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Theorem (Diestel-Ruess-Schachermayer 1993)

A set C C L1(u,X) is relatively weakly compact if and only if
@ C is equi-integrable and bounded;

@ for every sequence (f,) C C there exist g, € co{fy : k > n} such that
(gn(®)) is weakly (resp. norm) convergent in X for y-a.e. @ € Q.

A\
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» Decomposable sets arise as collections of selectors of set-valued functions.
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Let D C L'(u,X) be a decomposable closed nonempty set. Then there is a
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Measurable means: {® € Q: F(w)NU # 0} € X for every open set U C X.

Theorem (Klei 1988) — assuming that X is separable

Let F: Q — cl/(X) be measurable. If S}: is relatively weakly compact, then

F () is relatively weakly compact for p-a.e. @ € Q.




