Domination of operators in non-commutative setting

Eugeniu Spinu, University of Alberta

joint work with

Timur Oikhberg, University of Illinois in Urbana-Champain

October, 2012

Question

Suppose E and F are ordered Banach spaces, $0 \le T \le S : E \to F$. Suppose S belongs to a certain ideal (such as the ideal of compact, weakly compact, or Dunford-Pettis operators). Does T belong to the same ideal?

Theorem (Fremlin & Dodds; Wickstead)

Suppose E and F are Banach lattices. TFAE:

1 If $0 \leq T \leq S : E \rightarrow F$, and S is compact, then T is compact.

One of the three (non-exclusive) statements holds:

(i) Both E^{*} and F are order continuous.

- (ii) F is atomic, and order continuous.
- (iii) *E*^{*} is atomic, and order continuous.

heorem (Aliprantis & Burkinshaw)

If E is a Banach lattices, $0 \leq T \leq S : E \rightarrow E$, and S is compact, then T^3 is compact. T^2 need not be compact.

Theorem (Fremlin & Dodds; Wickstead)

Suppose E and F are Banach lattices. TFAE:

1 If $0 \leq T \leq S : E \rightarrow F$, and S is compact, then T is compact.

One of the three (non-exclusive) statements holds:

(i) Both E^{*} and F are order continuous.

- (ii) F is atomic, and order continuous.
- (iii) E^* is atomic, and order continuous.

Theorem (Aliprantis & Burkinshaw)

If E is a Banach lattices, $0 \leq T \leq S : E \rightarrow E$, and S is compact, then T^3 is compact. T^2 need not be compact.

- A real Banach space Z is an ordered Banach space (OBS) if it has a closed proper positive cone Z_+ .
- Z_+ is generating if $Z_+ Z_+ = Z$.
- Z_+ is normal if its dual Z^* is generating.
- A complex OBS Z is the complexification of its real part $Z_{\mathbb{R}}$ ($Z = Z_{\mathbb{R}} + iZ_{\mathbb{R}}$).

A real Banach space Z is an ordered Banach space (OBS) if it has a closed proper positive cone Z_+ .

 Z_+ is generating if $Z_+ - Z_+ = Z$.

 Z_+ is normal if its dual Z^* is generating.

A complex OBS Z is the complexification of its real part $Z_{\mathbb{R}}$ ($Z = Z_{\mathbb{R}} + iZ_{\mathbb{R}}$).

A real Banach space Z is an ordered Banach space (OBS) if it has a closed proper positive cone Z_+ .

 Z_+ is generating if $Z_+ - Z_+ = Z$.

 Z_+ is normal if its dual Z^* is generating.

A complex OBS Z is the complexification of its real part $Z_{\mathbb{R}}$ ($Z = Z_{\mathbb{R}} + iZ_{\mathbb{R}}$).

A real Banach space Z is an ordered Banach space (OBS) if it has a closed proper positive cone Z_+ .

 Z_+ is generating if $Z_+ - Z_+ = Z$.

 Z_+ is normal if its dual Z^* is generating.

A complex OBS Z is the complexification of its real part $Z_{\mathbb{R}}$ ($Z = Z_{\mathbb{R}} + iZ_{\mathbb{R}}$). In the following cases, \boldsymbol{Z} is an OBS with a normal and generating cone.

- Z is a Banach lattice.
- Z is a C*-algebra.
- Z is a non-commutative function space

Suppose $\mathcal{A} \subset B(H)$ is a *C**-algebra. For $x \in B(H)$, define $M_x : \mathcal{A} \to B(H) : a \mapsto x^*ax$.

roposition

Suppose x is an element of a C^* -algebra \mathcal{A} .

- If M_x is weakly compact, and 0 ≤ T ≤ M_x : A → A, then T is compact.
- ② If $0 ≤ M_x ≤ S : A → A$, and S is weakly compact, then M_x is compact.

```
Suppose \mathcal{A} \subset B(H) is a C^*-algebra. For x \in B(H), define M_x : \mathcal{A} \to B(H) : a \mapsto x^*ax.
```

Proposition

Suppose x is an element of a C^* -algebra \mathcal{A} .

- If M_x is weakly compact, and 0 ≤ T ≤ M_x : A → A, then T is compact.
- ② If 0 ≤ M_x ≤ S : A → A, and S is weakly compact, then M_x is compact.

```
Suppose \mathcal{A} \subset B(H) is a C^*-algebra. For x \in B(H), define M_x : \mathcal{A} \to B(H) : a \mapsto x^*ax.
```

Proposition

Suppose x is an element of a C^* -algebra \mathcal{A} .

- If M_x is weakly compact, and 0 ≤ T ≤ M_x : A → A, then T is compact.
- ② If $0 ≤ M_x ≤ S : A → A$, and S is weakly compact, then M_x is compact.

Compactness of multiplication operators on C^* -algebras: the irreducible case

Proposition

Suppose A is an irreducible C^* -subalgebra of B(H), and $x \in B(H)$.

- If M_x : A → B(H) is compact, and 0 ≤ T ≤ M_x, then T is compact.
- ② If S : A → B(H) is compact, and $0 \le M_x \le S$, then M_x is compact.

Remark

Irreducibility is essential: there exists an abelian C^* -subalgebra $\mathcal{A} \subset B(H)$, and $x, y \in B(H)$, so that $0 \leq M_x \leq M_y : \mathcal{A} \to B(H)$, M_y is compact, while M_x is not.

- 4 同 ト 4 ヨ ト 4 ヨ

Compactness of multiplication operators on C^* -algebras: the irreducible case

Proposition

Suppose A is an irreducible C^* -subalgebra of B(H), and $x \in B(H)$.

- If M_x : A → B(H) is compact, and 0 ≤ T ≤ M_x, then T is compact.
- ② If S : A → B(H) is compact, and $0 \le M_x \le S$, then M_x is compact.

Remark

Irreducibility is essential: there exists an abelian C^* -subalgebra $\mathcal{A} \subset B(H)$, and $x, y \in B(H)$, so that $0 \leq M_x \leq M_y : \mathcal{A} \to B(H)$, M_y is compact, while M_x is not.

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Compactness of multiplication operators on C^* -algebras: the irreducible case

Proposition

Suppose A is an irreducible C^* -subalgebra of B(H), and $x \in B(H)$.

- If M_x : A → B(H) is compact, and 0 ≤ T ≤ M_x, then T is compact.
- ② If S : A → B(H) is compact, and $0 \le M_x \le S$, then M_x is compact.

Remark

Irreducibility is essential: there exists an abelian C^* -subalgebra $\mathcal{A} \subset B(H)$, and $x, y \in B(H)$, so that $0 \leq \mathbf{M}_x \leq \mathbf{M}_y : \mathcal{A} \to B(H)$, \mathbf{M}_y is compact, while \mathbf{M}_x is not.

A Banach algebra is compact if each of its elements is multiplication compact.

A C^* -algebra is compact iff it is C^* -isomorphic to $(\bigoplus_{i \in I} K(H_i))_{c_0}$.

```
Froposition

For a C^*-algebra \mathcal{A}, TFAE:

a \mathcal{A} is compact.

b For any c \in \mathcal{A}_+, the order interval [0, c] is compact.

c \mathcal{A} is a bauditary subalgebra of \mathcal{A}^{**}
```

/□ ▶ < 글 ▶ < 글

A Banach algebra is **compact** if each of its elements is multiplication compact.

A C^* -algebra is compact iff it is C^* -isomorphic to $(\bigoplus_{i \in I} K(H_i))_{c_0}$.

```
Froposition

For a C^*-algebra \mathcal{A}, TFAE:

1 \mathcal{A} is compact.

2 For any c \in \mathcal{A}_+, the order interval [0, c] is compact.

3 For any c \in \mathcal{A}_+, the order interval [0, c] is weakly compact.

3 \mathcal{A} is a hereditary subalgebra of \mathcal{A}^{\star\star}.
```

/□ ▶ < 글 ▶ < 글

A Banach algebra is **compact** if each of its elements is multiplication compact.

A C^{*}-algebra is compact iff it is C^{*}-isomorphic to $(\bigoplus_{i \in I} K(H_i))_{c_0}$.

伺 ト イ ヨ ト イ ヨ

A Banach algebra is **compact** if each of its elements is multiplication compact.

A C^{*}-algebra is compact iff it is C^{*}-isomorphic to $(\bigoplus_{i \in I} K(H_i))_{c_0}$.

Proposition For a C*-algebra A, TFAE: A is compact. Por any c ∈ A₊, the order interval [0, c] is compact. For any c ∈ A₊, the order interval [0, c] is weakly compact. A is a hereditary subalgebra of A^{**}.

伺 ト イ ヨ ト イ ヨ

Proposition

Suppose A is a compact C^* -algebra, E is a generating OBS, and $0 \leq T \leq S : E \rightarrow A$. If S is compact, then so is T.

@▶ ◀ ▣▶ ◀

We say that a C^* -algebra \mathcal{A} is scattered if the spectrum of any self-adjoint element of \mathcal{A} is countable (equivalently, $\mathcal{A}^{\star\star} = (\sum_{i \in I} \mathcal{B}(\mathcal{H}_i))_{\infty}).$

roposition

Suppose A is a scattered C^* -algebra, and E is a generating OBS. If $0 \leq T \leq S : E \to A^*$, and S is compact, then so is T.

Corollar

Suppose A is a scattered C*-algebra, and E is a normal OBS. If $0 \leq T \leq S : A \rightarrow E$, and S is compact, then so is T.

同 ト イ ヨ ト イ ヨ ト

We say that a C^* -algebra \mathcal{A} is scattered if the spectrum of any self-adjoint element of \mathcal{A} is countable (equivalently, $\mathcal{A}^{\star\star} = (\sum_{i \in I} B(H_i))_{\infty}).$

Proposition

Suppose A is a scattered C^* -algebra, and E is a generating OBS. If $0 \leq T \leq S : E \to A^*$, and S is compact, then so is T.

Corollar

Suppose A is a scattered C*-algebra, and E is a normal OBS. If $0 \leq T \leq S : A \rightarrow E$, and S is compact, then so is T.

・ 同 ト ・ ヨ ト ・ ヨ ト

We say that a C^* -algebra \mathcal{A} is scattered if the spectrum of any self-adjoint element of \mathcal{A} is countable (equivalently, $\mathcal{A}^{\star\star} = (\sum_{i \in I} B(H_i))_{\infty}).$

Proposition

Suppose A is a scattered C^* -algebra, and E is a generating OBS. If $0 \leq T \leq S : E \to A^*$, and S is compact, then so is T.

Corollary

Suppose A is a scattered C*-algebra, and E is a normal OBS. If $0 \leq T \leq S : A \rightarrow E$, and S is compact, then so is T.

・ 同 ト ・ ヨ ト ・ ヨ ト

heorem

Suppose A and B are C^* -algebras.

- Suppose at least one of the two conditions holds:
 - (i) \mathcal{A} is scattered.
 - (ii) \mathcal{B} is compact.

If $0 \leqslant T \leqslant S : A \rightarrow B$, and S is compact, then T is compact.

Suppose A is not scattered, and B is not compact. Then there exist 0 ≤ T ≤ S : A → B, so that S has rank 1, while T is not compact.

Theorem

Suppose A and B are C^* -algebras.

- **1** Suppose at least one of the two conditions holds:
 - (i) \mathcal{A} is scattered.
 - (ii) \mathcal{B} is compact.

If $0 \leqslant T \leqslant S : A \rightarrow B$, and S is compact, then T is compact.

Suppose A is not scattered, and B is not compact. Then there exist 0 ≤ T ≤ S : A → B, so that S has rank 1, while T is not compact.

Suppose a von Neumann subalgebra $\mathcal{A} \subseteq B(H)$ is equipped with a normal faithful semi-finite trace τ . $\tilde{\mathcal{A}}$ is the set of closed densely defined operators, affiliated with \mathcal{A} . Define the generalized singular value function: for $x \in \tilde{\mathcal{A}}$ and $t \ge 0$, $\mu_x(t) = \inf\{||xe|| : e = e^* = e^2 \in \mathcal{A}, \tau(1-e) \le t\}.$

Suppose \mathcal{E} is a linear subspace of $\tilde{\mathcal{A}}$ with a complete norm $\|\cdot\|_{\mathcal{E}}$. We say that \mathcal{E} is a non-commutative function space if:

• $L_1(\tau) \cap \mathcal{A} \subset \mathcal{E} \subset L_1(\tau) + \mathcal{A}$.

• For any $x \in \mathcal{E}$ and $a, b \in \mathcal{A}$, we have $axb \in \mathcal{E}$, and $||axb||_{\mathcal{E}} \leq ||a|| ||x||_{\mathcal{E}} ||b||$.

 \mathcal{E} is called strongly symmetric if, for any $x, y \in \mathcal{E}$, with $y \prec x$, we have $||y||_{\mathcal{E}} \leq ||x||_{\mathcal{E}}$. Here, \prec refers to the Hardy-Littlewood domination: $y \prec x$ iff, for any $\alpha > 0$, $\int_0^{\alpha} \mu_y(t) dt \leq \int_0^{\alpha} \mu_x(t) dt$. \mathcal{E} is a normal and generating OBS.

・ 同 ト ・ ヨ ト ・ ヨ

Suppose a von Neumann subalgebra $\mathcal{A} \subseteq B(H)$ is equipped with a normal faithful semi-finite trace τ . $\tilde{\mathcal{A}}$ is the set of closed densely defined operators, affiliated with \mathcal{A} . Define the generalized singular value function: for $x \in \tilde{\mathcal{A}}$ and $t \ge 0$, $\mu_x(t) = \inf\{||xe|| : e = e^* = e^2 \in \mathcal{A}, \tau(1-e) \le t\}.$

Suppose \mathcal{E} is a linear subspace of $\tilde{\mathcal{A}}$ with a complete norm $\|\cdot\|_{\mathcal{E}}$. We say that \mathcal{E} is a non-commutative function space if:

•
$$L_1(\tau) \cap \mathcal{A} \subset \mathcal{E} \subset L_1(\tau) + \mathcal{A}$$
.

• For any $x \in \mathcal{E}$ and $a, b \in \mathcal{A}$, we have $axb \in \mathcal{E}$, and $||axb||_{\mathcal{E}} \leq ||a|| ||x||_{\mathcal{E}} ||b||$.

 \mathcal{E} is called strongly symmetric if, for any $x, y \in \mathcal{E}$, with $y \prec x$, we have $||y||_{\mathcal{E}} \leq ||x||_{\mathcal{E}}$. Here, \prec refers to the Hardy-Littlewood domination: $y \prec x$ iff, for any $\alpha > 0$, $\int_0^{\alpha} \mu_y(t) dt \leq \int_0^{\alpha} \mu_x(t) dt$. \mathcal{E} is a normal and generating OBS.

Suppose a von Neumann subalgebra $\mathcal{A} \subseteq B(H)$ is equipped with a normal faithful semi-finite trace τ . $\tilde{\mathcal{A}}$ is the set of closed densely defined operators, affiliated with \mathcal{A} . Define the generalized singular value function: for $x \in \tilde{\mathcal{A}}$ and $t \ge 0$, $\mu_x(t) = \inf\{||xe|| : e = e^* = e^2 \in \mathcal{A}, \tau(1-e) \le t\}.$

Suppose \mathcal{E} is a linear subspace of $\tilde{\mathcal{A}}$ with a complete norm $\|\cdot\|_{\mathcal{E}}$. We say that \mathcal{E} is a non-commutative function space if:

•
$$L_1(\tau) \cap \mathcal{A} \subset \mathcal{E} \subset L_1(\tau) + \mathcal{A}$$
.

• For any $x \in \mathcal{E}$ and $a, b \in \mathcal{A}$, we have $axb \in \mathcal{E}$, and $||axb||_{\mathcal{E}} \leq ||a|| ||x||_{\mathcal{E}} ||b||$.

 \mathcal{E} is called strongly symmetric if, for any $x, y \in \mathcal{E}$, with $y \prec x$, we have $||y||_{\mathcal{E}} \leq ||x||_{\mathcal{E}}$. Here, \prec refers to the Hardy-Littlewood domination: $y \prec x$ iff, for any $\alpha > 0$, $\int_0^{\alpha} \mu_y(t) dt \leq \int_0^{\alpha} \mu_x(t) dt$.

 ${\mathcal E}$ is a normal and generating OBS

Suppose a von Neumann subalgebra $\mathcal{A} \subseteq B(H)$ is equipped with a normal faithful semi-finite trace τ . $\tilde{\mathcal{A}}$ is the set of closed densely defined operators, affiliated with \mathcal{A} . Define the generalized singular value function: for $x \in \tilde{\mathcal{A}}$ and $t \ge 0$, $\mu_x(t) = \inf\{||xe|| : e = e^* = e^2 \in \mathcal{A}, \tau(1-e) \le t\}.$

Suppose \mathcal{E} is a linear subspace of $\tilde{\mathcal{A}}$ with a complete norm $\|\cdot\|_{\mathcal{E}}$. We say that \mathcal{E} is a non-commutative function space if:

•
$$L_1(\tau) \cap \mathcal{A} \subset \mathcal{E} \subset L_1(\tau) + \mathcal{A}$$
.

• For any $x \in \mathcal{E}$ and $a, b \in \mathcal{A}$, we have $axb \in \mathcal{E}$, and $||axb||_{\mathcal{E}} \leq ||a|| ||x||_{\mathcal{E}} ||b||$.

 \mathcal{E} is called strongly symmetric if, for any $x, y \in \mathcal{E}$, with $y \prec x$, we have $||y||_{\mathcal{E}} \leq ||x||_{\mathcal{E}}$. Here, \prec refers to the Hardy-Littlewood domination: $y \prec x$ iff, for any $\alpha > 0$, $\int_0^{\alpha} \mu_y(t) dt \leq \int_0^{\alpha} \mu_x(t) dt$. \mathcal{E} is a normal and generating OBS.

A non-commutative function space \mathcal{E} is a KB space if any increasing norm bounded sequence in \mathcal{E} is norm-convergent. TFAE:

- \mathcal{E} is a KB space.
- ② ${\mathcal E}$ is weakly sequentially complete.
- (a) \mathcal{E} contains no copy of c_0 .

Proposition

Suppose \mathcal{E} is a strongly symmetric KB non-commutative function space, X a generating OBS, and $0 \leq T \leq S : X \rightarrow \mathcal{E}$, with S weakly compact. Then T is weakly compact as well.

/□ ▶ < 글 ▶ < 글

A non-commutative function space \mathcal{E} is a KB space if any increasing norm bounded sequence in \mathcal{E} is norm-convergent. TFAE:

- $\textcircled{O} \mathcal{E} \text{ is a KB space.}$
- **2** \mathcal{E} is weakly sequentially complete.
- **3** \mathcal{E} contains no copy of c_0 .

Proposition

Suppose \mathcal{E} is a strongly symmetric KB non-commutative function space, X a generating OBS, and $0 \leq T \leq S : X \rightarrow \mathcal{E}$, with S weakly compact. Then T is weakly compact as well.

伺 ト イ ヨ ト イ ヨ

A non-commutative function space \mathcal{E} is a KB space if any increasing norm bounded sequence in \mathcal{E} is norm-convergent. TFAE:

- $\textcircled{O} \mathcal{E} \text{ is a KB space.}$
- **2** \mathcal{E} is weakly sequentially complete.
- **3** \mathcal{E} contains no copy of c_0 .

Proposition

Suppose \mathcal{E} is a strongly symmetric KB non-commutative function space, X a generating OBS, and $0 \leq T \leq S : X \rightarrow \mathcal{E}$, with S weakly compact. Then T is weakly compact as well.

4 B 6 4 B

Suppose τ is the canonical trace on B(H), and $x \in B(H)$ has singular values $s_1(x) \ge s_2(x) \ge \ldots$ Then $\mu_x(t) = s_n(x)$ if $n-1 \le t < n$.

A symmetric sequence space \mathcal{E} gives rise to a Schatten space $\mathcal{S}_{\mathcal{E}}(H) = \{T \in K(H) : (s_i(T)) \in \mathcal{E}\}, \text{ with } \|T\|_{\mathcal{E}} = \|(s_i(T))_{i \in \mathbb{N}}\|_{\mathcal{E}}.$ Convention: $\mathcal{S}_{\mathcal{P}} = \mathcal{S}_{\ell_{\mathcal{P}}}.$

For a symmetric sequence space \mathcal{E} , TFAE:

- \mathcal{E} is order continuous.
- \mathcal{E} is separable.
- $S_{\mathcal{E}}(H)$ is order continuous, for any H.

Suppose τ is the canonical trace on B(H), and $x \in B(H)$ has singular values $s_1(x) \ge s_2(x) \ge \ldots$. Then $\mu_x(t) = s_n(x)$ if $n-1 \le t < n$.

A symmetric sequence space \mathcal{E} gives rise to a Schatten space $\mathcal{S}_{\mathcal{E}}(H) = \{T \in \mathcal{K}(H) : (s_i(T)) \in \mathcal{E}\}, \text{ with } \|T\|_{\mathcal{E}} = \|(s_i(T))_{i \in \mathbb{N}}\|_{\mathcal{E}}.$ Convention: $\mathcal{S}_p = \mathcal{S}_{\ell_p}.$

For a symmetric sequence space \mathcal{E} , TFAE:

- \mathcal{E} is order continuous.
- \mathcal{E} is separable.
- $S_{\mathcal{E}}(H)$ is order continuous, for any H.

/□ ▶ < 글 ▶ < 글

Suppose τ is the canonical trace on B(H), and $x \in B(H)$ has singular values $s_1(x) \ge s_2(x) \ge \ldots$. Then $\mu_x(t) = s_n(x)$ if $n-1 \le t < n$.

A symmetric sequence space \mathcal{E} gives rise to a Schatten space $\mathcal{S}_{\mathcal{E}}(H) = \{T \in \mathcal{K}(H) : (s_i(T)) \in \mathcal{E}\}, \text{ with } \|T\|_{\mathcal{E}} = \|(s_i(T))_{i \in \mathbb{N}}\|_{\mathcal{E}}.$ Convention: $\mathcal{S}_p = \mathcal{S}_{\ell_p}.$

For a symmetric sequence space \mathcal{E} , TFAE:

- \mathcal{E} is order continuous.
- \mathcal{E} is separable.
- $S_{\mathcal{E}}(H)$ is order continuous, for any H.

伺 ト イ ヨ ト イ ヨ ト

Suppose τ is the canonical trace on B(H), and $x \in B(H)$ has singular values $s_1(x) \ge s_2(x) \ge \ldots$. Then $\mu_x(t) = s_n(x)$ if $n-1 \le t < n$.

A symmetric sequence space \mathcal{E} gives rise to a Schatten space $\mathcal{S}_{\mathcal{E}}(H) = \{T \in \mathcal{K}(H) : (s_i(T)) \in \mathcal{E}\}, \text{ with } \|T\|_{\mathcal{E}} = \|(s_i(T))_{i \in \mathbb{N}}\|_{\mathcal{E}}.$ Convention: $\mathcal{S}_p = \mathcal{S}_{\ell_p}.$

For a symmetric sequence space \mathcal{E} , TFAE:

- \mathcal{E} is order continuous.
- \mathcal{E} is separable.
- $S_{\mathcal{E}}(H)$ is order continuous, for any H.

Theorem

Suppose \mathcal{E} is a separable symmetric sequence space, and H is an inf. dim. Hilbert space. (1) If \mathcal{E} does not contain ℓ_1 , F is a normal OBS, $0 \leq T \leq S : S_{\mathcal{E}}(H) \rightarrow F$, and S is compact, then T is compact. (2) Conversely, suppose \mathcal{E} contains ℓ_1 , and a Banach lattice F is either not atomic, or not order continuous. Then \exists $0 \leq T \leq S : S_{\mathcal{E}}(\ell_2) \rightarrow F$ so that S is compact, but T is not.

heorem

Suppose \mathcal{E} is a separable symmetric sequence space, containing ℓ_1 , F is a Banach lattice, and H is an inf. dim. Hilbert space. TFAE: (1) F is order continuous.

(2) If $0 \leq I \leq S : S_{\mathcal{E}}(H) \to F$, and S is weakly compact, then is weakly compact as well.

Theorem

Suppose \mathcal{E} is a separable symmetric sequence space, containing ℓ_1 , F is a Banach lattice, and H is an inf. dim. Hilbert space. TFAE: (1) F is order continuous. (2) If $0 \leq T \leq S : S_{\mathcal{E}}(H) \rightarrow F$, and S is weakly compact, then T is weakly compact as well. An operator $T \in B(E, F)$ is Dunford-Pettis if $\lim_{n \to \infty} ||Tx_n|| = 0$ whenever $x_n \xrightarrow[weakly]{} 0$. Equivalently, the image of any weakly compact set is compact.

heorem

Suppose $0 \leq \mathbf{S}_{\phi} \leq \mathbf{S}_{\psi}$ are Schur multipliers from S_1 to $S_{\mathcal{E}}$ (\mathcal{E} is a symmetric sequence space). If \mathbf{S}_{ψ} is Dunford-Pettis, then the same is true for \mathbf{S}_{ϕ} .

There exist examples of Banach lattices E, F, and $0 \leq T \leq S : E \rightarrow F$, so that S is Dunford-Pettis, but T is not.

An operator $T \in B(E, F)$ is Dunford-Pettis if $\lim_{n \to \infty} ||Tx_n|| = 0$ whenever $x_n \xrightarrow[weakly]{} 0$. Equivalently, the image of any weakly compact set is compact.

Theorem

Suppose $0 \leq S_{\phi} \leq S_{\psi}$ are Schur multipliers from S_1 to $S_{\mathcal{E}}$ (\mathcal{E} is a symmetric sequence space). If S_{ψ} is Dunford-Pettis, then the same is true for S_{ϕ} .

There exist examples of Banach lattices E, F, and $0 \leq T \leq S : E \rightarrow F$, so that S is Dunford-Pettis, but T is not.

An operator $T \in B(E, F)$ is Dunford-Pettis if $\lim_{n \to \infty} ||Tx_n|| = 0$ whenever $x_n \xrightarrow[weakly]{} 0$. Equivalently, the image of any weakly compact set is compact.

Theorem

Suppose $0 \leq S_{\phi} \leq S_{\psi}$ are Schur multipliers from S_1 to $S_{\mathcal{E}}$ (\mathcal{E} is a symmetric sequence space). If S_{ψ} is Dunford-Pettis, then the same is true for S_{ϕ} .

There exist examples of Banach lattices E, F, and $0 \leq T \leq S : E \rightarrow F$, so that S is Dunford-Pettis, but T is not.