On weak compactness in Lebesgue-Bochner spaces

José Rodríguez

Universidad de Murcia

Operators and Banach lattices Madrid – October 25th, 2012

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ● ●

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Thanks to the Davis-Figiel-Johnson-Pełczyński theorem...

X is SWCG \iff X is strongly generated by a reflexive Banach space Y,

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Thanks to the Davis-Figiel-Johnson-Pełczyński theorem...

X is **SWCG** \iff *X* is **strongly generated** by a **reflexive** Banach space *Y*, i.e. there is an operator $T : Y \to X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nT(B_Y) + \varepsilon B_X$.

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Thanks to the Davis-Figiel-Johnson-Pełczyński theorem...

X is **SWCG** \iff X is **strongly generated** by a **reflexive** Banach space Y, i.e. there is an operator $T: Y \to X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nT(B_Y) + \varepsilon B_X$.

Known facts (Schlüchtermann-Wheeler)

 $\textbf{0} \ \text{reflexive} \Longrightarrow \mathsf{SWCG} \Longrightarrow \mathsf{weakly sequentially complete}$

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Thanks to the Davis-Figiel-Johnson-Pełczyński theorem...

X is **SWCG** \iff *X* is **strongly generated** by a **reflexive** Banach space *Y*, i.e. there is an operator $T : Y \to X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nT(B_Y) + \varepsilon B_X$.

Known facts (Schlüchtermann-Wheeler)

- $\textbf{0} \quad \text{reflexive} \Longrightarrow \mathsf{SWCG} \Longrightarrow \text{weakly sequentially complete}$
- 2 weakly sequentially complete + separable \Rightarrow SWCG

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Thanks to the Davis-Figiel-Johnson-Pełczyński theorem...

X is **SWCG** \iff *X* is **strongly generated** by a **reflexive** Banach space *Y*, i.e. there is an operator $T : Y \to X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nT(B_Y) + \varepsilon B_X$.

Known facts (Schlüchtermann-Wheeler)

- $\textbf{0} \ \text{reflexive} \Longrightarrow \mathsf{SWCG} \Longrightarrow \mathsf{weakly sequentially complete}$
- 2 weakly sequentially complete + separable \Rightarrow SWCG

Let X be a Banach space and $B_X = \{x \in X : ||x|| \le 1\}$.

Definition (Schlüchtermann-Wheeler 1988)

X is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $G \subset X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_X$.

Thanks to the Davis-Figiel-Johnson-Pełczyński theorem...

X is **SWCG** \iff *X* is **strongly generated** by a **reflexive** Banach space *Y*, i.e. there is an operator $T : Y \to X$ such that: for every weakly compact set $K \subset X$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nT(B_Y) + \varepsilon B_X$.

Known facts (Schlüchtermann-Wheeler)

- $\textbf{0} \quad \text{reflexive} \Longrightarrow \mathsf{SWCG} \Longrightarrow \text{weakly sequentially complete}$
- 2 weakly sequentially complete + separable \Rightarrow SWCG
- $L^1(\mu)$ is SWCG for any probability measure μ .

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 🕑

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 💽

1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 💽

- 1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.
- 2 Fix a weakly compact set $K \subset L^1(\mu)$ and $\varepsilon > 0$.

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 🕑

- 1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.
- 2 Fix a weakly compact set $K \subset L^1(\mu)$ and $\varepsilon > 0$.
- **③** Since *K* is equi-integrable, there is $\delta > 0$ such that

$$\mu(A) \leq \delta \implies \int_A |f| \, d\mu \leq \varepsilon \text{ for every } f \in K.$$

イロト (部) (日) (日) (日) (日)

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 🕑

- 1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.
- 2 Fix a weakly compact set $K \subset L^1(\mu)$ and $\varepsilon > 0$.
- **③** Since *K* is equi-integrable, there is $\delta > 0$ such that

$$\mu(A) \leq \delta \implies \int_A |f| \, d\mu \leq \varepsilon \text{ for every } f \in K.$$

9 Pick $n \in \mathbb{N}$ such that $\frac{\|f\|_1}{n} \leq \delta$ for every $f \in K$.

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 🕑

- 1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.
- 2 Fix a weakly compact set $K \subset L^1(\mu)$ and $\varepsilon > 0$.
- **(3)** Since *K* is equi-integrable, there is $\delta > 0$ such that

$$\mu(A) \leq \delta \implies \int_A |f| \, d\mu \leq \varepsilon \text{ for every } f \in K.$$

• Pick $n \in \mathbb{N}$ such that $\frac{\|f\|_1}{n} \leq \delta$ for every $f \in K$.

6 For every $f \in K$ we can write $f = f \mathbb{1}_{\{|f| \le n\}} + f \mathbb{1}_{\{|f| > n\}}$,

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 🕨

- 1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.
- 2 Fix a weakly compact set $K \subset L^1(\mu)$ and $\varepsilon > 0$.
- **(3)** Since *K* is equi-integrable, there is $\delta > 0$ such that

$$\mu(A) \leq \delta \implies \int_A |f| \, d\mu \leq \varepsilon \text{ for every } f \in K$$

Pick n∈ N such that ||f||₁/n ≤ δ for every f ∈ K.
 For every f ∈ K we can write f = f1_{|f|≤n} + f1_{|f|>n}, where f1_{{|f|≤n}} ∈ nT(B_{L²(μ)}) and f1_{{|f|>n} ∈ εB_{L¹(μ)}.

・ロト ・ 日 ・ モー・ ・ モー・ うへで

We shall check that:

 $L^{1}(\mu)$ is strongly generated by $L^{2}(\mu)$.

Proof: 🕑

- 1 Let $T: L^2(\mu) \to L^1(\mu)$ be the identity operator.
- 2 Fix a weakly compact set $K \subset L^1(\mu)$ and $\varepsilon > 0$.
- Since K is equi-integrable, there is $\delta > 0$ such that

$$\mu(A) \leq \delta \implies \int_A |f| d\mu \leq \varepsilon$$
 for every $f \in K$.

Operation of the second secon

• Hence $K \subset nT(B_{L^2(\mu)}) + \varepsilon B_{L^1(\mu)}$.

Let X be a Banach space, (Ω, Σ, μ) a probability space and $L^1(\mu, X)$ the Banach space of all (classes of) Bochner integrable functions $f : \Omega \to X$.

Let X be a Banach space, (Ω, Σ, μ) a probability space and $L^1(\mu, X)$ the Banach space of all (classes of) Bochner integrable functions $f : \Omega \to X$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Known facts

 $\ \, {\bf L}^\infty(\mu,X^*)\subset L^1(\mu,X)^* \ {\rm in \ the \ natural \ way.}$

Let X be a Banach space, (Ω, Σ, μ) a probability space and $L^1(\mu, X)$ the Banach space of all (classes of) Bochner integrable functions $f : \Omega \to X$.

Known facts

L[∞](µ, X*) ⊂ L¹(µ, X)* in the natural way.
 L[∞](µ, X*) = L¹(µ, X)* ⇐⇒ X* has the Radon-Nikodým property wrt µ.

Let X be a Banach space, (Ω, Σ, μ) a probability space and $L^1(\mu, X)$ the Banach space of all (classes of) Bochner integrable functions $f : \Omega \to X$.

Known facts

 L[∞](μ, X*) ⊂ L¹(μ, X)* in the natural way. L[∞](μ, X*) = L¹(μ, X)* ⇐⇒ X* has the Radon-Nikodým property wrt μ.
 In L¹(μ, X) we have: relatively weakly compact ⇒ equi-integrable and bounded.

Let X be a Banach space, (Ω, Σ, μ) a probability space and $L^1(\mu, X)$ the Banach space of all (classes of) Bochner integrable functions $f : \Omega \to X$.

Known facts

 L[∞](μ, X*) ⊂ L¹(μ, X)* in the natural way. L[∞](μ, X*) = L¹(μ, X)* ⇔ X* has the Radon-Nikodým property wrt μ.
 In L¹(μ, X) we have: relatively weakly compact ⇒ equi-integrable and bounded. The converse implication holds if and only if X is reflexive.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Let X be a Banach space, (Ω, Σ, μ) a probability space and $L^1(\mu, X)$ the Banach space of all (classes of) Bochner integrable functions $f : \Omega \to X$.

Known facts

 L[∞](µ, X*) ⊂ L¹(µ, X)* in the natural way. L[∞](µ, X*) = L¹(µ, X)* ⇐⇒ X* has the Radon-Nikodým property wrt µ.
 In L¹(µ, X) we have: relatively weakly compact ⇒ equi-integrable and bounded.

The converse implication holds if and only if X is reflexive.

Theorem (Diestel-Ruess-Schachermayer 1993)

A set $C \subset L^1(\mu, X)$ is relatively weakly compact if and only if

- C is equi-integrable and bounded;
- ③ for every sequence $(f_n) \subset C$ there exist $g_n \in co\{f_k : k \ge n\}$ such that $(g_n(\omega))$ is weakly (resp. norm) convergent in X for µ-a.e. $\omega \in \Omega$.

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

• $X = L^{1}(v)$ for any probability v.

イロト (部) (日) (日) (日) (日)

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

• $X = L^{1}(v)$ for any probability v.

Remarks

• $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

•
$$X = L^{1}(v)$$
 for any probability v.

• X is reflexive.

Remarks

• $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

•
$$X = L^{1}(v)$$
 for any probability v.

• X is reflexive.

Remarks

- $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.
- **2** X is WCG $\implies L^1(\mu, X)$ is WCG. (Diestel 1975) PROOF:

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

•
$$X = L^{1}(v)$$
 for any probability v.

• X is reflexive.

Remarks

- $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.
- 2 X is WCG $\implies L^1(\mu, X)$ is WCG. (Diestel 1975)

Proof:

X is WCG \implies there exist a **reflexive** Banach space Y and an operator $T: Y \rightarrow X$ with dense range (DFJP theorem).

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

•
$$X = L^{1}(v)$$
 for any probability v.

イロト (部) (日) (日) (日) (日)

• X is reflexive.

Remarks

- **1** $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.
- **2** X is WCG $\implies L^1(\mu, X)$ is WCG. (Diestel 1975)

Proof:

X is WCG \implies there exist a **reflexive** Banach space Y and an operator $T: Y \rightarrow X$ with dense range (DFJP theorem). Then

$$\tilde{T}: L^2(\mu, Y) \to L^1(\mu, X)$$
 $\tilde{T}(f) = T \circ f$

is an operator with dense range,

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

•
$$X = L^{1}(v)$$
 for any probability v.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

• X is reflexive.

Remarks

- **1** $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.
- 2 X is WCG $\implies L^1(\mu, X)$ is WCG. (Diestel 1975)

Proof:

X is WCG \implies there exist a **reflexive** Banach space Y and an operator $T: Y \rightarrow X$ with dense range (DFJP theorem). Then

 $\tilde{T}: L^2(\mu, Y) \to L^1(\mu, X)$ $\tilde{T}(f) = T \circ f$

is an operator with dense range, and $L^{2}(\mu, Y)$ is reflexive because Y is.

QUESTION (Schlüchtermann-Wheeler)

X is SWCG $\stackrel{??}{\Longrightarrow} L^1(\mu, X)$ is SWCG

Affirmative answer in the cases:

•
$$X = L^{1}(v)$$
 for any probability v.

• X is reflexive.

Remarks

- $L^1(\mu, X)$ is strongly generated by $L^2(\mu, X)$.
- **2** X is WCG $\implies L^1(\mu, X)$ is WCG. (Diestel 1975)

Proof:

X is WCG \implies there exist a **reflexive** Banach space Y and an operator $T: Y \rightarrow X$ with dense range (DFJP theorem). Then

 $\tilde{T}: L^2(\mu, Y) \to L^1(\mu, X)$ $\tilde{T}(f) = T \circ f$

is an operator with dense range, and $L^2(\mu, Y)$ is reflexive because Y is.

Theorem (Talagrand 1984)

 $L^{1}(\mu, X)$ is weakly sequentially complete if X is.

If X is SWCG, then there is a weakly compact set $G \subset L^1(\mu, X)$ such that:

for every decomposable weakly compact set $K \subset L^1(\mu, X)$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_{L^1(\mu, X)}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

If X is SWCG, then there is a weakly compact set $G \subset L^1(\mu, X)$ such that:

for every decomposable weakly compact set $K \subset L^1(\mu, X)$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_{L^1(\mu, X)}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Decomposable means: $f \mathbb{1}_A + g \mathbb{1}_{\Omega \setminus A} \in K$ for every $f, g \in K$ and $A \in \Sigma$.

If X is SWCG, then there is a weakly compact set $G \subset L^1(\mu, X)$ such that:

for every decomposable weakly compact set $K \subset L^1(\mu, X)$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_{L^1(\mu, X)}$.

Decomposable means: $f \mathbb{1}_A + g \mathbb{1}_{\Omega \setminus A} \in K$ for every $f, g \in K$ and $A \in \Sigma$.

A typical decomposable set

$$L(W) = \left\{ f \in L^1(\mu, X) : f(\omega) \in W ext{ for } \mu ext{-a.e. } \omega \in \Omega
ight\}, ext{ where } W \subset X.$$

If X is SWCG, then there is a weakly compact set $G \subset L^1(\mu, X)$ such that:

for every decomposable weakly compact set $K \subset L^1(\mu, X)$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_{L^1(\mu, X)}$.

Decomposable means: $f \mathbb{1}_A + g \mathbb{1}_{\Omega \setminus A} \in K$ for every $f, g \in K$ and $A \in \Sigma$.

A typical decomposable set

$$L(W) = \left\{ f \in L^1(\mu, X) : f(\omega) \in W ext{ for } \mu ext{-a.e. } \omega \in \Omega
ight\}, ext{ where } W \subset X.$$

(Diestel 1977)

() W is relatively weakly compact $\implies L(W)$ is relatively weakly compact.

If X is SWCG, then there is a weakly compact set $G \subset L^1(\mu, X)$ such that:

for every decomposable weakly compact set $K \subset L^1(\mu, X)$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_{L^1(\mu, X)}$.

Decomposable means: $f \mathbb{1}_A + g \mathbb{1}_{\Omega \setminus A} \in K$ for every $f, g \in K$ and $A \in \Sigma$.

A typical decomposable set

$$L(W) = \left\{ f \in L^1(\mu, X) : f(\omega) \in W ext{ for } \mu ext{-a.e. } \omega \in \Omega
ight\}, ext{ where } W \subset X.$$

(Diestel 1977)

- **1** W is relatively weakly compact $\implies L(W)$ is relatively weakly compact.
- 2 W weakly compact and convex $\implies L(W)$ is weakly compact and convex.

If X is SWCG, then there is a weakly compact set $G \subset L^1(\mu, X)$ such that:

for every decomposable weakly compact set $K \subset L^1(\mu, X)$ and $\varepsilon > 0$ there is $n \in \mathbb{N}$ such that $K \subset nG + \varepsilon B_{L^1(\mu, X)}$.

Decomposable means: $f \mathbb{1}_A + g \mathbb{1}_{\Omega \setminus A} \in K$ for every $f, g \in K$ and $A \in \Sigma$.

A typical decomposable set

$$L(W) = \left\{ f \in L^1(\mu, X) : f(\omega) \in W ext{ for } \mu ext{-a.e. } \omega \in \Omega
ight\}, ext{ where } W \subset X.$$

(Diestel 1977)

- **(**) W is relatively weakly compact $\implies L(W)$ is relatively weakly compact.
- **2** W weakly compact and convex $\implies L(W)$ is weakly compact and convex.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Decomposable sets arise as collections of selectors of set-valued functions.

Let $cl(X) = \{C \subset X : C \text{ is closed and nonempty}\}.$

Let $c/(X) = \{C \subset X : C \text{ is closed and nonempty}\}.$

For any set-valued function $F:\Omega\to 2^X$ the set

$$S_{F}^{1} = \left\{ f \in L^{1}(\mu, X) : f(\omega) \in F(\omega) \text{ for } \mu\text{-a.e. } \omega \in \Omega \right\}$$

is decomposable.

Let $cl(X) = \{ C \subset X : C \text{ is closed and nonempty} \}.$

For any set-valued function $F: \Omega \to 2^X$ the set

$$S_F^1 = \left\{ f \in L^1(\mu, X) : f(\omega) \in F(\omega) \text{ for } \mu\text{-a.e. } \omega \in \Omega
ight\}$$

is decomposable. CONVERSELY...

Theorem (Hiai-Umegaki 1977) – assuming that X is separable

Let $D \subset L^1(\mu, X)$ be a **decomposable** closed nonempty set. Then there is a measurable $F : \Omega \to cl(X)$ such that

$$D = S_F^1$$

イロト (部) (日) (日) (日) (日)

Let $cl(X) = \{C \subset X : C \text{ is closed and nonempty}\}.$

For any set-valued function $F: \Omega \to 2^X$ the set

$$S_F^1 = \left\{ f \in L^1(\mu, X) : f(\omega) \in F(\omega) \text{ for } \mu\text{-a.e. } \omega \in \Omega
ight\}$$

is decomposable. CONVERSELY...

Theorem (Hiai-Umegaki 1977) – assuming that X is separable

Let $D \subset L^1(\mu, X)$ be a **decomposable** closed nonempty set. Then there is a measurable $F : \Omega \to cl(X)$ such that

$$D = S_F^1$$

Measurable means: $\{\omega \in \Omega : F(\omega) \cap U \neq \emptyset\} \in \Sigma$ for every open set $U \subset X$.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 • のへで

Let $cl(X) = \{ C \subset X : C \text{ is closed and nonempty} \}.$

For any set-valued function $F: \Omega \to 2^X$ the set

$$S_F^1 = \left\{ f \in L^1(\mu, X) : f(\omega) \in F(\omega) \text{ for } \mu\text{-a.e. } \omega \in \Omega \right\}$$

is decomposable. CONVERSELY...

Theorem (Hiai-Umegaki 1977) – assuming that X is separable

Let $D \subset L^1(\mu, X)$ be a **decomposable** closed nonempty set. Then there is a measurable $F : \Omega \to cl(X)$ such that

$$D = S_F^1$$

Measurable means: $\{\omega \in \Omega : F(\omega) \cap U \neq \emptyset\} \in \Sigma$ for every open set $U \subset X$.

Theorem (Klei 1988) – assuming that X is separable

Let $F: \Omega \to cl(X)$ be measurable. If S_F^1 is relatively weakly compact, then

 $F(\omega)$ is relatively weakly compact for μ -a.e. $\omega \in \Omega$.