1 Introduction

In Israel J. Math. 2011, Figiel, Johnson and Pelczyński introduced "Property (k)" for Banach spaces.

Problem 1.1 does every pre-dual of a σ -finite von Neumann algebra have property (k)?

In [FJP] it was shown that:

- 1. if \mathcal{M} is a von Neumann algebra and the pre-dual \mathcal{M}_* is separable, then \mathcal{M}_* has property (k);
- 2. if μ is a σ -finite measure, then $L_1(\mu)$ has property (k).

This talk is based on joint work with Peter Dodds and Fedor Sukochev.

2 Property (K)

Definition 2.1 Let $(x_n)_{n=1}^{\infty}$ be a sequence in a (real or complex) vector space X. A sequence $(y_k)_{k=1}^{\infty}$ in X is called a CCC sequence of $(x_n)_{n=1}^{\infty}$ if there exists a sequence $1 = N_1 < N_2 < \cdots$ in \mathbb{N} and a sequence $(c_k)_{k=1}^{\infty}$ in \mathbb{R}^+ such that

$$y_k = \sum_{j=N_k}^{N_{k+1}-1} c_j x_j, \quad \sum_{j=N_k}^{N_{k+1}-1} c_j = 1, \quad k = 1, 2, \dots$$

(CCC=consecutive convex combinations)

Example. $(X, \|\cdot\|)$ a Banach space and $(x_n)_{n=1}^{\infty}$ a sequence in X such that $\overline{x_n} \to 0$ w.r.t. $\sigma(X, X^*)$. Then there exists a CCC sequence (y_k) of (x_n) such that $\|y_k\| \to 0$.

Indeed: for all $m \in \mathbb{N}$,

$$0 \in \overline{\operatorname{co}\left\{x_n : n \ge m\right\}}^{\sigma(X,X^*)} = \overline{\operatorname{co}\left\{x_n : n \ge m\right\}}^{\|\cdot\|}.$$

In Math. Annalen 1997, Kalton and Pelczyński introduced:

Definition 2.2 A Banach space X is said to have property (K) if every sequence (x_n^*) in X^{*} satisfying $x_n^* \to 0$ with respect to $\sigma(X^*, X)$ has a CCC sequence (y_k^*) such that $\langle x_k, y_k^* \rangle \to 0$ for every sequence (x_k) in X satisfying $x_k \to 0$ with respect to $\sigma(X, X^*)$.

Examples.

1. The space c_0 does not have property (K).

Indeed: consider in c_0^* the sequence (e_n^*) of coordinate functionals of the standard basis (e_n) in c_0 .

- 2. Every reflexive space has property (K).
- 3. Every Grothendieck space has property (K).

[Recall: Banach space X is a Grothendieck space if $x_n^* \to 0$ w.r.t. $\sigma(X^*, X)$ implies that $x_n^* \to 0$ w.r.t. $\sigma(X^*, X^{**})$] In particular, $X = \ell_{\infty}$ has property (K); every von Neumann algebra has property (K) (Pfitzner, 1994).

- 4. Every subspace of a *separable* Banach space with property (K) has property (K).
- 5. Every complemented subspace of a Banach space with property (K) has property (K).
- 6. If $\Gamma \neq \emptyset$, then $\ell_1(\Gamma)$ has property (K). [Indeed, $\ell_1(\Gamma)$ has the Schur property]

<u>Note</u>: "Property (K)" \Longrightarrow "Property (k)".

3 Reformulation of Property (K)

Useful observation:

Lemma 3.1 $(X, \|\cdot\|)$ a Banach space and $(x_n^*)_{n=1}^{\infty} \subseteq X^*$ such that $x_n^* \to 0$ w.r.t. $\sigma(X^*, X)$. Equivalent are:

(i) for every $(x_n) \subseteq X$ with $x_n \to 0$ w.r.t. $\sigma(X, X^*)$ we have $\langle x_n, x_n^* \rangle \to 0$;

(ii) for every relatively $\sigma(X, X^*)$ -compact set $A \subseteq X$ we have

$$\sup_{x \in A} |\langle x, x_n^* \rangle| \to 0, \qquad n \to \infty.$$

(i.e., $x_n^* \to 0$ uniformly on relatively $\sigma(X, X^*)$ -compact subsets of X).

Some notation: Let X be a Banach space.

• For $A \subseteq X$, bounded, define the semi-norm $\rho_A : X^* \to [0, \infty)$ by

$$\rho_A(x^*) = \sup\left\{ |\langle x, x^* \rangle| : x \in A \right\}.$$

• Let \mathfrak{S} be a collection of bounded sets in X such that span $\bigcup_{A \in \mathfrak{S}} A$ is dense in X. The locally convex topology in X^* generated by

$$\{\rho_A : A \in \mathfrak{S}\}$$

is denoted by $\tau_{\mathfrak{S}}$: the topology of uniform convergence on the sets of \mathfrak{S} .

Recall:

- 1. Mackey topology $\tau(X^*, X)$: the topology on X^* of uniform convergence on absolutely convex $\sigma(X, X^*)$ -compact subsets of X.
- 2. Mackey-Arens theorem: if τ is a locally convex topology on X^* , then the dual of (X^*, τ) equals X if and only if $\tau = \tau_{\mathfrak{S}}$ for some collection \mathfrak{S} of absolutely convex $\sigma(X, X^*)$ -compact subsets of X satisfying $\bigcup_{A \in \mathfrak{S}} A = X$.

Note that then

$$\sigma\left(X^*, X\right) \subseteq \tau \subseteq \tau\left(X^*, X\right)$$

and convex subsets of X^* have the same closure for all such topologies.

3. Krein-Smulian: the absolute convex hull of a (relatively) $\sigma(X, X^*)$ compact subset of X is again (relatively) $\sigma(X, X^*)$ -compact.

With these observations we find:

Lemma 3.2 If X is a Banach space, then the following are equivalent:

- (i) X has property (K);
- (ii) every sequence (x_n^*) in X^* satisfying $x_n^* \to 0$ w.r.t. $\sigma(X^*, X)$ has a CCC sequence (y_k^*) such that $y_k^* \to 0$ w.r.t. $\tau(X^*, X)$.

Corollary 3.3 If X is a Banach space such that the Mackey topology $\tau(X^*, X)$ is metrizable on norm bounded subsets of X^* , then X has property (K).

Proof. If (x_n^*) in X^* satisfies $x_n^* \to 0$ w.r.t. $\sigma(X^*, X)$, then

$$0 \in \overline{\operatorname{co}\left\{x_n : n \ge m\right\}}^{\sigma(X,X^*)} = \overline{\operatorname{co}\left\{x_n : n \ge m\right\}}^{\tau(X^*,X)}$$

for all $m \in \mathbb{N}$.

A general definition. Let X be a Banach space.

Definition 3.4 Let \mathfrak{S} be a collection of bounded subsets of X. We say that X has property $(K_{\mathfrak{S}})$ if every sequence $(x_n^*) \subseteq X^*$ with $x_n^* \to 0$ w.r.t. $\sigma(X^*, X)$ has a CCC sequence (y_k^*) such that $y_k^* \to 0$ uniformly on the sets in \mathfrak{S} , that is,

$$\sup_{x \in A} |\langle x, y_k^* \rangle| \to 0, \quad k \to \infty,$$

for all $A \in \mathfrak{S}$.

Proposition 3.5 Suppose that span $\bigcup_{A \in \mathfrak{S}} A$ is dense in A and that $\tau_{\mathfrak{S}} \subseteq \tau(X^*, X)$. If $\tau_{\mathfrak{S}}$ is metrizable on norm bounded subsets of X^* , then X has property $(K_{\mathfrak{S}})$.

4 Banach lattices

- *E* a (real) Banach lattice.
- a subset $A \subseteq E$ is order bounded if there exists $0 \le w \in E$ such that

$$A\subseteq\left[-w,w\right] ,$$

where

$$[-w, w] = \{x \in E : -w \le x \le w\}.$$

- \mathfrak{S}_{ob} : all order bounded subsets of E.
- $\tau_{ob} = \tau_{\mathfrak{S}_{ob}}; (K_{ob}) = (K_{\mathfrak{S}_{ob}}).$

Lemma 4.1 For a Banach lattice E, the following two conditions are equivalent:

- (i) E has property (K_{ob}) ;
- (ii) every sequence (x_n^*) in E^* satisfying $x_n^* \to 0$ with respect to $\sigma(E^*, E)$ has a CCC sequence (y_k^*) such that $|y_k^*| \to 0$ with respect to $\sigma(E^*, E)$.

Proposition 4.2 If E is a Banach lattice with order continuous norm and weak order unit, then the topology τ_{ob} is metrizable on norm bounded subsets of E^* .

Proof. Let $0 \le w \in E$ be a weak order unit.

On the unit ball B_{E^*} the topology τ_{ob} is induced by the semi-norm ρ_w :

 $\rho_w\left(x^*\right) = \sup\left\{\left|\langle x, x^*\rangle\right| : x \in E, |x| \le w\right\} = \langle w, |x^*|\rangle, \quad x^* \in E^*.$

I		

Theorem 4.3 If E is a Banach lattice with order continuous norm and weak order unit, then E has property (K_{ob}) .

Corollary 4.4 Let *E* be a Banach lattice with order continuous norm and weak order unit. If (x_n^*) is a sequence in E^* satisfying $x_n^* \stackrel{\sigma(E^*,E)}{\to} 0$, then (x_n^*) has a CCC sequence (y_k^*) such that $|y_k^*| \to 0$ with respect to $\sigma(E^*, E)$.

The above result is implicit in [FJP], (2011) and improves Sublemma 2.5 in Johnson, 1997.

5 Property (K) in pre-duals of von Neumann algebras

- \mathcal{M} a von Neumann algebra on Hilbert space H.
- $P(\mathcal{M})$ the complete lattice of projections in \mathcal{M} .
- \mathcal{M} is called σ -finite if every mutually disjoint system in $P(\mathcal{M})$ is at most countable.
- \mathcal{M}_* the pre-dual of \mathcal{M} ; \mathcal{M}_* is a bimodule over \mathcal{M} .

Definition 5.1 A subset $A \subseteq \mathcal{M}_*$ is said to be of uniformly absolutely continuous norm if $p_{\alpha} \downarrow_{\alpha} 0$ in $P(\mathcal{M})$ implies that

$$\sup_{\varphi \in A} \|p_{\alpha} x p_{\alpha}\|_{\mathcal{M}_*} \to_{\alpha} 0.$$

We use the following ingredients.

Proposition 5.2 (Akemann, 1967) Every relatively $\sigma(\mathcal{M}_*, \mathcal{M})$ -compact subset of \mathcal{M}_* is of uniformly absolutely continuous norm.

Proposition 5.3 (Raynaud, Xu, 2003) If \mathcal{M} is σ -finite, then there exists $0 < \varphi_0 \in \mathcal{M}_*$ such that for every $A \subseteq \mathcal{M}$ of uniformly absolutely continuous norm and every $0 < \varepsilon \in \mathbb{R}$ there exists $0 < C_{\varepsilon} \in \mathbb{R}$ satisfying

$$A \subseteq C_{\varepsilon} \left(\varphi_0 B_{\mathcal{M}} + B_{\mathcal{M}} \varphi_0 \right) + \varepsilon B_{\mathcal{M}_*}.$$

With this we can prove:

Proposition 5.4 If \mathcal{M} is σ -finite, then the Mackey topology $\tau(\mathcal{M}, \mathcal{M}_*)$ is metrizable on norm bounded subsets of \mathcal{M} .

Proof. Let $0 < \varphi_0 \in \mathcal{M}_*$ be as above and let

$$W = \varphi_0 B_{\mathcal{M}} + B_{\mathcal{M}} \varphi_0.$$

Define the (semi-) norm $\rho_W : \mathcal{M} \to [0, \infty)$ by

$$\rho_{W}(x) = \sup_{\varphi \in W} |\varphi(x)|, \quad x \in \mathcal{M}.$$

On norm bounded subsets of \mathcal{M} the topology generated by ρ_W and $\tau(\mathcal{M}, \mathcal{M}_*)$ coincide.

<u>Remark</u>. In case the underlying Hilbert space H is separable, the result of the above proposition follows from results of Sakai (1965) and Akemann (1967).

Theorem 5.5 If \mathcal{M} is σ -finite, then its pre-dual \mathcal{M}_* has property (K).

<u>Remark</u>. There exist (non σ -finite) measures μ such that $L_1(\mu)$ does not have property (K).

6 Non-commutative symmetric spaces

Now we consider the following setting:

- \mathcal{M} a semi-finite von Neumann algebra, $\tau : \mathcal{M}^+ \to [0, \infty]$.
- $S(\tau)$ the *-algebra of all τ -measurable operators.
- For $x \in S(\tau)$ define the generalized singular value function $\mu(x) : [0, \infty) \to [0, \infty]$ by

$$\mu(t;x) = \inf \left\{ 0 \le s \in \mathbb{R} : \tau\left(e^{|x|}\left(s,\infty\right)\right) \le s \right\}, \quad t \ge 0.$$

(here, $e^{|x|}$ is the spectral measure of |x|)

• If $x, y \in S(\tau)$, then we write $x \prec y$ whenever

$$\int_0^t \mu(s;x) \, ds \le \int_0^t \mu(s;y) \, ds, \quad t \ge 0.$$

- $E \subseteq S(\tau)$ linear subspace with norm $\|\cdot\|_E$ such that $(E, \|\cdot\|_E)$ is Banach.
- E is called symmetric if $x \in S(\tau)$, $y \in E$ and $\mu(x) = \mu(y)$ imply that $x \in E$ and $||x||_E = ||y||_E$.
- A symmetric space E is called *strongly symmetric* if its norm has the additional property that $x, y \in E$ and $x \prec y$ imply that $||x||_E \leq ||y||_E$.
- The norm on E is called *order continuous* if

 $x_{\alpha}\downarrow_{\alpha} 0$ in $E \implies ||x_{\alpha}||_E \downarrow_{\alpha} 0.$

Equivalently:

$$e_n \downarrow 0 \text{ in } P(\mathcal{M}) \implies ||e_n x e_n||_E \downarrow 0, \quad x \in E.$$

- If the strongly symmetric space E has order continuous norm, then E is fully symmetric: if $x \in S(\tau)$ and $y \in E$, then $x \in E$ (and $||x||_E \leq ||y||_E$).
- If the strongly symmetric space E has order continuous norm, then the Banach dual E^* may be identified with the Köthe dual E^{\times} :

$$E^{\times} = \left\{ y \in S\left(\tau\right) : xy \in L_1\left(\tau\right) \quad \forall \ x \in E \right\},\$$

$$||y||_{E^{\times}} = \sup \{ |\tau (xy)| : x \in E, ||x||_{E} \le 1 \}, \quad y \in E^{\times},$$

via trace duality

$$\langle x, y \rangle = \tau (xy), \quad x \in E, \quad y \in E^{\times}.$$

Definition 6.1 Let $E \subseteq S(\tau)$ be a strongly symmetric space. A subset $A \subseteq E$ is said to be of uniformly absolutely continuous norm if

$$e_n \downarrow 0 \text{ in } P(\mathcal{M}) \implies \sup_{x \in A} \|e_n x e_n\|_E \to 0.$$

<u>Note</u>: If E has order continuous norm and if $A \subseteq E$ is of uniformly absolutely continuous norm, then A is relatively $\sigma(E, E^{\times})$ -compact.

Notation:

- \mathfrak{S}_{an} is the collection of all subsets of E which are of uniformly absolutely continuous norm.
- "Property $(K_{\mathfrak{S}_{an}})$ " \equiv "Property (K_{an}) ".
- $\tau_{\mathfrak{S}_{an}} = \tau_{an}$.

Theorem 6.2 If \mathcal{M} is σ -finite and $E \subseteq S(\tau)$ is a strongly symmetric space with order continuous norm, then E has property (K_{an}) .

The main ingredients in the proof are:

Proposition 6.3 Let $E \subseteq S(\tau)$ be a strongly symmetric space with order continuous norm. Suppose that (p_n) is a sequence of projections such that $p_n \uparrow \mathbf{1}$ and $\tau(p_n) < \infty$ for all $n \in \mathbb{N}$.

If $A \subseteq E$ is of uniformly absolutely continuous norm, then for every $0 < \varepsilon \in \mathbb{R}$ there exists $n = n(\varepsilon) \in \mathbb{N}$ and $0 < C_{\varepsilon} \in \mathbb{R}$ such that

$$A \subseteq C_{\varepsilon} \left(p_n B_{\mathcal{M}} + B_{\mathcal{M}} p_n \right) + \varepsilon B_E.$$

Proposition 6.4 If \mathcal{M} is σ -finite and $E \subseteq S(\tau)$ is strongly symmetric space with order continuous norm, then τ_{an} is metrizable on norm bounded subsets of E^{\times} .

Proof. Let (p_n) in $P(\mathcal{M})$ be such that $p_n \uparrow \mathbf{1}$ and $\tau(p_n) < \infty$ for all $n \in \mathbb{N}$. Define

$$W_n = p_n B_{\mathcal{M}} + B_{\mathcal{M}} p_n, \quad n \in \mathbb{N}.$$

On norm bounded subset of E^{\times} , the topology τ_{an} coincides with the topology generated by the semi-norms $\{\rho_{W_n} : n \in \mathbb{N}\}$.

Consequence of the Theorem:

- Assume that $\tau(\mathbf{1}) < \infty$.
- $E \subseteq S(\tau)$ strongly symmetric with order continuous norm.
- For $x \in E$ let

$$\Omega\left(x\right) = \left\{y \in S\left(\tau\right) : y \prec \prec x\right\}.$$

• Then $\Omega(x) \subseteq E$ and $\Omega(x)$ is of uniformly absolutely continuous norm for all $x \in E$.

This gives:

Proposition 6.5 If (z_n) is a sequence in E^{\times} such that $z_n \to 0$ w.r.t. $\sigma(E^{\times}, E)$, then there exists a CCC sequence (y_k) of (z_n) such that

$$\int_0^\infty \mu(t;x)\,\mu(t;y_k)\,dt \to 0, \quad k \to \infty,$$

for all $x \in E$.

Proof. Let (y_k) be a CCC sequence of (z_n) such that $y_k \to 0$ uniformly on sets of uniformly absolutely continuous norm. Then use that

$$\int_{0}^{\infty} \mu(t; x) \mu(t; y_{k}) dt = \sup_{y \in \Omega(x)} |\langle y, y_{k} \rangle|.$$

7 Property (k)

Let $(X, \|\cdot\|)$ be a Banach space.

<u>Recall</u>: A subset $A \subseteq L_1[0,1]$ is called order bounded if there exists $0 < w \in L_1[0,1]$ such that

$$A \subseteq \left[-w, w\right] + i \left[-w, w\right],$$

where

$$[-w,w] = \{f \in L_1[0,1] : -w \le f \le w\}.$$

Definition 7.1 Let \mathfrak{S}_1 be the collection of subsets of X which are of the form T(A), where $A \subseteq L_1[0,1]$ is order bounded and $T: L_1[0,1] \to X$ is a bounded linear operator.

<u>Note</u>: if $A \subseteq L_1[0,1]$ is order bounded, then A is relatively $\sigma(L_1, L_\infty)$ compact. Hence, $T(A) \subseteq X$ is relatively $\sigma(X, X^*)$ -compact for every
bounded linear operator $T: L_1[0,1] \to X$.

Definition 7.2 The Banach space X has property (k) if X has property $(K_{\mathfrak{S}_1})$.

Since every set in \mathfrak{S}_1 is relatively $\sigma(X, X^*)$ -compact it follows that:

Property $(K) \implies$ Property (k).

Let \mathcal{M} be a semi-finite von Neumann algebra.

<u>Recall</u>: a strongly symmetric space $E \subseteq S(\tau)$ is called a *KB*-space if:

- 1. E has order continuous norm;
- 2. *E* has the Fatou property: if $0 \le x_{\alpha} \uparrow_{\alpha}$ in *E* and $\sup_{\alpha} ||x_{\alpha}||_{E} = M < \infty$, then there exists $0 \le x \in E$ such that $x_{\alpha} \uparrow_{\alpha} x$ and $||x||_{E} = M$.

Theorem 7.3 If \mathcal{M} is σ -finite and $E \subseteq S(\tau)$ is a KB-space, then E has property (k).

The main ingredient in the proof is:

Proposition 7.4 If $E \subseteq S(\tau)$ is a KB-space and $T : L_1[0,1] \to E$ is a bounded linear operator, then T can be written as

$$T = (T_1 - T_2) + i (T_3 - T_4),$$

where each $T_j: L_1[0,1] \to E$ is linear and positivity preserving, i.e.,

$$0 \le f \in L_1[0,1] \implies 0 \le T_j f \in E.$$

Consequently, T maps order bounded sets in $L_1[0,1]$ onto order bounded sets in E.

<u>**Fact</u></u>: if E has order continuous norm, then every order bounded set in E is of uniform absolutely continuous norm.</u>**

Corollary 7.5 If $E \subseteq S(\tau)$ is a KB-space and $T : L_1[0,1] \to E$ is a bounded linear operator, then for each order bounded set $A \subseteq L_1[0,1]$, the image T(A) is a set of uniformly absolutely continuous norm in E.

The theorem now follows from the fact that E has property (K_{an}) .

8 Property (K) in symmetric spaces

Assume:

- \mathcal{M} is a semi-finite and σ -finite von Neumann algebra.
- $E \subseteq S(\tau)$ is a strongly symmetric space with order continuous norm.

We know: then E has property (K_{an}) .

Recall the following definition:

Definition 8.1 (Krygin, Sheremet'ev, Sukochev, 1993) The space E is said to have property (Wm) if for all sequences $(x_n) \subseteq E$ satisfying $x_n \to 0$ both w.r.t. $\sigma(E, E^*)$ and the measure topology, it follows that $||x_n||_E \to 0$.

Proposition 8.2 If $\tau(\mathbf{1}) < \infty$, then the following statements are equivalent:

- (i) E has property (Wm);
- (ii) each relatively $\sigma(E, E^*)$ -compact set in E is of uniformly absolutely continuous norm.

Consequently:

Corollary 8.3 If $\tau(\mathbf{1}) < \infty$ and E has property (Wm), then E has property (K).

Example

Assume $\tau(\mathbf{1}) = 1$ and let $\phi : [0, 1] \to [0, \infty)$ be increasing and concave with $\phi(0+) = \phi(0) = 0$. Define the non-commutative Lorentz space by

$$\Lambda_{\phi}(\tau) = \left\{ x \in S(\tau) : \left\| x \right\|_{\Lambda_{\phi}} = \int_{0}^{1} \mu(t; x) \phi'(t) \, dt < \infty \right\}.$$

The space $\Lambda_{\phi}(\tau)$ has order continuous norm and has also property (Wm).

Consequently: the space $\Lambda_{\phi}(\tau)$ has property (K).

The following lifting result may also be of some interest:

Proposition 8.4 Assume that $\tau(\mathbf{1}) = 1$. Suppose that $E(0,1) \subseteq S(0,1)$ is a strongly symmetric space with order continuous norm and property (K). Then, the corresponding non-commutative space

$$E(\tau) = \{x \in S(\tau) : \mu(x) \in E(0,1)\},\$$

 $\|x\|_{E(\tau)} = \|\mu(x)\|_{E(0,1)},$ has also order continuous norm and property (K).