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Definitions

An bounded operator T : X → Y between two Banach spaces
is Strictly Singular (SS) if for every infinite dimensional
subspace E of X , the restriction of T to E does not realize an
isomorphism from E onto T (E).

Equivalently,T is (SS) if and only if: for every ε > 0, for every
infinite dimensional subspace E of X , there exists x in the unit
sphere of E such that ‖T (x)‖ ≤ ε.

This version can be quantified/localized requiring a little more:
The operator T is called Finitely Strictly Singular (FSS) if: for
every ε > 0, there exists Nε ≥ 1 such that, for every subspace
E of X with dimension greater than Nε, there exists x in the unit
sphere of E such that ‖T (x)‖ ≤ ε.
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Definitions

Given a bounded operator T : X → Y between two Banach
spaces, the sequence of Bernstein numbers of T is defined by

bn(T ) = sup
E⊂X ,dim(E)=n

inf{
∥∥T (x)

∥∥ : x ∈ E , ‖x‖ = 1} .

T is (FSS) if and only if limn→∞ bn(T ) = 0.

Observe that the Bernstein numbers are dominated by the
approximation numbers

bn(T ) ≤ an(T ) = inf{‖T − R‖ : R : X → Y , rank(T ) < n} .
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Definitions

Finitely strictly singular operators are also called superstrictly
singular operators.

Theorem (Flores, Hernández, Raynaud)
An operator T is finitely strictly singular iff every ultrapower of T
is strictly singular iff every operator which is locally
representable in T is strictly singular.

Moreover

bn(T ) = bn(TU ), for every n and every ultrapower TU of T .
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FSS versus Compactness

We always have, for an operator T ,

Compact ⇒ FSS ⇒ SS

When X and Y are Hilbert spaces, these notions coincide. The
same is true if X = Y = `p (1 ≤ p < +∞) or X = Y = c0. But in
general

Ex. 1:
Take the inclusion map of `1 =

⊕
`1 `

1
n into the space

⊕
`2 `

1
n.

It is not FSS, but it is SS.

Ex. 2: (V. Milman ’70)
For 1 ≤ p < q ≤ ∞, the inclusion map `p ↪→ `q is FSS, but it is
not compact.
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More examples

Ex. 3:
For 1 < p < +∞, the inclusion map C[0,1] ↪→ Lp[0,1] is FSS,
but it is not compact. The same for L∞[0,1] ↪→ Lp[0,1].

Proposition (Mitiagin, Pełczyński ’68)

Every absolutely p-summing operator is FSS.

Proposition (Flores, Hernández, Raynaud)

If E [0,1] is a rearrangement invariant space and E 6= L∞; then
the inclusion map L∞[0,1] ↪→ E [0,1] is FSS.
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More examples

Ex. 4: (Plichko ’04)
The Fourier transform F : L1(T)→ c0(Z) sending

f 7→ (f̂ (m))m∈Z

is SS, but is not FSS.

Given n ∈ N consider n real numbers t1, t2, . . . , tn such that π,
t1, t2, . . . , tn are Q linearly independent. Then, by Kronecker’s
theorem the set {(eimt1 ,eimt2 , . . . ,eimtn ) : m ∈ Z} is dense in Tn

and, putting zj = eimtj , for all scalars αj , we have∥∥∥∑
j

αj δ̂zj

∥∥∥
`∞(Z)

= sup
m

∣∣∣∑
j

αjeimtj
∣∣∣ =

∑
j

|αj | =
∥∥∥∑

j

αjδzj

∥∥∥
M(T)

.

Changing δzj by FN ∗ δzj , where FN is the N ’th Fejér Kernel with
N large enough, we see that

bn(F) = 1, for every n.
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Some results of structure

Theorem (V. Milman ’70)

The set FSS(X ,Y ) of all finitely strictly singular operators from
X to Y is a closed linear subspace of L(X ,Y ) with the ideal
property. That is, S ◦ T ◦ R ∈ FSS(X1,Y1), whenever
R ∈ L(X1,X ), T ∈ FSS(X ,Y ), and S ∈ L(Y ,Y1).

This result can be obtained as a corollary to Hernández, Flores,
Raynaud characterization and the fact that strictly singular
operators form an operator ideal.

Directly it is easy to prove: FSS(X ,Y ) is stable by multiplication
by scalars, is closed in L(X ,Y ) and has the ideal property.

It is not so obvious:

T ,S ∈ FSS(X ,Y ) =⇒ T + S ∈ FSS(X ,Y )
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Some results of structure

Theorem (Plichko ’04)

Let T ∈ L(X ,Y ). Then T is FSS if and only if for every
sequence {En} of subspaces of X with dim(En)→∞, there
exist subspaces Fn ⊂ En such that:

‖T |Fn‖ → 0, and
dim(Fn)→∞.

Equivalent to the problem of the sum is the following fact:

T1 ∈ FSS(X1,Y1) , T2 ∈FSS(X2,Y2) =⇒
T1 ⊕ T2 ∈ FSS(X1 × X2,Y1 × Y2),

where

T1 ⊕ T2(x1, x2) = (Tx1,Tx2) , (x1, x2) ∈ X1 × X2.

Luis Rodrı́guez-Piazza Some Finitely Strictily Singular Operators in Analysis.



Some results of structure

Theorem (Plichko ’04)

Let T ∈ L(X ,Y ). Then T is FSS if and only if for every
sequence {En} of subspaces of X with dim(En)→∞, there
exist subspaces Fn ⊂ En such that:

‖T |Fn‖ → 0, and

dim(Fn)→∞.

Equivalent to the problem of the sum is the following fact:

T1 ∈ FSS(X1,Y1) , T2 ∈FSS(X2,Y2) =⇒
T1 ⊕ T2 ∈ FSS(X1 × X2,Y1 × Y2),

where

T1 ⊕ T2(x1, x2) = (Tx1,Tx2) , (x1, x2) ∈ X1 × X2.

Luis Rodrı́guez-Piazza Some Finitely Strictily Singular Operators in Analysis.



Some results of structure

Theorem (Plichko ’04)

Let T ∈ L(X ,Y ). Then T is FSS if and only if for every
sequence {En} of subspaces of X with dim(En)→∞, there
exist subspaces Fn ⊂ En such that:

‖T |Fn‖ → 0, and
dim(Fn)→∞.

Equivalent to the problem of the sum is the following fact:

T1 ∈ FSS(X1,Y1) , T2 ∈FSS(X2,Y2) =⇒
T1 ⊕ T2 ∈ FSS(X1 × X2,Y1 × Y2),

where

T1 ⊕ T2(x1, x2) = (Tx1,Tx2) , (x1, x2) ∈ X1 × X2.

Luis Rodrı́guez-Piazza Some Finitely Strictily Singular Operators in Analysis.



Some results of structure

Theorem (Plichko ’04)

Let T ∈ L(X ,Y ). Then T is FSS if and only if for every
sequence {En} of subspaces of X with dim(En)→∞, there
exist subspaces Fn ⊂ En such that:

‖T |Fn‖ → 0, and
dim(Fn)→∞.

Equivalent to the problem of the sum is the following fact:

T1 ∈ FSS(X1,Y1) , T2 ∈FSS(X2,Y2) =⇒
T1 ⊕ T2 ∈ FSS(X1 × X2,Y1 × Y2),

where

T1 ⊕ T2(x1, x2) = (Tx1,Tx2) , (x1, x2) ∈ X1 × X2.

Luis Rodrı́guez-Piazza Some Finitely Strictily Singular Operators in Analysis.



The diagonal Theorem

Suppose {Tn}n is a uniformly bounded sequence of operators
Tn : Xn → Yn. Let 1 ≤ p < q ≤ ∞. Then the diagonal operator

X =
⊕
`p

Xn, Y =
⊕
`q

Yn, T : X→ Y,

defined by T
(
(xn)n

)
= (Tnxn)n is bounded.

Is it T an FSS operator?

We say that a sequence {Tn}n of operators Tn : Xn → Yn is
uniformly finitely strictly singular if for every ε > 0, there exists
Nε such that for every n ∈ N, and every subspace E of Xn with
dim(E) ≥ Nε, there exists x ∈ SE , such that ‖Tnx‖ ≤ ε.
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The diagonal Theorem

Theorem (Lefèvre, R-P)
The diagonal operator T is finitely strictly singular if and only if
the sequence {Tn}n is uniformly finitely strictly singular.

About the proof:

• One implication is easy. The other one is very technical.

• It can be reduced to the case q =∞.

• If E ⊂ X is finite dimensional, and ‖Tx‖∞ ≥ δ‖x‖p, ∀x ∈ E .
Then there exists N ∈ N and ε > 0, only depending on δ, such
that there is A ⊂ N with card(A) ≤ N and

max{‖Tnxn‖ : n ∈ A} ≥ ε‖x‖p , ∀x ∈ E .
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Fourier Transform again

We have seen F : L1(T)→ c0(Z) is SS, but not FSS.

Of course F : L2(T)→ `2(Z) is not SS.

Theorem (Lefèvre, R-P)
If 1 < p < 2, and p∗ is its conjugate exponent, then the Fourier
Transform

F : Lp(T)→ `p
∗
(Z)

is finitely strictly singular.

In fact this result is valid for the Fourier transform in every
locally compact abelian group; in particular, for the Fourier
transform in Rd . Moreover this is a direct consequence of a
more general result.
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An interpolation result

Suppose (Ω, µ) and (∆, ν) are two measure spaces and T is an
operator such that

T : L2(µ)→ L2(ν), and

T : L1(µ)→ L∞(ν) .

Then, for 1 ≤ p ≤ 2, we have

Tp = T : Lp(µ)→ Lp∗(ν) is bounded

Theorem
For 1 < p < 2, the operator Tp is FSS.
Moreover, for every p ∈ (1,2), there exists Kp > 0 such that, if
‖T1‖ ≤ 1 and ‖T2‖ ≤ 1, then

bn(Tp) ≤ kpn−1/r , for every n,

where 1
r = 1

p −
1
2 .
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A lemma

Suppose T is like in the theorem, and 1
r = 1

p −
1
2 = 1

2 −
1

p∗ .

Take g ∈ Lr (µ), u ∈ Lr (ν) and define

Tg,u : L2(µ)→ L2(ν) , Tg,uf = u · T (g · f ) .

That is Tg,u = Mu ◦ T ◦Mg
We have

Lemma

The operator Tg,h is in the Schatten class Sr
(
L2(µ),L2(ν)

)
.

Moreover, if ‖g‖r ≤ 1, and ‖u‖r ≤ 1, we have

∞∑
k=1

ak (Tg,h)r ≤ 1 and an(Tg,h) ≤ n−1/r ,∀n ∈ N
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A lemma

Proof of the lemma. Assume ‖T1‖, ‖T2‖ ≤ 1. For r ∈ [2,+∞],
consider the following bilinear operator:

Φ: Lr (µ)× Lr (ν) −→ L
(
L2(µ),L2(ν)

)
(g,u) 7−→ Tg,u

• For r = 2, Tg,u is an order bounded operator. Indeed

|Tg,uf | = |u| · |T (gf )| ≤ ‖T (gf )‖L∞(ν)|u| ≤ ‖g‖2‖f‖2|u|,

Then Tg,u is in the Schatten class S2, and ‖Tg,u‖S2 ≤ ‖g‖2‖u‖2.

• For r =∞, ‖Tg,u‖ ≤ ‖g‖∞‖u‖∞

From an interpolation argument the lemma follows: Φ sends
Lr (µ)× Lr (ν) into Sr .
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Proof of the theorem

Suppose dim E = n, δ > 0, and ‖Tf‖p∗ ≥ δ‖f‖p, for every f ∈ E

ELp(µ) ⊇ T (E) ⊆ Lp∗(ν)-T

Y

T−1

‖T−1‖ ≤ 1/δ,
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ELp(µ) ⊇ T (E) ⊆ Lp∗(ν)-T
Y

T−1

H
S
S
S
S
S
So

β

�
�
�
�
�
�/

α

‖T−1‖ ≤ 1/δ, and we can apply Kwapien’s Theorem

dim H = n, ‖β‖ = 1, ‖α‖ / 1/δ
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Suppose dim E = n, δ > 0, and ‖Tf‖p∗ ≥ δ‖f‖p, for every f ∈ E

ELp(µ) ⊇ T (E) ⊆ Lp∗(ν)-T
Y

T−1

H
S
S
S
S
S
So

β

�
�
�
�
�
�/

α

‖T−1‖ ≤ 1/δ, and we can apply Kwapien’s Theorem

dim H = n, ‖β‖ = 1, ‖α‖ / 1/δ

Observe that IdH = α ◦ T ◦ β
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Proof of the theorem

We have dim H = n, ‖β‖ = 1, ‖α‖ / 1/δ, IdH = α◦T ◦β.

ELp(µ) ⊇ T (E) ⊆ Lp∗(ν)-T
Y

T−1

H
S
S
S
S
S
So

β

�
�
�
�
�
�/

α

ẼL2(µ) ⊇ �
β0

�
�
�
�
�
�7

Mg

We apply Maurey’s Factorization Theorem to β and to α:

∃g ∈ Lr (µ), ‖g‖r = 1, Ẽ = {f/g : f ∈ E}, ‖β0‖ / ‖β‖ = 1
1
r = 1

p −
1
2 = 1

2 −
1

p∗ ∃u ∈ Lr (ν), ‖u‖r = 1,

T̃ (E) = {h · u : h ∈ T (E)}, ‖α0‖ / ‖α‖ / 1/δ.
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p∗ ∃u ∈ Lr (ν), ‖u‖r = 1,

T̃ (E) = {h · u : h ∈ T (E)}, ‖α0‖ / ‖α‖ / 1/δ.
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We have IdH = α ◦ T ◦ β = α0 ◦Mu ◦ T ◦Mg ◦ β0, and then

1 = an(IdH) ≤ ‖β0‖an
(
Mu ◦ T ◦Mg

)
‖α0‖ ≤

Kp

δ
n−1/r .

Therefore δ ≤ Kpn−1/r , and we have, for the Bernstein
numbers,

bn(Tp) ≤ Kpn−1/r , for every n.
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Fourier Transform again

Remark: The estimate bn(Tp) / n−1/r is sharp. This can be
shown with the Fourier transform Fp : Lp(T)→ `p

∗
(Z).

Let us denote, for m ∈ Z, by em the exponential

em(t) = eimt .

and consider the subspace E of Lp(T), generated by
{em : 1 ≤ m ≤ n}. Then dim E = n, and for every f ∈ E we
have f̂ is supported by {1,2, . . . ,n} and

n1/r‖f̂‖p∗ ≥ ‖f̂‖2 = ‖f‖2 ≥ ‖f‖p .

This yields bn(Fp) ≥ n−1/r .
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Hardy spaces

Let D = {z ∈ C : |z| < 1} the open unit disk, and 1 ≤ p < +∞.
The Hardy space Hp = Hp(D) is formed by the holomorphic
functions f : D→ C such that

‖f‖Hp = sup
0≤r<1

(
1

2π

∫ 2π

0
|f (reit )|p dt

)1/p

< +∞ .

Let T = ∂D = {z ∈ C : |z| = 1}. On the torus T we consider the
normalized arc–length measure m. Every f ∈ Hp(D) has almost
everywhere radial limit f ∗

f ∗(eit ) = lim
r→1−

f (reit ) .

It is known that f ∗ ∈ Lp(T) = Lp(m) and ‖f‖Hp = ‖f ∗‖Lp .
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Bergman spaces

Let us denote by A the normalized area measure on the unit
disk D; that is dA = dx dy

π . Let 1 ≤ q <∞.

The Bergman space Bq(D) is Bq(D) = Lp(A) ∩H(D); that is
Bq(D) is formed by the holomorphic functions f : D→ C such
that

‖f‖Bq =
(∫

D
|f (z)|q dA(z)

)1/q
< +∞ .

Observe that, putting fr (z) = f (rz). We have

‖f‖qBq =

∫ 1

0
‖fr‖qHq 2r dr .
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Hardy and Bergman spaces

It is known that Hp ⊂ Bq if and only if q ≤ 2p.

For q > 2p, if f (z) = (1− z)−2/q, f /∈ Bq and f ∈ Hp.

For q < 2p, the inclusion Hp ↪→ Bq is a compact operator.

The inclusion Hp ↪→ B2p is not compact.

Theorem (Lefèvre, R-P)

The natural inclusion Hp ↪→ B2p is FSS, for every p ∈ [1,+∞).
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Proof for p = 1

For p = 1 we can use Hardy inequality. We denote by f̂ (n) the
n’th Taylor coefficient in 0 of f ∈ H(D). Then

f (z) =
∑
n≥0

f̂ (n)zn , for all z ∈ D .

Hardy inequality

For every f ∈ H1(D), we have
∑
n≥0

|̂f (n)|
n + 1

≤ π‖f‖H1 .

It is not difficult to see that

‖f‖2B2 =
∑
n≥0

|̂f (n)|2

n + 1
.
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Proof for p = 1

This allows us to factorize the inclusion H1 ↪→ B2 through the
inclusion L1(µ) ∩ L∞(µ) ↪→ L2(µ), for µ the measure defined on
N by

µ(B) =
∑
n∈B

1
n + 1

, B ⊂ N .

We conclude thanks to

Proposition (Lefèvre, R-P)
For every positive measure µ, the natural inclusion
L1(µ) ∩ L∞(µ) ↪→ L2(µ) is FSS.
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Proof for p = 1

Proof of the Proposition.

Suppose E is an n-dimensional
subspace such that ‖f‖2 ≥ δmax{‖f‖1, ‖f‖∞}, for every f ∈ E ,

{fj}nj=1 an orthonormal basis of E , and S =
(∑n

j=1 |fj |2
)1/2.

From ‖ · ‖∞ ≤ (1/δ)‖ · ‖2, we deduce ‖S‖∞ ≤ 1/δ.

If {rj} are Rademacher functions, we have

‖S‖1 ≤ K1
∫ ∫ 1

0

∣∣∑n
j=1 rj(t)fj

∣∣dt dµ= K1
∫ 1

0

∥∥∑n
j=1 rj(t)fj

∥∥
L1 dt

≤ K1
δ

(∫ 1
0

∥∥∑n
j=1 rj(t)fj

∥∥2
L2 dt

)1/2
= K1

√
n

δ .

In consequence n =
∫

S2 dµ ≤ ‖S‖1‖S‖∞ ≤ K1
√

n
δ2 , and

n ≤ K 2
1 /δ

4.
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Somes ingredients in the proof for p > 1

We use here Littlewood-Paley decomposiiton. For j ≥ 0,

Λj = (2j−1 − 1,2j) ∩ Z.

For f ∈ Hp let us define Pj f by

Pj f (z) =
∑
m∈Λj

f̂ (m)zm , z ∈ D .

Littewood-Paley decomposition
For 1 < p < +∞, we have:

‖f‖Hp ≈
∥∥∥(∑

j≥o

|Pj f |2
)1/2∥∥∥

Lp(T)
.

‖f‖Bp ≈
∥∥∥(∑

j≥o

|Pj f |2
)1/2∥∥∥

Lp(A)
.
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Somes ingredients in the proof for p > 1

As a consequence we have, for 1 < p ≤ 2,(∑
j≥0

‖Pj f‖2Hp

)1/2
/ ‖f‖Hp /

(∑
j≥0

‖Pj f‖pHp

)1/p
;

and, for p ≥ 2,(∑
j≥0

‖Pj f‖pHp

)1/p
/ ‖f‖Hp /

(∑
j≥0

‖Pj f‖2Hp

)1/2
;
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Somes ingredients in the proof for p > 1

Lemma 1

If f ∈ Hp, and f̂ (m) = 0, for m < N; Then ‖f‖pBp ≤ 2
N ‖f‖

p
Hp

Define Hp
k = {f ∈ Hp : f̂ (m) = 0, for all m /∈ Λk}

Lemma 2

For f ∈ Hp
k , we have ‖f‖pBp ≈ 2−k‖f‖pHp

Lemma 3

Let Jk be the inclusion Jk : Hp
k ↪→ B2p. Then the sequence

{Jk}k≥0 is uniformly finitely strictly singular.
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Somes ingredients in the proof for p > 1

Proposition
For 1 < p < +∞, there exists Mp > 0 such that:

(1) ‖f‖B2p ≤ Mp

(∑
k ‖Pk f‖2p

Hp

)1/2p
, when p ≤ 2, and

(2) ‖f‖B2p ≤ Mp
(
supk ‖Pk f‖Hp

)1/2
(∑

k ‖Pk f‖pHp

)1/2p
, when

p ≥ 2.

Proof of (1) for p = 2. Put fk = Pk f . By Littlewood–Paley

‖f‖4B4 /
∫
D

(∑
k

|fk |2
)2 dA =

∑
k ,l

∫
D
|fk |2|fl |2 dA =

∑
k ,l

‖fk fl‖2B2

If k ≤ l , we have ‖fk fl‖2B2 / 2−l‖fk fl‖2H2 ≤ 2k−l‖fk‖2H2‖fl‖2H2 .
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Somes ingredients in the proof for p > 1

Therefore

‖f‖4B4 / 2
∑
k≤l

‖fk fl‖2B2 / 2
∞∑

k=0

∞∑
j=0

2−j‖fk‖2H2‖fk+j‖2H2

by Cauchy-Schwartz

‖f‖4B4 /
∑

j

2−j
(∑

k

‖fk‖4H2

)1/2(∑
k

‖fk+j‖4H2

)1/2
/
∑

k

‖fk‖4H2 .
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