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Abstract

Through tropical normal idempotent matrices, we introduce isocanted alcoved polytopes, computing their
f–vectors and checking the validity of the following five conjectures: Bárány, unimodality, 3d, flag and cubical
lower bound (CLBC). Isocanted alcoved polytopes are centrally symmetric, almost simple cubical polytopes.
They are zonotopes. We show that, for each dimension, there is a unique combinatorial type. In dimension d,
an isocanted alcoved polytope has 2d+1−2 vertices, its face lattice is the lattice of proper subsets of [d+1] and
its diameter is d + 1. They are realizations of d–elementary cubical polytopes. Keywords: cubical polytope;
isocanted; alcoved; centrally symmetric; almost simple; f–vector; cubical g–vector; unimodal; flag; face lattice;
log–concave sequence; tropical normal idempotent matrix; symmetric matrix. AMS classification: 52B12,
15A80

1 Introduction
This paper deals with f–vectors of isocanted alcoved polytopes. A polytope is the convex hull of a finite set of
points in Rd. A polytope is a box if its facets are only of one sort: xi = cnst, i ∈ [d]. A polytope is alcoved if
its facets are only of two sorts: xi = cnst and xi − xj = cnst, i, j ∈ [d], i 6= j. Every alcoved polytope can be
viewed as the perturbation of a box. In a box we distinguish two opposite vertices and the perturbation consists
on canting (i.e., beveling, meaning producing a flat face upon something) some (perhaps all) of the (d− 2)–faces
of the box not meeting the distinguished vertices. When the perturbation happens for all such (d− 2)–faces and
with the same positive magnitude, we obtain as a result an isocanted alcoved polytope. The notion makes sense
only for d ≥ 2.

The f–vector of a d–polytope P is the tuple (f0, f1, . . . , fd−1, fd), where fj is the number of j– dimensional
faces in P , for j = 0, 1, 2, . . . , d− 1. Obviously, fd = 1. It is well known that the f–vector of a d–box is

Bd,j = 2d−j
(
d

j

)
, j = 0, 1, . . . , d. (1)

The main result in the paper is that the f–vector of an isocanted d–alcoved polytope is given by

Id,j = (2d+1−j − 2)

(
d+ 1

j

)
, j = 0, 1, . . . , d− 1, Id,d = 1. (2)

The numbers Id,j are even, for j ≤ d − 1, because isocanted alcoved d–polytopes are centrally symmetric. We
verify several conjectures for f–vectors, namely, unimodality, Bárány, Kalai 3d and flag conjectures and CLCB.
Further properties are proved, showing that isocanted alcoved polytopes are cubical, almost simple zonotopes.

The paper is organized as follows. In section 3 we give the definition and, in Theorem 3.3 prove a crucial
characterization: isocanted alcoved polytopes are those alcoved polytopes having a unique vertex for each proper
subset of [d+1]. It follows that the face lattice of an isocanted alcoved d–polytope is the lattice of proper subsets
of [d+1]. Cubicality and almost simplicity are easy consequences. In section 5 we prove that the five mentioned
conjectures hold true for isocanted alcoved polytopes. Log–concavity provides a short proof of the unimodality
of Id,k, for fixed d ≥ 2. However, a direct proof gives additional information: the maximum of Id,j is attained at
the integer j closest to d

3 . This proof is gathered in the Appendix.

This paper encompasses tropical matrices and classical polytopes, in the sense that tropical matrices are the
means to describe certain polytopes. We use several sorts of special matrices, operated with tropical addition
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⊕ = max and tropical multiplication� = +, such as: normal idempotent (wrt�), visualized normal idempotent
matrices, symmetric normal idempotent matrices and, among these, box matrices, cube matrices and isocanted
matrices.

Tropical linear algebra and tropical algebraic geometry are fascinating, new, fast growing areas of mathemat-
ics with new and important results. For our purposes we recommend [8, 9, 17, 18, 21, 26] among many others.
Alcoved polytopes have been first studied in [28], then in [19, 20]. Cubical polytopes have been addressed in
[1, 2, 5, 6, 14]. General references for polytopes are [3, 4, 12, 16, 22, 25, 30, 31]. Normal idempotent matrices
have been used in [20, 29].

2 Background and notations

Well–known definitions and facts are presented here (see [3, 12, 30] among others). [d + 1] denotes the set
{1, 2, . . . , d+ 1} and

(
[d+1]

j

)
denotes the family of subsets of [d+ 1] of cardinality j. A polyhedron in Rd is the

intersection of a finite number of halfspaces. It may be unbounded. A d–polyhedron is a polyhedron of dimension
d. A d–polyhedron P is alcoved if its facets are only of two types: xi = cnst and xi − xj = cnst, i, j ∈ [d],
i 6= j. A double index notation is useful here because, in this way, we can gather the coefficients in a matrix over
R ∪ {±∞}: indeed, write

aij ≤ xi − xj ≤ −aji
and, similarly,

ai,d+1 ≤ xi ≤ −ad+1,i.

Then, setting aij = −∞ if the facet xi − xj = cnst is not specified, and letting (by convention) aii = 0, for all
i ∈ [d+ 1], we get a square matrix A = [aij ] ∈Md+1(R ∪ {±∞}) from P . We write P = P(A) to express the
former relationship between the alcoved polyhedron P and the matrix A. In addition to having null diagonal, the
matrix A satisfies −∞ ≤ aij ≤ −aji ≤ +∞, for all i, j ∈ [d + 1]. Different matrices A may give rise to the
same polyhedron.

Let 0 denote the origin in Rd. Important particular cases provide special matrices as follows:

1. 0 ∈ P(A) if and only if A is normal (N) (meaning aii = 0, aij ≤ 0,∀i, j), (see [8, 29])

2. 0 ∈ P(A) and A describes P(A) optimally if and only if A is normal idempotent (NI) (meaning that, in
addition to normal, we have aij + ajk ≤ aik,∀i, j, k) (see [19, 23]) and this matrix is unique; furthermore

(a) 0 = maxP(A) (maximum taken componentwise in Rd, which is identified with hyperplane xd+1 =
0 in Rd+1, throughout the paper) if and only if A is visualized normal idempotent (VNI) (in addition
to NI, we have ad+1,i = 0,∀i), (see [8, 19, 20])

(b) P(A) = −P(A) if and only if A is symmetric normal idempotent (SNI) (in addition to NI, we have
aij = aji,∀i, j). (see [13, 20]).

A bounded polyhedron is called a polytope and every polytope is the convex hull of a finite set of points. If a
polytope P(A) is alcoved, then its unique defining NI matrix A is real.

Our aim is to compute the f–vector of an alcoved isocanted polytope.1 But, what is already known about
vertices of an alcoved polytope P(A) in Rd? First, the number of vertices of P(A) is bounded above by

(
2d
d

)
and this bound is sharp (see [9, 26]). Which points are vertices of P(A)? Let the auxiliary matrix A0 = [αij ]
be defined by αij := aij − ad+1,j and notice that P(A) = P(A0) (the property holds because columns in A
and A0 are proportional, although A0 is not normal). The columns of A0, used to picture P(A) ⊂ Rd, are some
of the vertices of P(A), called the generators of P(A). Further, each W ∈

(
[d+1]

j

)
with 1 ≤ j ≤ d determines

a (j − 1)–dimensional tropical linear space, denoted L(W ). The space L(W ) has a finite number of vertices
(however, an upper bound on how many is not known in all cases; see [26]). The vertices of P(A) are all the
vertices of all spaces L(W ), forW ∈

(
[d+1]

j

)
. The case j = 1 gives points, namely, the d+1 generators of P(A).

Every translate of an alcoved polytope is alcoved and, from [20], we know that translation of an alcoved
polyhedron P(A) corresponds to conjugation of its matrix A by a diagonal matrix (with null last diagonal entry).

1In the future, we might be able to compute the f–vector of a general alcoved polytope.
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The easiest alcoved polytopes are boxes, determined by equations xi = cnst. We fix a convenient matrix
notation for boxes in special cases 2a and 2b above.

Notation 2.1 (Box matrices). Given real numbers `i > 0, i ∈ [d], consider

1. BV NI(d + 1; `1, `2, . . . , `d) = [bij ] ∈ Md+1(R) with bij =

{
−`i, d+ 1 6= i 6= j,

0, otherwise,
. This matrix is VNI

(easily checked) and called the VNI box matrix with edge–lengths `j . In particular, we have the VNI cube
matrix QV NI(d+ 1; `) := BV NI(d+ 1; `, . . . , `).

2. The conjugate matrix D � BV NI(d + 1; `1, `2, . . . , `d) � D−1 is SNI (easily checked), where D =
diag(`1/2, `2/2, . . . , `d/2, 0). It is denoted BSNI(d + 1; `1, `2, . . . , `d) = [cij ] and we have cij =
−`i/2, j = d+ 1,

−`j/2, i = d+ 1,

0, i = j,

(−`i − `j)/2, otherwise.

Similarly we have the cube matrix QSNI(d+ 1; `).

3. A box matrix is any conjugate of the above, i.e., D′ � B � D′−1, where D′ = diag(d′1, d
′
2, . . . , d

′
d, 0)

with d′j ∈ R and B = BV NI(d + 1; `1, `2, . . . , `d) or B = BSNI(d + 1; `1, `2, . . . , `d). It is NI (easily
checked).

Definition 2.2 (from Puente [20]). Any non–positive real matrix E ∈Md+1(R) with null diagonal, last row and
column is called perturbation matrix. In symbols, E = [eij ] with eii = ed+1,i = ei,d+1 = 0 and eij ≤ 0,∀i, j.

3 Definition, characterization and f–vector of IAPs
In [20] it is proved that for any NI matrix A ∈ Md+1(R) (not necessarily VNI or SNI), there exists a unique
decomposition A = B − E, where B a NI box matrix and E is a perturbation matrix. The polytope P(B) is
called the bounding box of the alcoved polytope P(A).

Definition 3.1 (Isocanted alcoved polytope (IAP)). Let A ∈ Md+1(R) be a NI matrix with decomposition
A = B − E. The alcoved polytope P(A) is isocanted if E is a constant perturbation matrix, i.e., there exists
a > 0 such that eij = −a, for all i, j ∈ [d+1], i 6= j. The number a is called cant parameter of P(A). We write
E = [−a], by abuse of notation.

Notation 3.2 (Special matrices for visualized IAPs and symmetric IAPs, with cubic bounding boxes). Given real
numbers a, `, consider the constant perturbation matrix E = [−a] ∈ Md+1(R) as above and the matrices (as in
Notation 2.1)

1. IV NI(d+ 1; `, a) := QV NI(d+ 1; `)− E,

2. ISNI(d+ 1; `, a) := QSNI(d+ 1; `)− E.

It is an easy computation to check that, for these matrices to be NI, it is necessary and sufficient that 0 < a < `.2

The following is the crucial step of the paper. Its proof contains the only tropical computations in what
follows.

Theorem 3.3 (Characterization of IAPs). An alcoved d–polytope P is isocanted if and only if, for each 1 ≤ j ≤ d
and each W ∈

(
[d+1]

j

)
, the tropical linear space L(W ) has a unique vertex.

Proof. Without loss of generality, we can assume that the bounding box of P is a cube (of edge–length ` > 0)
since an affine bijection does not affect the result. We can also assume that P is located in d–space so that maxP
is the origin, because a translation does not affect the result. Then P = P(C), with C = QV NI(d + 1; `) − E,
for some positive `, as in in Notation 2.1 and Definition 2.2.

2The limit case a = ` provides a polytope of dimension less than d. The limit case a = 0 provides the d–cube. Matrices IV NI(d +
1; `1, `2, . . . , `d, a) and ISNI(d+ 1; `1, `2, . . . , `d, a) may be similarly defined, for 0 < a < minj `j , but we will not use them.
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(⇒) Assume P is IAP. Then E = [−a] is constant and then C = IV NI(d + 1; `, a) = [cij ], as in Item 1 of

Notation 3.2. In symbols, cij =


−`, i 6= j = d+ 1,

0, i = j or i = d+ 1,

−`+ a, otherwise,
with 0 < a < `. Note that the tropical rank

of C is d + 1 (meaning that the maximum in the tropical permanent of C is attained only once.3) In particular,
rktr C(W ) = j, for each proper subset W ∈

(
[d+1]

j

)
.

For j = 1, L(W ) reduces to a point (i.e., a generator) and uniqueness is trivial. For j ≥ 2, L(W ) is the
tropical line determined by two generators in the set W . Consider a point x ∈ Rd+1

≤0 with xd+1 = 0, and
let C(W ) denote the (d + 1) × j sized matrix whose columns are indexed by W and taken from C, and let
C(W,x) be C(W ) extended with column x. It is well–known (see [21, 26, 27]) that x ∈ L(W ) if and only if
rktr C(W,x) ≤ j, (meaning that the maximum in each order (j + 1) tropical minor is attained at least twice).
Besides, x is a vertex in L(W ) if and only if the maximum in each order (j+1) tropical minor is attained (j+1)
times.

For better readability, we do the case d = 3 (the case d > 3 is similar, due to the structure of the matrix
C(W,x)).

1. Case j = 2. The order 3 minors in C(W,x) are

m123 = max{x1 +m23, x2 +m13, x3 +m12}

m124 = max{x1 +m24, x2 +m14, m12}

m134 = max{x1 +m34, x3 +m14, m13}

m234 = max{x2 +m34, x3 +m24, m23}

where mij denotes the order 2 minor of C(W ) involving rows i–th and j-th, with i < j, and we have done
Laplace expansions by the last column. Two cases arise.

(a) If d + 1 /∈ W . For simplicity in writing and without loss of generality, assume W = [2]. Then,
x3 = a − ` follows from c13 = c23 = −` + a and rktr C(W,x) ≤ 2. In addition, the values of the
order 2 minors in C(W ) are m12 = m14 = m24 = 0, m13 = m23 = m34 = −`+ a < 0. Hence

m123 = max{x1 − `+ a, x2 − `+ a, x3}

m124 = max{x1, x2, 0}

m134 = max{x1 − `+ a, x3, −`+ a}

m234 = max{x2 − `+ a, x3, −`+ a}

Then x3 = −`+ a and x1 = x2 = 0 provide triple maxima in all mijk, and no other values of xj do.
Thus x∗ = [0, 0,−`+ a, 0]T is a vertex of L(W ), the unique one.

(b) If d + 1 ∈ W . For simplicity in writing and without loss of generality, assume W = {1, 4}. Then,
x2 = x3 follows from c21 = c31, c24 = c34 and rktr C(W,x) ≤ 2. Now, the values of the order 2
minors in C(W ) are m14 = 0, m12 = m13 = −`, m23 = −2`+ a < 0, m24 = m34 = −`+ a < 0
which yield

m123 = max{x1 +−2`+ a, x2 − `, x3 − `}

m124 = max{x1 − `+ a, x2, −`}

m134 = max{x1 − `+ a, x3, −`}

m234 = max{x2 − `+ a, x3 − `+ a, −2`+ a}

Then x1 = −a, x2 = x3 = −` provide triple maxima in all mijk, and no other values do. Then,
x∗ = [−a,−`,−`, 0]T is a vertex of L(W ), the unique one.

3We have pertr C = 0, attained only at the identity permutation. For tropical permanent and tropical rank, see [8, 10, 11].
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2. Case j = 3. A Laplace expansion yields pertr C(W,x) = max{x1+m234, x2+m134, x3+m124, m123},
where mijk denote order 3 minors of C(W ). Two cases arise.

(a) If d + 1 /∈ W . We have W = [3] and m123 = m124 = m134 = m234 = 0. Thus, pertr C(W,x) =
max{x1, x2, x3, 0} is attained 4 times if and only if x1 = x2 = x3 = 0. The unique solution is
x∗ = [0, 0, 0, 0]T , the origin.

(b) If d+ 1 ∈ W . For simplicity in writing and without loss of generality, assume W = {1, 2, 4}. Then
m123 = −`, m124 = 0, m134 = m234 = −`+ a, whence pertr C(W,x) = max{x1 − `+ a, x2 −
`+ a, x3, −`} is attained 4 times if and only if x1 = x2 = −a and x3 = −`. The unique solution is
x∗ = [−a,−a,−`, 0]T .

(⇐) We have P = P(C), where C = QV NI(d+1; `)−E is an NI matrix. Assume that, for each 1 ≤ j ≤ d
and each W ∈

(
[d+1]

j

)
, the tropical linear space L(W ) has a unique vertex. We want to prove that perturbation

matrix E is constant.
The matrix E is symmetric, because P is centrally symmetric, using [20]. Then eij = eji,∀i, j. Take W =

[2] and compute the order 2 minors of the matrix C([2]) (using the inequalities guaranteed by NI, in Items 1 and 2
in p. 11). They arem12 = m14 = m24 = 0,m13 = −`−e32,m23 = −`−e31,m34 = max{−`−e31, −`−e32}.
Let x∗ ∈ Rd+1

≤0 be the unique vertex of L([2]), with x∗d+1 = 0. Then, for each order 3 minor mijk of the matrix
C([2], x∗), the maximum is attained three times. We have m124 = max{x∗1, x∗2, 0}, whence x∗1 = x∗2 = 0 and
substitution in the remaining mijk yield

m123 = max{x∗1 − `− e31, x∗2 − `− e32, x∗3} = max{−`− e31, −`− e32, x∗3}

m134 = max{x∗1 +m34, x
∗
3, −`− e32} = max{m34, x

∗
3, −`− e32}

m234 = max{x∗2 +m34, x
∗
3, −`− e31} = max{m34, x

∗
3, −`− e31}

and we conclude e31 = e32. Other instances of W provide eij = est whenever i 6= j and s 6= t, for i, j, s, t ∈ [d]
and we are done.

Remark 3.4. In the proof above we have obtained x∗ =
⊕

j∈W j, whenever d+ 1 /∈W .

Notation 3.5 (Labeling of vertices of IAP). Given any isocanted alcoved d–polytope P , it follows from The-
orem 3.3 that the vertices of P are in bijection with the proper subsets W ⊂ [d + 1]. The label of the vertex
corresponding to W ⊂ [d+ 1] is W (underlined). The cardinality |W | is called length of W .

Notation 3.6 (Parent and child). Assume P is an isocanted alcoved d–polytope. Two vertices in P are joined by
an edge in P if and only if they are labeledW andW ′ ⊂ [d+1] with ∅ 6=W ⊂W ′ and |W |+1 = |W ′|. We say
that W is a parent of W ′ and W ′ is a child of W . A 2–face of P is determined by four vertices with labels jW ,
jkW , jrW , jkrW , with ∅ 6= W ⊂ [d+ 1] \ {j, k, r}, for j, k, r pairwise different in [d+ 1]. (jW is shorthand
for {j} ∪W .)

Theorem 3.7 (f–vector for IAP). Id,j = (2d+1−j − 2)
(
d+1
j

)
, 0 ≤ j ≤ d− 1.

Proof. First, Id,0 =
∣∣∣⋃d

j=1

(
[d+1]

j

)∣∣∣ = 2d+1 − 2 is the number of proper subsets of [d+ 1].
Second, let us count facets. We mentioned in p. 1 that an alcoved polytope is obtained from a box, where we

can cant only the (d − 2)–faces not meeting two distinguished opposite vertices; thus, we can cant half of the
(d−2)–faces of the box. In an IAP we do cant every cantable (d−2)–face, so that Id,d−1 = Bd,d−1+Bd,d−2/2 =
(d+ 1)d, using (1).

For 1 ≤ j ≤ d, the number of vertices of length j is
(
d+1
j

)
, by Theorem 3.3.

Assume 2 ≤ j ≤ d. A vertex of length j has j parents, by Notation 3.6. The total number of edges is∑d
j=2

(
d+1
j

)
j = (d+ 1)

∑d
j=2

(
d

j−1
)
= (d+ 1)

∑d−1
k=1

(
d
k

)
= (d+ 1)(2d − 2) = Id,1, (where we have used the

equalities
(
d+1
j

)
j = (d+ 1)

(
d

j−1
)

and 2d =
∑d

j=0

(
d
j

)
).

5



Assume 3 ≤ j ≤ d. A vertex of length j has
(
j
2

)
grandparents (i.e., parent of parent). The total number of

2–faces is
∑d

j=3

(
d+1
j

)(
j
2

)
=
(
d+1
2

)∑d
j=3

(
d−1
j−2
)
=
(
d+1
2

)∑d−2
k=1

(
d−1
k

)
=
(
d+1
2

)
(2d−1 − 2) = Id,2 (where we

have used the equality
(
d+1
j

)(
j
2

)
=
(
d+1
2

)(
d−1
j−2
)
).

Similarly, the total number of r–faces is
∑d

j=r+1

(
d+1
j

)(
j
r

)
=
(
d+1
r

)∑d
j=r+1

(
d+1−r
j−r

)
=
(
d+1
r

)∑d−r
k=1

(
d+1−r

k

)
=(

d+1
r

)
(2d+1−r − 2) = Id,r (where we have used the equality

(
d+1
j

)(
j
r

)
=
(
d+1
r

)(
d+1−r
j−r

)
).

Remark 3.8. Notice the coincidence with the triangular sequence OEIS A259569 (triangle of numbers where
T (d, k) is the number of k-dimensional faces on the polytope that is the convex hull of all permutations of the list
(0, 1, ..., 1, 2), where there are d− 1 ones) and absolute values of OEIS A138106 (triangle of numbers based on
a Morse potential type function).

Remark 3.9. IAPs are maximal in facets, among alcoved polytopes, because in an IAP we cant every possible
cantable face. Notice that IAPs are neither simplicial nor simple and far from being neighborly.

A d–cuboid is a d–polytope combinatorially equivalent to a cube. A d–cuboid is denoted Cd. A polytope
is cubical if every face in it is a cuboid. A d–polytope is almost simple if the valence of each vertex is d or
d + 1. A d–polytope P is liftable if its boundary complex ∂P is combinatorially equivalent to a subcomplex of
the complex ∂Cd+1. A d–polytope P is d–elementary if the complex ∂P is combinatorially equivalent to the
subcomplex ∂Cd+1

V defined as follows: we take a vertex V in Cd+1 and consider the subcomplex Fd
V of ∂Cd+1

determined by the facets of Cd+1 meeting V . Consider the subcomplex Cd+1
V of Fd+1

V determined by the outer
faces of Fd+1

V (the underlying set of Cd+1
V is ∂Fd

V ), according to [5, 6].

The following are immediate consequences of Theorem 3.3 and Notation 3.5.

Corollary 3.10. For each d ≥ 2,

1. the face lattice of an d–IAP is the lattice of proper subsets of [d+ 1],

2. there exists a unique combinatorial type of d–IAP,

3. every IAP is cubical and almost simple.

Remark 3.11. Since the combinatorial type is unique, we can fix a notation for a d–IAP: it is denoted Id in what
follows. Notice a duality on vertices in Id, due to the lattice order–reversing isomorphism W 7→ [d+ 1] \W .

Corollary 3.12. Id is d–elementary and liftable, for d ≥ 2.

Proof. For d ≥ 4, d–elementarity follows from the main theorem in [5], using that number of vertices in Cd+1
V

and Id coincide (it is Id,0 = 2d+1 − 2). Liftability follows from d–elementarity. For d = 2 the two properties
are easily checked: I2 is a hexagon, and it is combinatorially equivalent to F2

V , the border of a 3–cube cask at a
vertex. Case d = 3 is explained in section 4.

Call Fd
V cask at V . The f–vector of a cask is

Cd,j =
(
2d−j − 1

)(d
j

)
, j = 0, 1, . . . , d− 2. (3)

The relation with (2) is easily verified to be

Id,j = 2Cd,j + Id−1,j−1. (4)

It is a consequence of d–elementarity of Id.

Recall that a zonotope is a (Minkowski) sum of segments.

Corollary 3.13. Every IAP is a zonotope.

Proof. A known characterization of zonotope is that it is a polytope all whose 2–faces are centrally symmetric,
and this is satisfied by IAPs. Another proof is direct: Id may be obtained from a d–box B = B(`1, `2, . . . , `d) ⊂
Rd with maxB at the origin, edge–lengths `j > 0 and cant parameter a with 0 < a < minj `j , satisfies
Id = B + [0, avd+1] where (v1, v2, . . . , vd) is the standard basis and vd+1 = v1 + v2 + · · ·+ vd.
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4 Cases d = 3, 4.
Fix d ≥ 2. Two opposite vertices in Id are distinguished: N := max Id, called the North Pole, and S := min Id
called the South Pole of Id (maximum and minimum computed coordinatewise). The label of N is 12 · · · d, and
the label of S is d+ 1. The complex Fd

N ⊂ ∂Id introduced in paragraph in p. 6 (resp. Fd
S ) is called North

Polar Cask (resp. South Polar Cask) of Id. Vertices included in the North (resp. South) Polar Cask are exactly
those omitting (resp. including) digit d+1 in their label. The Equatorial Belt is, by definition, the subcomplex of
∂Id determined by all faces of Id not meeting the poles. The (d− 1)–faces appearing in the Equatorial Belt are
characterized by the property that they contain edges of Id in the direction of vector (1, 1, . . . , 1)T . These are the
edges joining vertices W and Wd+ 1, for proper subsets W ⊂ [d]. The complex ∂Id is the union of the Polar
Casks and the Equatorial Belt. This idea, which goes back to Kepler, has been developed for isocanted in [20].

A Polar Cask is homeomorphic to a closed (d − 1)–disk. The Equatorial Belt is homeomorphic to a closed
(d− 1)–cylinder, i.e., Sd−2 × [−1, 1] (the Cartesian product of a (d− 2)–sphere and a closed interval).

Case d = 3: we have N = 123 and the North Cask is homeomorphic to a 2–disk with one interior point
labeled 123, points in the circumference labeled 1, 12, 2, 23, 3, 13 and inner edges joining 12, 23, 13 to 123 (see
figure 1). The South Pole is S = 4 and the South Cask is homeomorphic to a 2–disk with one interior point
labeled 4, points in the circumference labeled 14, 124, 24, 234, 34, 134 and inner edges joining 14, 24, 34 to 4
(see figure 2). The Equatorial Belt is homeomorphic to a cylindrical surface (see figure 3). Identification of
borders of polar casks with border components of cylinder is easily done by using vertex labels. The f–vector
of a 2–polar cask is the sum of the f–vector of the circumference (6, 6) and of the internal subdivision (1, 3),
yielding (7, 9), which agrees with (C3,0, C3,1) in (3).

Case d = 4: the North Cask is homeomorphic to a solid 3–sphere with one interior point labeled N = 1234,
points on the surface labeled i, ij, and ijk, with i, j, k ∈ [4], pairwise different. Edges join parent and child (see
Notation 3.6). Combinatorially, the cask is equivalent to a solid rhombic dodecahedron with an interior point
labeled 1234 and six quadrangular inner 2–faces given by ij, ijk, ijr, 1234, with {i, j, k, r} = [4] (see figure 4).

The South Cask is homeomorphic to a solid 3–sphere with one interior point labeled S = 5, points on the
surface labeled i5, ij5, and ijk5, with i, j, k ∈ [4], pairwise different. Edges are determined by Notation 3.6.
Combinatorially, the cask is equivalent to a solid rhombic dodecahedron with an interior point labeled 5 and six
quadrangular inner 2–faces given by i5, ij5, ik5, ijk5, with i, j, k ∈ [4] pairwise different (see figure 5).

The f–vector of a rhombic dodecahedron is (14, 24, 12) and the internal subdivision adds (1, 4, 6), so that the
sum (15, 28, 18) is the f–vector of a 3–polar cask, which agrees with (C4,0, C4,1, C4,2) in (3).

The Equatorial Belt is homeomorphic to a 3–cylinder S2 × [−1, 1]. Identification of borders of polar casks
with border components of cylinder is easily done by using vertex labels.

Remark 4.1. We have I4 = (30, 70, 60, 20) and

1. fatness is f1+f2−20
f0+f3−10 = 11

4 (notice that fatness lays between the known bounds holding for simplicial and
simple 4–polytopes: 5

2 <
11
4 < 3; see [31]),

2. The number of vertex–facet incidences in I4 is f03 = 160, since there are I4,3 = (d + 1)d = 20 3–cubes
(with 8 vertices each) and no other 3–faces.

5 Five conjectures proved for IAPs
Consider the set M of lower triangular infinite matrices with both entries and indices in Z≥0. Examples of

matrices in M are the 2–power matrix, denoted T , defined by Td,k =

{
2d−k, 0 ≤ k ≤ d,
0, otherwise,

and the Pascal

matrix, denoted P , defined by Pd,k =

{(
d
k

)
, 0 ≤ k ≤ d,

0, otherwise.
With the Hadamard or entry–wise product, multiply

the former matrices, obtaining B := T ◦ P = P ◦ T ∈M and notice that the d–th row of B shows the f–vector

7



Figure 1: North Polar Cask for d = 3.

Figure 2: South Polar Cask for d = 3.

of a d–box, for d ∈ Z≥0; so we call B is the box matrix. Next, consider the matrix H ∈M defined by

Hd,k =


(2d−k − 1)

(
d+1
k

)
, 0 ≤ k ≤ d− 1,

1/2, k = d,

0, otherwise.
(5)

For fixed d ≥ 2, we study the growth4 of the sequence Hd,k, with 0 ≤ k < k + 1 ≤ d− 1.

Proposition 5.1. For each d ≥ 0, we have Hd,d−1 ≤ Hd,0 with equality only for d = 0, 1, 2.

Proof. The inequality (d+1)d/2 ≤ 2d−1 is easily proved by induction on d (degree 2 polynomials grow slower
than 2–powers.)

Recall that a sequence ak is log–concave if a2k+1 ≥ akak+2,∀k; see [7, 24].

Proposition 5.2. For d ≥ 2, the sequence {Hd,k : 0 ≤ k ≤ d− 1} is log–concave.

Proof. For fixed d, the sequence Td,k−1 = 2d−k−1 is log–concave, because (Td,k+1−1)2−(Td,k−1)(Td,k+2−
1) = 2d−k−2 > 2 > 0, for 0 ≤ k < k + 2 ≤ d − 1. It is easy to check that any row of Pascal’s triangle is
a log–concave sequence. Since the termwise product of two log–concave sequences (with the same number of
terms) is log–concave, then the result follows for Hd,k.

Notice Id,k = 2Hd,k, for 0 ≤ k≤d.

4Hd,k is an expression involving 2–powers and binomial coefficients. Precisely, Hd,k = (Td,k − 1)Pd+1,k is the product of two
factors. For sufficiently small k, the first factor dominates (meaning, is larger than the other factor), as in the cases Hd,0 = 2d − 1,
Hd,1 = (2d−1 − 1)(d+ 1) and Hd,2 = (2d−2 − 1)(d+ 1)d/2. However, for sufficiently large k, the second factor dominates, as in the
cases Hd,d−3 = 7(d+ 1)d(d− 1)(d− 2)/24, Hd,d−2 = (d+ 1)d(d− 1)/2 and Hd,d−1 = (d+ 1)d/2.
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Figure 3: Ecuatorial Belt for d = 3.

Figure 4: North Polar Cask for d = 4.

Corollary 5.3 (Unimodality holds for isocanted). For each d ≥ 2, the sequence {Id,k : 0 ≤ k ≤ d − 1} is
unimodal.

Proof. It is easy to show that every log–concave sequence is unimodal (but not conversely). The sequence Hd,k

is unimodal and so is its double.

Corollary 5.4 (Bárány conjecture holds for isocanted). If d ≥ 2 and 0 ≤ k < k + 1 ≤ d − 1, then Id,k ≥
min{Id,0, Id,d−1} = Id,d−1 = (d+ 1)d.

Proof. Use unimodality and Proposition 5.1.

Corollary 5.5 (3d conjecture holds for isocanted). For d ≥ 2, it holds
∑d

k=0 Id,k = 3d+1 − 2d+2 + 2 and this is
larger than 3d.

Proof. The binomial theorem (x + y)d =
∑d

j=0 x
jyd−j

(
d
j

)
with x = 1 yields 2d =

∑d
j=0

(
d
j

)
and 3d =∑d

j=0 2
d−j(d

j

)
. Then

3d+1−2×2d+1 =

d+1∑
j=0

2d+1−j
(
d+ 1

j

)
−2

d+1∑
j=0

(
d+ 1

j

)
=

d+1∑
j=0

(2d+1−j−2)
(
d+ 1

j

)
=

d−1∑
j=0

Id,j+two summands.

(6)
Summand for j = d is zero and for j = d+ 1 is −1, whence, using Id,d = 1, we get the claimed equality. Proof
of the inequality: we have 23 = 8 = 32−1 and 2d−2 < 3d−2. Multiply termwise and get 2d+1 ≤ 3d−2(32−1) =
3d − 3d−2 < 3d + 1 whence 2(2d+1 − 1) < 2× 3d = 3d+1 − 3d.
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Figure 5: South Polar Cask for d = 4.

Remark 5.6. Recall that Stirling number of the second kind is the number of ways to partition [d] into k non–
empty subsets, and it is denoted S(d, k). We have 3d+1 − 2d+2 +2 = 2S(d+2, 3) + 1 (see Wikipedia and OEIS
A101052, OEIS A028243 and OEIS A000392).

Recall that a Hanner polytope is obtained from closed intervals, by using two operations any finite number of
times: Cartesian product and polar.

Remark 5.7. Is Id a Hanner polytope? Conversely, is some Hanner polytope an IAP? Since Hanner polytopes
satisfy the 3d conjecture and they attain the minimal conjectured value, then the answer is NO in both cases.

Recall that a complete flag in a polytope P is a maximal chain of faces of P with increasing dimensions.
Next, we count complete flags (and call them flags, for short). The number of flags in a d–box is 2dd!, because
there are 2d vertices and, at each one, there are d! flags. The flag conjecture (stated by Kalai in 2008; see [15, 22])
yields that boxes minimize flags among centrally symmetric polytopes.

Corollary 5.8 (Flag conjecture holds for isocanted). The number of flags in Id is (d+1)(d− 1)!(2d+1− 4) and
it is larger than 2dd!, for d ≥ 2.

Proof. In Id there are 2(d + 1) vertices of valence d, and the remaining 2(2d − d − 2) vertices have valence
d+ 1. Indeed, the vertices of length 1 or d have valence d. A vertex of length 2 ≤ t ≤ d− 1 has valence d+ 1,
because it has t parents and d+ 1− t children. Now, using Corollary 3.10 and reasoning as in boxes, we find d!
flags beginning at a vertex of valence d, but (d + 1)(d − 1)! flags beginning at a vertex of valence d + 1. Thus,
adding up, 2(d+ 1)× d! + 2(2d − d− 2)× (d+ 1)(d− 1)! = (d+ 1)(d− 1)!(2d+1 − 4) is the total number of
flags. Further, we have (2d−1 − 1)(d+ 1) > 2d−2d, for d ≥ 2, whence the claimed inequality.

The cubical lower bound conjecture (CLBC) was posed by Jockusch in 1993 and rephrased, in terms of the
cubical g–vector gc, by Adin et al. in 2019 as follows: is gcd,2 ≥ 0?; see [2, 14].

Proposition 5.9 (CLBC holds for isocanted). gcd,2 ≥ 0 holds true for Id, for d ≥ 2.

Proof. We have computed the sequence gcd,2 for IAPs, obtaining 6, 20, 50, 112, 238, . . .; see OEIS A052515.

Recall that the distance between two vertices of a polytope is the minimum number of edges in a path joining
them. The diameter of a polytope is the greatest distance between two vertices of the polytope.

Corollary 5.10 (Diameter of isocanted). The diameter of Id is d+ 1.

Proof. Consider different proper subsetsW,W ′ ⊂ [d+1] and assume |W∩W ′| = i, |W | = i+w ,|W ′| = i+w′,
with i, w,w′ ≥ 0 and i+ w + w′ ≤ d+ 1. To go from vertex W to vertex W ′ one must drop (one at a time) the
w digits in W \W ′ and one must gain (one at a time) the w′ digits in W ′ \W , whence d(W,W ′) = w +w′. In
the particular case that W ′ is complementary to W , we get the greatest distance d(W,W ′) = d+ 1.
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6 Appendix
For fixed d ≥ 2, the following is a direct proof of unimodality of the sequence Hd,k defined in (5). Consider the
quotient

Qd,k+1 :=
Hd,k+1

Hd,k
=

(2d−k−1 − 1)(d− k + 1)

(2d−k − 1)(k + 1)
, 0 ≤ k < k + 1 ≤ d− 1 (7)

where the equality is due to factor simplifications. Furthermore, clearing the positive denominator (2d−k−1)(k+
1) and grouping terms, we get that Hd,k+1 ≥ Hd,k if and only if Qd,k+1 ≥ 1 if and only if Ld,k+1 ≥ Rd,k+1,
where

Ld,k+1 := 2d−k−1(d− 3k − 1), Rd,k+1 := d− 2k. (8)

Note that the exponent d− k − 1 appearing in Ld,k+1 is at least 1.

Remark 6.1 (Two easy cases). For 0 ≤ k < k + 1 ≤ d− 1, it holds

1. if d− 3k − 1 = 0, then Ld,k+1 = 0 < Rd,k+1 = k + 1 and Qd,k+1 = 22k+1−2
22k+1−1 < 1 (and Qd,k+1 is nearly

1),

2. if d− 2k = 0, then Ld,k+1 = 2k−1(−k − 1) < 0 = Rd,k+1 and Qd,k+1 = 2k−1−1
2k−1 < 1.

In both cases, the sequence Hd,k is decreasing.

Proposition 6.2. If d ≥ 2 and 0 ≤ k < k + 1 ≤ d− 1, then

1. if 4k ≤ d− 2, then Qd,k+1 ≥ 1 ,

2. if 2d− 5 ≤ 3k, then Qd,k+1 ≤ 1,

3. if d−2
4 ≤ k ≤

2d−5
3 and

(a) if d− 3k − 1 ≥ 1, then Qd,k+1 ≥ 1,

(b) if d− 3k − 1≤ −1, then Qd,k+1≤1.

Proof. 1. We have Ld,k+1 ≥ 2(d− 3k− 1) ≥ d− 2k = Rd,k+1 ≥ 2k+ 2 > 0 whence Qd,k+1 ≥ 1 follows.
In this case, the factor (d− 3k − 1) appearing in Ld,k+1 is, at least, 1.

2. We have 2d−5 ≤ 3k ≤ 3d−6⇒ −2d+5 ≥ −3k ≥ −3d+6⇒ 0 > −2 ≥ −d+4 ≥ d−3k−1 ≥ −2d+5
so one factor of Ld,k+1 is negative and −4d+10

3 ≥ −2k ≥ −2d+ 4⇒ 0 ≥ −d+10
3 ≥ d− 2k ≥ −d+ 4 so

we have Rd,k+1 ≥ −d+ 4 ≥ d− 3k − 1 ≥ 2(d− 3k − 1) ≥ Ld,k+1; then Qd,k+1 ≤ 1 follows.

3. We have d−2
4 ≤ k ≤ 2d−5

3 ⇒ d+2
2 ≥ d− 2k = Rd,k+1 ≥ −d+10

3 and the exponent in Ld,k+1 is bounded
above and below as follows: 3d−2

4 ≥ d− k − 1 ≥ d+2
3 .

(a) If d− 3k − 1≥ 1, then Ld,k+1 ≥ 2
d+2
3 (d− 3k − 1)≥ 2

d+2
3 ≥ d+2

2 ≥ Rd,k+1 and so Qd,k+1 ≥ 1.

(b) If d − 3k − 1≤ −1, then Rd,k+1 ≥ −d+10
3 ≥ −2 d+2

3 ≥ 2
d+2
3 (d − 3k − 1) ≥ Ld,k+1 and so

Qd,k+1 ≤ 1.

Recall Id,k = 2Hd,k, for k < d, Id,d = 1.

Corollary 6.3 (Unimodality holds for isocanted). If d ≥ 2 and 0 ≤ k < k + 1 ≤ d− 1, then

1. if k<d−1
3 then Id,k+1 ≥ Id,k,

2. if d−1
3 ≤ k then Id,k+1 ≤ Id,k.

Proof. The cases 2 ≤ d ≤ 4 are checked directly. Besides, d ≥ 5⇒ d−2
4 ≤

d−1
3 ≤

2d−6
3 < 2d−5

3 and then

1. follows from Items 1 and 3a from Proposition 6.2.
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2. follows from Items 2 and 3b from Proposition 6.2, and Item 1 from Remark 6.1.

Corollary 6.4. For fixed d ≥ 2, the maximum in the sequence Id,k is attained at the integer k closest to d
3 .

Proof. For fixed d we have found the maximum in Hd,k attained at k =


d
3 , d ≡ 0 mod 3,
d−1
3 , d ≡ 1 mod 3,

d+1
3 , d ≡ 2 mod 3.

Key to colors: blue dots are generators, yellow dots are vertices of length 2, magenta dots are vertices of
length 3.
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[12] B. Grünbaum, Convex polytopes, John Wyley and Sons, 1967.
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