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Motivation

In this talk we show how the classical disjointification methods (Bessaga-Pelczynski,
Kadecs-Pelczynski) can be applied in the setting of the spaces of p-integrable functions
with respect to vector measures. These spaces provide in fact a representation of
p-convex order continuous Banach lattices with weak unit; the additional tool of the
vector valued integral for each function has already shown to be fruitful for the analysis
of these spaces. Consequently, our results can be directly extended to a broad class of
Banach lattices.

Following this well-known technique, we show that combining Kadecs-Pelczynski
Dichotomy, vector measure orthogonality and with disjointness in the range of the
integration map, we can determine the structure of the subspaces of our family of
Banach function spaces.

These results can already be found in some recent papers and preprints in
collaboration with J.M. Calabuig, E. Jiménez, S. Okada, J. Rodrı́guez and P. Tradacete.
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Disjointification procedures: General Scheme.

Let m : Σ→ E be a vector measure. Consider the space Lp(m) of p-integrable
functions with respect to m.

1 The first result (Bessaga-Pelczynski) allows to work with orthogonality notions in
the range space: orthogonal integrals.

2 The second one (Kadec-Pelczynski) provides the tools for analyzing disjoint
functions in Lp(m).

3 Combining both results: structure of subspaces in Lp(m).
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DEFINITIONS: Banach function spaces

(Ω,Σ,µ) be a finite measure space.

L0(µ) space of all (classes of) measurable real functions on Ω.

A Banach function space (briefly B.f.s.) is a Banach space X ⊂ L0(µ) of locally
integrable functions with norm ‖ · ‖X such that if f ∈ L0(µ), g ∈ X and |f | ≤ |g|
µ-a.e. then f ∈ X and ‖f‖X ≤ ‖g‖X .

A B.f.s. X has the Fatou property if for every sequence (fn)⊂ X such that 0≤ fn ↑ f
µ-a.e. and supn ‖fn‖X < ∞, it follows that f ∈ X and ‖fn‖X ↑ ‖f‖X .

We will say that X is order continuous if for every f , fn ∈ X such that 0≤ fn ↑ f
µ-a.e., we have that fn→ f in norm.
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DEFINITIONS: Vector measures and integration

Let m : Σ→ E be a vector measure, that is, a countably additive set function,
where E is a real Banach space.

A set A ∈Σ is m-null if m(B) = 0 for every B ∈Σ with B ⊂ A. For each x∗ in the
topological dual E∗ of E , we denote by |x∗m| the variation of the real measure
x∗m given by the composition of m with x∗. There exists x∗0 ∈ E∗ such that |x∗0m|
has the same null sets as m. We will call |x∗0m| a Rybakov control measure for m.

A measurable function f : Ω→ R is integrable with respect to m if
(i)

∫
|f |d |x∗m|< ∞ for all x∗ ∈ E∗.

(ii) For each A ∈Σ, there exists xA ∈ E such that

x∗(xA) =
∫

A
f dx∗m, for all x∗ ∈ E .

The element xA will be written as
∫

A f dm.

A measurable function satisfying only the first requirement is called a weakly
integrable function.
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DEFINITIONS: Spaces of integrable functions

Denote by L1(m) the space of integrable functions with respect to m, where
functions which are equal m-a.e. are identified.

The space L1(m) is an order continuous Banach function space space endowed
with the norm

‖f‖m = sup
x∗∈BE∗

∫
|f |d |x∗m|

and the natural order. Note that L∞(|x∗0m|)⊂ L1(m). In particular every measure of
the type |x∗m| is finite as |x∗m|(Ω)≤ ‖x∗‖ · ‖χΩ‖m.

Given f ∈ L1(m), the set function mf : Σ→ E given by mf (A) =
∫

A f dm for all A ∈Σ
is a vector measure. Moreover, g ∈ L1(mf ) if and only if gf ∈ L1(m) and in this
case

∫
g dmf =

∫
gf dm.

The space of weakly integrable functions L1
w (m) is a Banach function space with

the Fatou property (same norm that in L1(m)).
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DEFINITIONS: Spaces of p-integrable functions

For 1≤ p < ∞, the space of square integrable functions Lp(m) is defined by the set
of measurable functions f such that f p ∈ L1(m). It is a p-convex order continuous
Banach function space with the norm

‖f‖ := ‖f p‖1/p
L1(m)

.

Generalized Hölder’s inequality: Lp(m) ·Lp′ (m)⊆ L1(m), and

‖
∫

f ·gdm‖ ≤ ‖f‖Lp(m) · ‖g‖Lp′ (m)
.

In this talk we center our attention in the spaces L2(m).
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Disjointification procedures:

Bessaga-Pelczynski Selection Principle. If {xn}∞

n=1 is a basis of the Banach
space X and {x∗n}∞

n=1 is the sequence of coefficient functionals, if we take a
normalized sequence {yn}∞

n=1 that is weakly null, then {yn}∞

n=1 admits a basic
subsequence that is equivalent to a block basic sequence of {xn}∞

n=1

Kadec-Pelczynski Disjointification Procedure / Dichotomy.

M. I. Kadec and A. Pelczynski, Bases, lacunary sequences, and complemented
subspaces in the spaces Lp , Studia Math. (1962)

THEOREM 4.1. (Figiel-Johnson-Tzafriri, 1975)

Let L be a σ -complete and σ -order continuous Banach lattice. Suppose X is a
subspace of L. Either X is isomorphic to a subspace of L1(µ) for some measure µ or
there is a sequence (xi ) of unit vectors in X and a disjointly supported sequence (ei ) in
L with ‖xi −ei‖→ 0. Consequently, every subspace of L contains an unconditional
basic sequence.
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n=1

Kadec-Pelczynski Disjointification Procedure / Dichotomy.

M. I. Kadec and A. Pelczynski, Bases, lacunary sequences, and complemented
subspaces in the spaces Lp , Studia Math. (1962)

THEOREM 4.1. (Figiel-Johnson-Tzafriri, 1975)

Let L be a σ -complete and σ -order continuous Banach lattice. Suppose X is a
subspace of L. Either X is isomorphic to a subspace of L1(µ) for some measure µ or
there is a sequence (xi ) of unit vectors in X and a disjointly supported sequence (ei ) in
L with ‖xi −ei‖→ 0. Consequently, every subspace of L contains an unconditional
basic sequence.
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Kadec-Pelczynski Disjointification Procedure for sequences.

Let X(µ) be an order continuous Banach function space over a finite measure µ with a
weak unit (this implies X(µ) ↪→ L1(µ)). Consider a normalized sequence {xn}∞

n=1 in
X(µ). Then

(1) either {‖xn‖L1(µ)}∞

n=1 is bounded away from zero,

(2) or there exist a subsequence {xnk }
∞

k=1 and a disjoint sequence {zk}∞

k=1 in X(µ)
such that ‖zk −xnk ‖→k 0.
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Applications: Disjointification in spaces Lp(m)

A. Vector measure orthogonality and disjointness.

B. Positively norming sets in spaces L1(m) and the structure of their subspaces.

C. Some results concerning stable copies of c0 in L1(m).
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A. m-orthonormal sequences in L2(m):

Definition.
A sequence {fi}∞

i=1 in L2(m) is called m-orthogonal if ‖
∫

fi fj dm‖= δi ,j ki for positive
constants ki . If ‖fi‖L2(m) = 1 for all i ∈ N, it is called m-orthonormal.

Definition.
Let m : Σ−→ `2 be a vector measure. We say that {fi}∞

i=1 ⊂ L2(m) is a strongly
m-orthogonal sequence if

∫
fi fj dm = δi ,j ei ki for an orthonormal sequence {ei}∞

i=1 in `2

and for ki > 0. If ki = 1 for every i ∈ N, we say that it is a strongly m-orthonormal
sequence.

Definition. A function f ∈ L2(m) is normed by the integral if ‖f‖L2(m) = ‖
∫

Ω f 2 dm‖1/2.
This happens for all the functions in L2(m) if the measure m is positive.
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Example.
Let ([0,∞),Σ,µ) be Lebesgue measure space. Let rk (x) := sign{sin(2k−1x)} be the
Rademacher function of period 2π defined at the interval Ek = [2(k −1)π,2kπ], k ∈ N.
Consider the vector measure m : Σ→ `2 given by m(A) := ∑

∞

k=1
−1
2k (

∫
A∩Ek

rk dµ)ek ∈ `2,
A ∈Σ.
Note that if f ∈ L2(m) then

∫
[0,∞) fdm = (−1

2k

∫
Ek

frk dµ)k ∈ `2. Consider the sequence of
functions

f1(x) = sin(x) ·χ[π,2π](x)

f2(x) = sin(2x) ·
(
χ[0,2π](x) + χ

[ 7
2 π,4π]

(x)
)

f3(x) = sin(4x) ·
(
χ[0,4π](x) + χ

[ 23
4 π,6π]

(x)
)

...

fn(x) = sin(2n−1x) ·
(
χ[0,2(n−1)π](x) + χ

[(2n− 2
2n )π,2nπ]

(x)
)
, n ≥ 2.
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Figura: Functions f1(x), f2(x) and f3(x).
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Proposition.

Let {gn}∞

n=1 be a normalized sequence in L2(m). Suppose that there exists a Rybakov
measure µ = |〈m,x ′0〉| for m such that {‖gn‖L1(µ)}∞

n=1 is not bounded away from zero.
Then there are a subsequence {gnk }

∞

k=1 of {gn}∞

n=1 and an m-orthonormal sequence
{fk}∞

k=1 such that ‖gnk − fk‖L2(m)→k 0.

Theorem.

Let us consider a vector measure m : Σ→ `2 and an m-orthonormal sequence {fn}∞

n=1
of functions in L2(m) that are normed by the integrals. Let {en}∞

n=1 be the canonical
basis of `2. If lı́mn

〈∫
f 2
n dm,ek

〉
= 0 for every k ∈ N, then there exist a subsequence

{fnk }
∞

k=1 of {fn}∞

n=1 and a vector measure m∗ : Σ→ `2 such that {fnk }
∞

k=1 is strongly
m∗-orthonormal.

Moreover, m∗ can be chosen to be as m∗ = φ ◦m for some Banach space isomorphism
φ from `2 onto `2, and so L2(m) = L2(m∗).
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Proof. (Sketch)

Take an m-orthonormal sequence {fn}∞

n=1 in L2(m) and the sequence of integrals{∫
Ω f 2

n dm
}∞

n=1.

Disjointification (Bessaga-Pelc.): We get a subsequence
{∫

Ω f 2
nk

dm
}∞

k=1
that is

equivalent to a block basic sequence {e′nk
}∞

k=1 of the canonical basis of `2.

Associated to this sequence there is an isomorphism ϕ

A := span(e′nk
)
`2

ϕ−→ B := span
(∫

Ω
f 2
nk

dm
)`2

such that ϕ(e′nk
) :=

∫
Ω f 2

nk
dm, k ∈ N.

We can suppose without loss of generality that the elements of the sequence
{e′nk
}∞

k=1 have norm one.
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There is a subspace Bc such that `2 = B⊕2 Bc isometrically, where this direct sum
space is considered as a Hilbert space (with the adequate Hilbert space norm).
We write PB and PBc for the corresponding projections.

Let us consider the linear map φ := ϕ−1⊕ Id : B⊕2 Bc φ−→ A⊕2 Bc , where
Id : Bc → Bc is the identity map.

Let us consider now the vector measure m∗ := φ ◦m : Σ
m−→ `2 φ−→ A⊕2 Bc . Then

L2(m) = L2(φ ◦m) = L2(m∗).

Finally, it is proved that {fnk }
∞

k=1 is a strongly m∗-orthonormal sequence.
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Corollary.

Let m : Σ→ `2 be a countably additive vector measure. Let {gn}∞

n=1 be a normalized
sequence of functions in L2(m) that are normed by the integrals. Suppose that there
exists a Rybakov measure µ = |〈m,x ′0〉| for m such that {‖gn‖L1(µ)}∞

n=1 is not bounded
away from zero.

If lı́mn
〈∫

g2
ndm,ek

〉
= 0 for every k ∈ N, then there is a (disjoint) sequence {fk}∞

k=1
such that

(1) lı́mk ‖gnk − fk‖L2(m) = 0 for a given subsequence {gnk }
∞

k=1 of {gn}∞

n=1, and

(2) it is strongly m∗-orthonormal for a certain Hilbert space valued vector measure m∗

defined as in the theorem that satisfies that L2(m) = L2(m∗).
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Consequences on the structure of L1(m):

Lemma.
Let m : Σ→ `2 be a positive vector measure, and suppose that the bounded sequence
{gn}∞

n=1 in L2(m) satisfies that lı́mn
〈∫

g2
ndm,ek

〉
= 0 for all k ∈ N. Then there is a

Rybakov measure µ for m such that lı́mn ‖gn‖L1(µ) = 0.

Proposition.
Let m : Σ→ `2 be a positive (countably additive) vector measure. Let {gn}∞

n=1 be a
normalized sequence in L2(m) such that for every k ∈ N, lı́mn

〈∫
g2

ndm,ek
〉

= 0. Then
L2(m) contains a lattice copy of `4. In particular, there is a subsequence {gnk }

∞

k=1 of
{gn}∞

n=1 that is equivalent to the unit vector basis of `4.
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Theorem.
Let m : Σ→ `2 be a positive (countably additive) vector measure. Let {gn}∞

n=1 be a
normalized sequence in L2(m) such that for every k ∈ N,

lı́m
n

〈
ek ,

∫
g2

ndm
〉

= 0

for all k ∈ N. Then there is a subsequence {gnk }
∞

k=1 such that {g2
nk
}∞

k=1 generates an
isomorphic copy of `2 in L1(m) that is preserved by the integration map. Moreover,
there is a normalized disjoint sequence {fk}∞

k=1 that is equivalent to the previous one
and {f 2

k }
∞

k=1 gives a lattice copy of `2 in L1(m) that is preserved by Im∗ .
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Corollary.
Let m : Σ→ `2 be a positive (countably additive) vector measure. The following
assertions are equivalent:

(1) There is a normalized sequence in L2(m) satisfying that lı́mn〈
∫

Ω g2
ndm,ek 〉= 0 for

all the elements of the canonical basis {ek}∞

k=1 of `2.

(2) There is an `2-valued vector measure m∗ = φ ◦m —φ an isomorphism— such that
L2(m) = L2(m∗) and there is a disjoint sequence in L2(m) that is strongly
m∗-orthonormal.

(3) The subspace S that is fixed by the integration map Im satisfies that there are
positive functions hn ∈ S such that {

∫
Ω hndm}∞

n=1 is an orthonormal basis for
Im(S).

(4) There is an `2-valued vector measure m∗ defined as m∗ = φ ◦m —φ an
isomorphism— such that L1(m) = L1(m∗) and a subspace S of L1(m) such that
the restriction of Im∗ to S is a lattice isomorphism in `2.

E. Sánchez Vector measures and classical disjointification methods



Theorem.
The following assertions for a positive vector measure m : Σ→ `2 are equivalent.

(1) L1(m) contains a lattice copy of `2.

(2) L1(m) has a reflexive infinite dimensional sublattice.

(3) L1(m) has a relatively weakly compact normalized sequence of disjoint functions.

(4) L1(m) contains a weakly null normalized sequence.

(5) There is a vector measure m∗ defined by m∗ = φ ◦m such that integration map Im∗
fixes a copy of `2.

(6) There is a vector measure m∗ defined as m∗ = φ ◦m that is not disjointly strictly
singular.
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