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Strong generation by weakly compact sets

Let X be a Banach space and BX = {x ∈ X : ‖x‖ ≤ 1}.

Definition (Schlüchtermann-Wheeler 1988)

X is called strongly weakly compactly generated (SWCG) if there is a
weakly compact set G ⊂ X such that: for every weakly compact set K ⊂ X and
ε > 0 there is n ∈ N such that K ⊂ nG + εBX .

Thanks to the Davis-Figiel-Johnson-Pe lczyński theorem. . .

X is SWCG ⇐⇒ X is strongly generated by a reflexive Banach space Y ,
i.e. there is an operator T : Y → X such that: for every weakly compact set
K ⊂ X and ε > 0 there is n ∈ N such that K ⊂ nT (BY ) + εBX .

Known facts (Schlüchtermann-Wheeler)

1 reflexive =⇒ SWCG =⇒ weakly sequentially complete

2 weakly sequentially complete + separable 6=⇒ SWCG

3 Schur + separable =⇒ SWCG

4 L1(µ) is SWCG for any probability measure µ.
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X is SWCG ⇐⇒ X is strongly generated by a reflexive Banach space Y ,
i.e. there is an operator T : Y → X such that: for every weakly compact set
K ⊂ X and ε > 0 there is n ∈ N such that K ⊂ nT (BY ) + εBX .

Known facts (Schlüchtermann-Wheeler)
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Definition (Schlüchtermann-Wheeler 1988)

X is called strongly weakly compactly generated (SWCG) if there is a
weakly compact set G ⊂ X such that: for every weakly compact set K ⊂ X and
ε > 0 there is n ∈ N such that K ⊂ nG + εBX .

Thanks to the Davis-Figiel-Johnson-Pe lczyński theorem. . .
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L1(µ) is SWCG for any probability measure µ

We shall check that:

L1(µ) is strongly generated by L2(µ).

Proof:

1 Let T : L2(µ)→ L1(µ) be the identity operator.

2 Fix a weakly compact set K ⊂ L1(µ) and ε > 0.

3 Since K is equi-integrable, there is δ > 0 such that

µ(A)≤ δ =⇒
∫
A
|f |dµ ≤ ε for every f ∈ K .

4 Pick n ∈ N such that
‖f ‖1

n
≤ δ for every f ∈ K .

5 For every f ∈ K we can write f = f 1{|f |≤n}+ f 1{|f |>n},

where

f 1{|f |≤n} ∈ nT (BL2(µ)) and f 1{|f |>n} ∈ εBL1(µ).

6 Hence K ⊂ nT (BL2(µ)) + εBL1(µ).
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Weak compactness in L1(µ,X )

Let X be a Banach space, (Ω,Σ,µ) a probability space and L1(µ,X ) the
Banach space of all (classes of) Bochner integrable functions f : Ω→ X .

Known facts

1 L∞(µ,X ∗)⊂ L1(µ,X )∗ in the natural way.

L∞(µ,X ∗) = L1(µ,X )∗ ⇐⇒ X ∗ has the Radon-Nikodým property wrt µ.

2 In L1(µ,X ) we have:

relatively weakly compact =⇒ equi-integrable and bounded.

The converse implication holds if and only if X is reflexive.

Theorem (Diestel-Ruess-Schachermayer 1993)

A set C ⊂ L1(µ,X ) is relatively weakly compact if and only if

1 C is equi-integrable and bounded;

2 for every sequence (fn)⊂ C there exist gn ∈ co{fk : k ≥ n} such that
(gn(ω)) is weakly (resp. norm) convergent in X for µ-a.e. ω ∈Ω.
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Strong generation by weakly compact sets in L1(µ,X )

QUESTION (Schlüchtermann-Wheeler)

X is SWCG
??

=⇒ L1(µ,X ) is SWCG

Affirmative answer in the cases:

X = L1(ν) for any probability ν.

X is reflexive.

Remarks

1 L1(µ,X ) is strongly generated by L2(µ,X ).

2 X is WCG =⇒ L1(µ,X ) is WCG. (Diestel 1975)

Proof:

X is WCG =⇒ there exist a reflexive Banach space Y and an operator
T : Y → X with dense range (DFJP theorem). Then

T̃ : L2(µ,Y )→ L1(µ,X ) T̃ (f ) = T ◦ f

is an operator with dense range, and L2(µ,Y ) is reflexive because Y is.

Theorem (Talagrand 1984)

L1(µ,X ) is weakly sequentially complete if X is.
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QUESTION (Schlüchtermann-Wheeler)

X is SWCG
??

=⇒ L1(µ,X ) is SWCG

Affirmative answer in the cases:

X = L1(ν) for any probability ν.

X is reflexive.

Remarks

1 L1(µ,X ) is strongly generated by L2(µ,X ).

2 X is WCG =⇒ L1(µ,X ) is WCG. (Diestel 1975)

Proof:

X is WCG =⇒ there exist a reflexive Banach space Y and an operator
T : Y → X with dense range (DFJP theorem). Then

T̃ : L2(µ,Y )→ L1(µ,X ) T̃ (f ) = T ◦ f

is an operator with dense range, and L2(µ,Y ) is reflexive because Y is.

Theorem (Talagrand 1984)

L1(µ,X ) is weakly sequentially complete if X is.



Strong generation by weakly compact sets in L1(µ,X )
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L1(µ,X ) is weakly sequentially complete if X is.
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A partial answer

Theorem (Lajara-R. 2012)

If X is SWCG, then there is a weakly compact set G ⊂ L1(µ,X ) such that:

for every decomposable weakly compact set K ⊂ L1(µ,X ) and ε > 0
there is n ∈ N such that K ⊂ nG + εBL1(µ,X ).

Decomposable means: f 1A +g1Ω\A ∈ K for every f ,g ∈ K and A ∈Σ.

A typical decomposable set

L(W ) =
{
f ∈ L1(µ,X ) : f (ω) ∈W for µ-a.e. ω ∈Ω

}
, where W ⊂ X .

(Diestel 1977)

1 W is relatively weakly compact =⇒ L(W ) is relatively weakly compact.

2 W weakly compact and convex =⇒ L(W ) is weakly compact and convex.

I Decomposable sets arise as collections of selectors of set-valued functions.
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Decomposability and set-valued functions

Let cl(X ) = {C ⊂ X : C is closed and nonempty}.

For any set-valued function F : Ω→ 2X the set

S1
F =

{
f ∈ L1(µ,X ) : f (ω) ∈ F (ω) for µ-a.e. ω ∈Ω

}
is decomposable. Conversely. . .

Theorem (Hiai-Umegaki 1977) – assuming that X is separable

Let D ⊂ L1(µ,X ) be a decomposable closed nonempty set. Then there is a
measurable F : Ω→ cl(X ) such that

D = S1
F

Measurable means: {ω ∈Ω : F (ω)∩U 6= /0} ∈Σ for every open set U ⊂ X .

Theorem (Klei 1988) – assuming that X is separable

Let F : Ω→ cl(X ) be measurable. If S1
F is relatively weakly compact, then

F (ω) is relatively weakly compact for µ-a.e. ω ∈Ω.
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