j, and aij + bjj = aij . Similarly, (BA)ij = aij .
This shows AB = BA = A, so that B ∈ ΩA(A).

The value m(A) defined in (7) is real. The set U = {B : I ≤ B < K(m(A))}
is in bijective correspondence with the Cartesian product of half–lines [−∞,m(A))n

2−n,
which is open. Moreover, I ∈ U ⊆ ΩA(A), proving the neighborhood condi-
tion.

Notice that m(A) equals −|||A|||, as defined in [29]. There, it is proved that
|||A||| is the (tropical) radius of the section {xn = 0} ∩ spanA, i.e., the maximal
tropical distance to the zero vector, from any point on {xn = 0} ∩ spanA. This
conveys a geometrical meaning to proposition 7.
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Proposition 8. Suppose that A ∈ Mnor
n is real and strictly normal. If B is such

that K(M(A)) ≤ B ≤ 0, then B ∈ Ω′(A). In particular, Ω′(A) is a neighborhood
of the zero matrix 0.

Proof. We have M(A) < 0, by strict normality. The hypothesis on B = (bij)
means that M(A) ≤ bij , for every i, j ∈ [n] with i ̸= j.

For i ̸= j, we get (AB)ij = maxk∈[n] aik+bkj = bij , since aik+bkj ≤M(A)+
bkj ≤M(A) ≤ bij , when k ̸= i, and aii + bij = bij . Similarly, (BA)ij = bij . This
shows AB = BA = B, so that B ∈ Ω′(A).

The set U = {B : K(M(A)) < B ≤ 0} is in bijective correspondence with the
Cartesian product of half–lines (M(A), 0]n

2−n, which is open. Moreover, 0 ∈ U ⊆
Ω′(A), proving the neighborhood condition.

Note that the former proposition is analogous to proposition 7, with the zero
matrix playing the role of the identity matrix.

Below we describe the sets ΩA(A) and Ω′(A) as finite union of alcoved poly-
topes. In order to do so, for i ∈ [n], consider the matrices

• Ri
A = (rikj), with rikj = aij − aik (difference in i–th row; subscripts k, j get

inverted),

• Ci
A = (cikj), with cikj = aki − aji (difference in i–th column; subscripts k, j

don’t get inverted).

Let ⊕′ denote min. Write R :=
⊕′

i∈[n]R
i
A and C :=

⊕′
i∈[n]C

i
A and consider

A := R⊕′ C = A⊕′ R⊕′ C, (19)

the last equality being true since riij = aij and cjkj = akj , by normality of A.
Clearly, A ≤ A and A is real and normal, if A is.

Notation: (←, A] := {X ∈ Mnor
n : X ≤ A}. This is an alcoved polytope of

dimension n2 − n.

Theorem 9. For any real A ∈Mnor
n , ΩA(A) is a finite union of alcoved polytopes.

Moreover,
Ωtr(A) ⊆ ΩA(A) ⊆ (←, A].

Proof. AX = XA = A if and only if

max
k∈[n]

aik + xkj = aij , max
k∈[n]

xik + akj = aij , for i, j ∈ [n], i ̸= j. (20)

Now, for each X = (xij) ∈ ΩA(A) there exists some winner wX such that, for
each pair (i, j) with i ̸= j, the maxima in (20) are attained at wX(i, j). Since Wn

is finite, then (20) describe a finite union of alcoved polytopes in the variables xij .
Moreover, X ≤ A follows from (19) and (20). In addition, the maxima in (20) are
attained, at least, for the transposition operator. Therefore, Ωtr(A) ⊆ ΩA(A).

10



Algorithm 10. To compute A, we proceed as follows: for 1 ≤ i < j ≤ n,

• compute the minimum and maximum of row(A, i)− row(A, j), denoted mrij
and MRij , respectively,

• compute the minimum and maximum of col(A, i) − col(A, j), denoted mcij
and MCij , respectively,

• Aij = min{aij ,mrij ,−MCij},

• Aji = min{aji,−MRij ,mcij}.

A sorting algorithm is needed to compute mrij ,mcij ,MRij ,MCij . For instance,
Mergesort has O(n log n) complexity, whence the complexity of the computation of
A is O(n3 logn).

Example 11. For

B =

 0 −3 −1
−4 0 −6
−5 0 0

 we get B =

 0 −3 −3
−5 0 −6
−5 −2 0

 . (21)

On the other hand, for A in example 2, we get A = A.

Notation: [A,→) := {X ∈ Mnor
n : A ≤ X}. It is an alcoved polytope, since

the definition of X involves differences xij − xkl of two entries.

The proof of the theorem below is similar to the proof of theorem 9. Alterna-
tively, theorem 12 is a corollary of theorem 9, using that X ∈ ΩA(A) if and only if
A ∈ Ω′(X).

Theorem 12. For any real A ∈Mnor
n , Ω′(A) is a finite union of alcoved polytopes.

Moreover,
Ωid(A) ⊆ Ω′(A) ⊆ [A,→).

The sets (←, A] and [A,→) are alcoved polytopes, but [A,→) is trickier than
(←, A]. We can compute a tight description of any of them, as explained in [29].
It goes as follows. For any m ∈ N, any real matrix H ∈ Mnor

m yields the alcoved
polytope CH (see (1)), and it turns out that CH = CH∗ . Moreover, the description
of this convex set given by H∗ is tight.

Example 11. (Continued) Let us compute a tight description of [B,→), for B in
(21). The matrix X is defined in (19) and we have B ≤ X if and only if

11



−3 ≤ x12 −6 ≤ x23

−3 ≤ x32 − x31 −6 ≤ x13 − x12

−3 ≤ x13 − x23 −6 ≤ x21 − x31

−1 ≤ x13 −5 ≤ x31

−1 ≤ x23 − x21 −5 ≤ x21 − x23

−1 ≤ x12 − x32 −5 ≤ x32 − x12

−4 ≤ x21 0 ≤ x32

−4 ≤ x31 − x32 0 ≤ x12 − x13

−4 ≤ x23 − x13 0 ≤ x31 − x21.

Now, in order to write down the matrix H , we perform a relabeling of the unknowns;
for instance:

y1 = x12, y2 = x13, y3 = x21, y4 = x23, y5 = x31, y6 = x32,

so that,

−3 ≤ y1 0 ≤ y1 − y2 ≤ 6

−1 ≤ y2 −1 ≤ y1 − y6 ≤ 5

−4 ≤ y3 −3 ≤ y2 − y4 ≤ 4

−6 ≤ y4 −5 ≤ y3 − y4 ≤ 1

−5 ≤ y5 −6 ≤ y3 − y5 ≤ 0

0 ≤ y6 −4 ≤ y5 − y6 ≤ 3

and we get [B,→) = CH , with

H =



0 0 −∞ −∞ −∞ −1 −3
−6 0 −∞ −3 −∞ −∞ −1
−∞ −∞ 0 −5 −6 −∞ −4
−∞ −4 −1 0 −∞ −∞ −6
−∞ −∞ 0 −∞ 0 −4 −5
−5 −∞ −∞ −∞ −3 0 0
0 0 0 0 0 0 0


.
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Then H3 = H4 = H∗, with

H∗ =



0 0 −1 −1 −1 −1 −1
−1 0 −1 −1 −1 −1 −1
−4 −4 0 −4 −4 −4 −4
−5 −4 −1 0 −5 −5 −5
−4 −4 0 −4 0 −4 −4
0 0 0 0 0 0 0
0 0 0 0 0 0 0


so that [B,→) = CH = CH∗ , by [29], and this set is described tightly as follows:

−1 ≤ y1 ≤ 0 −1 ≤ y1 − y4 ≤ 5

−1 ≤ y2 ≤ 0 −1 ≤ y1 − y5 ≤ 4

−4 ≤ y3 ≤ 0 −1 ≤ y2 − y3 ≤ 4

−5 ≤ y4 ≤ 0 −1 ≤ y2 − y4 ≤ 4

−4 ≤ y5 ≤ 0 −1 ≤ y2 − y5 ≤ 4

0 = y6 −4 ≤ y3 − y4 ≤ 1

0 ≤ y1 − y2 ≤ 1 −4 ≤ y3 − y5 ≤ 0

−1 ≤ y1 − y3 ≤ 4 −5 ≤ y4 − y5 ≤ 4.

In particular, dim [B,→) = dimCH∗ = 9 − 3 − 1 = 5. Undoing the relabeling,
we get

−1 ≤ x12 ≤ 0 −1 ≤ x12 − x23 ≤ 5

−1 ≤ x13 ≤ 0 −1 ≤ x12 − x31 ≤ 4

−4 ≤ x21 ≤ 0 −1 ≤ x13 − x21 ≤ 4

−5 ≤ x23 ≤ 0 −1 ≤ x13 − x23 ≤ 4

−4 ≤ x31 ≤ 0 −1 ≤ x13 − x31 ≤ 4

0 = x32 −4 ≤ x21 − x23 ≤ 1

0 ≤ x12 − x13 ≤ 1 −4 ≤ x21 − x31 ≤ 0

−1 ≤ x12 − x21 ≤ 4 −5 ≤ x23 − x31 ≤ 4.

Write

B =

 0 −1 −1
−4 0 −5
−4 0 0

 (22)

and notice that B ≤ X follows from the first six inequalities above.

Computations as in the former example can be done for any real matrix A ∈
Mnor

n , as follows.

13



Definition 13. For n ∈ N, a relabeling is a bijection between two sets of variables:
{xij : (i, j) ∈ [n]2, i ̸= j} and {yk : k ∈ [n2−n]}. By abuse of notation, we write
yk = xij , for corresponding yk and xij .

Definition 14. Given A ∈ Mnor
n real, suppose that [A,→) equals CH∗ , for some

idempotent matrix H∗ = (h∗ij) ∈ Mnor
n2−n+1 and some relabeling yk = xij . Then

A = (αij) ∈ Mnor
n , with αij = h∗k,n2−n+1, i.e., the entries of A are obtained form

the last column of H∗.

The matrix A does not depend on the relabeling. The arithmetical complexity of
computing A is that of H∗, which is O((n2−n)3) = O(n6), by the Floyd–Warshall
algorithm.

Corollary 15. For any A,X ∈ Mnor
n with A real, A ≤ X implies A ≤ X . In

particular, Ω′(A) ⊆ [A,→).

Proof. We proceed as in example above and we use theorem 12.

Corollary 16. Given A ∈ Mnor
n real, suppose that [A,→) equals CH∗ , for some

idempotent matrix H∗ = (h∗ij) ∈Mnor
n2−n+1. Then

dimΩ′(A) ≤ n2 − n− cardQ,

where Q = {(i, n2 − n + 1) : h∗i,n2−n+1 = h∗n2−n+1,i = 0, with 1 ≤ i <

n2 − n+ 1} ∪ {(i, k) : h∗ik = h∗ki = 0, with 1 ≤ i < k ≤ n2 − n+ 1}.

Proof. The description of [A,→) via H∗ is tight, by proposition 2.6 in [29]. Thus,
the dimension of [A,→) drops by one unit each time that a chain of two inequalities
in expression (1) (for H∗ instead of A), turns into two equalities, which occurs
whenever h∗ik = h∗ki = 0, by normality of H∗. Thus, dim [A,→) = n2−n−cardQ
and this is an upper bound for dimΩ′(A).

Proposition 17. For any A ∈Mnor
n real, we have A ≤ A ≤ A.

Proof. The inequality A ≤ A was explained in p. 10. Now consider X such that
A ≤ X . Then,

A ≤ X ≤ X,

by the same reason, so that A ≤ X . By definition 14, the matrix A is obtained from
the last column of H∗ and, by [29], the description of the alcoved polytope [A,→)

as CH∗ is tight. Part of this description is A ≤ X . Therefore, A ≤ A ≤ X , by
tightness.

Some questions arise, such as:

14



1. We know that A ≤ A ≤ A. Does every X with A ≤ X ≤ A commute with
A? The answer is NO. Example: take B in (21) and

X =

 0 −2 −2
−4 0 −5
−4 0 0

 , BX = B ̸= XB =

 0 −2 −1
−4 0 −5
−4 0 0

 .

2. We know that A∗ and 0 belong to Ω′(A). Does every X with A∗ ≤ X ≤ 0
commute with A? The answer is NO. Example: for B in (21), we have
B∗ = B in (22) and

X =

 0 −1 −1
0 0 −1
0 0 0

 = XB ̸= BX =

 0 −1 −1
0 0 −1
−1 0 0

 .

4 Perturbations

Definition 18. Assume a, b ∈ R≥0 with a ≤ b. Then a, b are of the same size if
b ≤ 2a. Otherwise, 2a < b and we say that a is small with respect to b.

In the topological space Mnor
n ≃ Rn2−n

≤0 the following is expected to hold true,
for any real matrix A ∈Mnor

n :

1. for j ∈ [n] and each sufficiently small perturbation X of Aj−1, we have
AX = XA, and this is a perturbation of Aj , (including the case that X is a
perturbation of I = A0 or of A∗ = An−1)

2. for each sufficiently small perturbation X of 0, we have AX = XA, and this
is a perturbation of 0.

The point here is, of course, to give a precise meaning of sufficiently small
perturbation. Although we are not able to do it yet, we believe that the statement
will be about linear inequalities in terms of the non–zero entries aij of A and some
perturbing constants ±ϵ1, . . . ,±ϵs, with ϵk ≥ 0 for k = 1, . . . , s, and some s ≥ 0.
We further believe that the perturbing constants must be small with respect to every
non–zero absolute value |aij |, according to definition 18. Recall that Ω(A) is larger
than P(A) (see p. 2). An intriguing related QUESTION is the following: is every
X ∈ Ω(A) a small perturbation of some member of P(A)?

Below we present some partial results.

For brevity, write A⊕B := M = (mij).

Proposition 19. Assume A,B ∈ Mnor
n are such that aik + bkj ≤ mij , for all

i, j, k ∈ [n]. Then AB = BA = M . In particular, B ∈ ΩM (A).
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Proof. By normality, I ≤ A ≤ 0 and I ≤ B ≤ 0, whence A ≤ AB ≤ 0 and B ≤
AB ≤ 0, since (tropical) left or right multiplication by any matrix is monotonic.
Thus, M ≤ AB and, similarly, M ≤ BA and, by hypothesis, AB ≤ M and
BA ≤M . Therefore AB = BA = M .

Theorem 20. For each n ∈ N and each non positive real number r, any two order
n matrices A,B having zero diagonal and all off–diagonal entries in the closed
interval [2r, r] satisfy AB = BA = M . In particular, B ∈ ΩM (A).

Proof. Let aii = bii = 0 and 2r ≤ aij , bij ≤ r ≤ 0, for i, j ∈ [n]. Fix i, j ∈ [n]
with i ̸= j. For each k ∈ [n], we have aik + bkj ≤ 2r ≤ aij , bij , and we can apply
the previous proposition to conclude.

That is an easy way to produce two real matrices which commute! Moreover,
the matrices A,B and M are idempotent. Indeed, A ≤ A2 by normality and, since
aij + ajk ≤ 2r ≤ aik, we get A2 ≤ A, whence A = A2; similarly B = B2 and
M = M2. Here B ∈ Ω(A) is a perturbation of A and AB = BA = M is a
perturbation of A2 = A, so this is an example of item 1 in p. 15, for j = 2.

In the former theorem, notice that the absolute value of the entries |aij | and |bij |
of A and B are of the same size, taken by pairs, as in definition 18. The reader
should compare theorem 20 with example 2, where M2 = AB = BA ̸= M , these
matrices being different only at entry (4, 1). There A,B and AB are idempotent,
but M is not.

Corollary 21. For each n ∈ N and each negative real number r, take aij in the
open interval (2r, r), whenever i ̸= j and aii = 0, all i, j ∈ [n]. Then A = (aij) is
strictly normal and Ω(A) is a neighborhood of A.

Proof. The Cartesian product of intervals U = (2r, r)n
2−n is open in Rn2−n

≤0 . The
image U ′ of U in Mnor

n satisfies A ∈ U ′ ⊆ Ω(A), by theorem 20, proving the
neighborhood condition.

Corollary 21 is an instance of item 1 in p. 15. Below we present another one.

For n ≥ 3, consider p = (p1, . . . , pn) ∈ Rn
≥0 and ϵ ≥ 0 and set

P (−p,−ϵ) :=


0 −ϵ · · · −ϵ −pn

−p1 0 −ϵ · · · −ϵ

−ϵ −p2 0
. . .

...
...

. . . . . . . . . −ϵ
−ϵ · · · −ϵ −pn−1 0

 ∈Mnor
n , (23)
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and for n ≥ 4, set

Q(−p,−ϵ) :=



0 0 · · · 0 −ϵ −pn
−p1 0 · · · · · · 0 −ϵ
−ϵ −p2 0 · · · · · · 0

0 −ϵ −p3 0 · · ·
...

...
. . . . . . . . . . . .

...
0 · · · 0 −ϵ −pn−1 0


∈Mnor

n . (24)

The matrices P (−p,−ϵ) and Q(−p,−ϵ) are perturbations of P (−p, 0) = Q(−p, 0).

Theorem 22. Let p ∈ Rn
≥0 and let δ, ϵ ≥ 0 be such that δ+ ϵ ≤ mini∈[n] pi. Write

m = min{δ, ϵ}. Then

1. P (−p,−δ)P (−p,−ϵ) = P (−p,−ϵ)P (−p,−δ) = P (−(δ+ϵ, . . . , δ+ϵ),−m).

2. Q(−p,−δ)Q(−p,−ϵ) = Q(−p,−ϵ)Q(−p,−δ) = Q(−(m, . . . ,m), 0).

Proof. Straightforward computations.

Example 23. Take p = (4, 3, 5), ϵ = 1 and δ = 2,

P (−p,−2) =

 0 −2 −5
−4 0 −2
−2 −3 0

 , P (−p,−1) =

 0 −1 −5
−4 0 −1
−1 −3 0

 . (25)

By theorem 22, we have

P (−p,−2)P (−p,−1) = P (−p,−1)P (−p,−2) = P (−(3, 3, 3),−1) =

 0 −1 −3
−3 0 −1
−1 −3 0

 .

(26)
Pictures for this example are shown in figure 1. Write A = P (−p,−2), B =
P (−p,−1), C = AB = BA. In R2 we have sketched the intersection of the
classical hyperplane {x3 = 0} with spanA, spanP (−p, 0) and spanB on top,
and with spanC bottom. To do so, we have used the matrices A0, P (−p, 0)0, B0

and C0 as defined in p. 5:

A0 =

 2 1 −5
−2 3 −2
0 0 0

 , P (−p, 0)0 =

 0 3 −5
−4 3 0
0 0 0

 , B0 =

 1 2 −5
−3 3 −1
0 0 0

 ,

C0 =

 1 2 −3
−2 3 −1
0 0 0

 .
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(0,−4)t

(3,3)t

(−5,0)t

(1,−3)t

(2,3)t

(−5,−1)t

(2,−2)t

(1,3)t

(−5,−2)t

(1,−2)t

(2,3)t

(−3,−1)t

Figure 1: Top: {x3 = 0} ∩ spanA (left), {x3 = 0} ∩ spanP (−p, 0) (center) and
{x3 = 0} ∩ spanB (right), for p = (4, 3, 5). Bottom: {x3 = 0} ∩ spanC, with
C = AB = BA. In each case, the zero vector is marked in white and generators
are represented in blue. The matrices A,B and C are perturbations of P (−p, 0).

5 Geometry

Let A,B ∈ Mnor
n be real. Here we study the role played by the geometry of the

complexes spanA and spanB in order to have AB = BA. To do so, we bear in
mind how the maps fA and fB act, where fA : Rn → Rn transforms a column
vector X into the product AX . For n = 3, fA is described in detail in see [28]; see
also [31].

Before, we have met two instances where the geometry explains why AB =
BA. Namely, in remarks after propositions 7 and 8. In the first (resp. second) case
we have AB = BA = A (resp. AB = BA = B) because spanB is much larger
(resp. smaller) than spanA.

More generally, we explore the relationship among the sets spanA, spanB,
span(AB) and span(BA) when commutativity is present or absent. In general, we
have span(AB) ⊆ spanA and span(BA) ⊆ spanB. In particular, if AB = BA
then span(AB) ⊆ spanA ∩ spanB.

Proposition 24. Let A,B ∈Mnor
n . If A ≤ B = B2 and A is real, then A ∈ ΩB(B)

and spanA ⊇ spanB.

Proof. By normality, we have I ≤ A ≤ B ≤ 0 and left or right tropical mul-
tiplication by any matrix is monotonic. Therefore, B ≤ AB ≤ B2 = B and
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B ≤ BA ≤ B2 = B, whence AB = BA = B and A ∈ ΩB(B). Moreover,
whatever the matrices A and B may be, we have spanA ⊇ span(AB) and, in our
case, span(AB) = spanB.

The hypothesis B = B2 cannot be removed in the previous proposition, as the
following example shows.

Example 25. Consider

A =

 0 −1 −3
0 0 −4
0 0 0

 ≤ B =

 0 −1 −2
0 0 −4
0 0 0

 ,

then

AB =

 0 −1 −2
0 0 −2
0 0 0

 ̸= BA =

 0 −1 −2
0 0 −3
0 0 0

 ,

and spanA ̸⊇ spanB; see figure 2.

(−1,0)t

(−2,−4)t

(0,0)t(−1,0)t

(−3,−4)t

(0,0)t

(−1,0)t

(−2,−3)t

(0,0)t(−1,0)t

(−2,−2)t

(0,0)t

Figure 2: Top: {x3 = 0} ∩ spanA (left), {x3 = 0} ∩ spanB (right). Bottom:
{x3 = 0} ∩ span(AB) (left), {x3 = 0} ∩ span(BA) (right). In this case, spanA∩
spanB = span(AB). Generators are represented in blue.

Below we explore the properties of the matrices A,A and A and of the corre-
sponding polyhedral complexes.
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Example 11. (Continued) By proposition 17, we have

B =

 0 −3 −3
−5 0 −6
−5 −2 0

 ≤ B =

 0 −3 −1
−4 0 −6
−5 0 0

 ≤ B =

 0 −1 −1
−4 0 −5
−4 0 0


and we can easily check, in this case, that

spanB ⊇ spanB ⊇ spanB.

See figure 3, where we are using the matrices

B0 =

 5 −1 −3
0 2 −6
0 0 0

 , B0 =

 5 −3 −1
1 0 −6
0 0 0

 , B0 =

 4 −1 −1
0 0 −5
0 0 0

 ,

as defined in p. 5. Notice that {x3 = 0} ∩ spanB is the union of one closed 2–
dimensional cell (called soma) and three closed 1–dimensional cells (called anten-
nas); see [28] for the definition of soma, antennas and co–antennas (with a slightly
different notation and language). In figure 3, bottom, we can see {x3 = 0}∩spanB
together with its co–antennas.

In this example,
B = B∗

and the matrix B is idempotent. Therefore, the sets spanB and spanB are classi-
cally convex, and so are the sections {x3 = 0} ∩ spanB and {x3 = 0} ∩ spanB.

Consider H, the classical convex hull of {x3 = 0} ∩ spanB: its the ver-
tices are (5, 0)t, (5, 1)t, (−2, 1)t, (−3, 0)t, (−3,−6)t and (−1,−6)t, going coun-
terclockwise. Notice that {x3 = 0} ∩ spanB is strictly larger than H. Actually,
{x3 = 0} ∩ spanB is the convex hull of the union of {x3 = 0} ∩ spanB and
the co–antennas of it. On the other hand, {x3 = 0} ∩ spanB is the soma of
{x3 = 0} ∩ spanB, i.e., it is the maximal convex set contained there.

We wonder whether the statements in the former example are true for any real
B ∈Mnor

n . This is an open QUESTION.
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