Some Finitely Strictily Singular Operators in Analysis

Luis Rodríguez-Piazza

Universidad de Sevilla Spain

Madrid, 25th October 2012.

< 🗇 🕨

.⊒...>

Definitions

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

ヘロト 人間 とくほとくほとう

E • 9 € (~

An bounded operator $T: X \to Y$ between two Banach spaces is Strictly Singular (SS) if for every infinite dimensional subspace *E* of *X*, the restriction of *T* to *E* does not realize an isomorphism from *E* onto T(E).

Equivalently,

・ 同 ト ・ ヨ ト ・ ヨ ト …

An bounded operator $T: X \rightarrow Y$ between two Banach spaces is Strictly Singular (SS) if for every infinite dimensional subspace *E* of *X*, the restriction of *T* to *E* does not realize an isomorphism from *E* onto T(E).

Equivalently, *T* is (SS) if and only if: for every $\varepsilon > 0$, for every infinite dimensional subspace *E* of *X*, there exists *x* in the unit sphere of *E* such that $||T(x)|| \le \varepsilon$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

An bounded operator $T: X \rightarrow Y$ between two Banach spaces is Strictly Singular (SS) if for every infinite dimensional subspace *E* of *X*, the restriction of *T* to *E* does not realize an isomorphism from *E* onto T(E).

Equivalently, *T* is (SS) if and only if: for every $\varepsilon > 0$, for every infinite dimensional subspace *E* of *X*, there exists *x* in the unit sphere of *E* such that $||T(x)|| \le \varepsilon$.

This version can be quantified/localized requiring a little more:

・ 同 ト ・ 国 ト ・ 国 ト …

An bounded operator $T: X \rightarrow Y$ between two Banach spaces is Strictly Singular (SS) if for every infinite dimensional subspace *E* of *X*, the restriction of *T* to *E* does not realize an isomorphism from *E* onto T(E).

Equivalently, *T* is (SS) if and only if: for every $\varepsilon > 0$, for every infinite dimensional subspace *E* of *X*, there exists *x* in the unit sphere of *E* such that $||T(x)|| \le \varepsilon$.

This version can be quantified/localized requiring a little more: The operator *T* is called Finitely Strictly Singular (FSS) if: for every $\varepsilon > 0$, there exists $N_{\varepsilon} \ge 1$ such that, for every subspace *E* of *X* with dimension greater than N_{ε} , there exists *x* in the unit sphere of *E* such that $||T(x)|| \le \varepsilon$.

ヘロン 人間 とくほ とくほ とう

Given a bounded operator $T: X \rightarrow Y$ between two Banach spaces, the sequence of Bernstein numbers of *T* is defined by

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given a bounded operator $T: X \rightarrow Y$ between two Banach spaces, the sequence of Bernstein numbers of *T* is defined by

$$b_n(T) = \sup_{E \subset X, dim(E)=n} \inf\{\|T(x)\| : x \in E, \|x\| = 1\}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definitions

Given a bounded operator $T: X \rightarrow Y$ between two Banach spaces, the sequence of Bernstein numbers of *T* is defined by

$$b_n(T) = \sup_{E \subset X, dim(E)=n} \inf\{\|T(x)\| : x \in E, \|x\| = 1\}.$$

T is (FSS) if and only if $\lim_{n\to\infty} b_n(T) = 0$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Given a bounded operator $T: X \rightarrow Y$ between two Banach spaces, the sequence of Bernstein numbers of *T* is defined by

$$b_n(T) = \sup_{E \subset X, dim(E)=n} \inf\{\|T(x)\| : x \in E, \|x\| = 1\}.$$

T is (FSS) if and only if $\lim_{n\to\infty} b_n(T) = 0$.

Observe that the Bernstein numbers are dominated by the approximation numbers

 $b_n(T) \leq a_n(T)$

Given a bounded operator $T: X \rightarrow Y$ between two Banach spaces, the sequence of Bernstein numbers of *T* is defined by

$$b_n(T) = \sup_{E \subset X, \dim(E) = n} \inf\{ \|T(x)\| : x \in E, \|x\| = 1 \}.$$

T is (FSS) if and only if $\lim_{n\to\infty} b_n(T) = 0$.

Observe that the Bernstein numbers are dominated by the approximation numbers

$$b_n(T) \leq a_n(T) = \inf\{\|T - R\| : R \colon X \to Y, \operatorname{rank}(T) < n\}$$

Finitely strictly singular operators are also called superstrictly singular operators.

ヘロト ヘアト ヘビト ヘビト

Finitely strictly singular operators are also called superstrictly singular operators.

Theorem (Flores, Hernández, Raynaud)

An operator T is finitely strictly singular iff every ultrapower of T is strictly singular iff every operator which is locally representable in T is strictly singular.

▲ @ ▶ ▲ 三 ▶ ▲

Finitely strictly singular operators are also called superstrictly singular operators.

Theorem (Flores, Hernández, Raynaud)

An operator T is finitely strictly singular iff every ultrapower of T is strictly singular iff every operator which is locally representable in T is strictly singular.

Moreover

 $b_n(T) = b_n(T_u)$, for every *n* and every ultrapower T_u of *T*.

< 口 > < 同 > < 臣 > < 臣 >

FSS versus Compactness

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

э

・ 戸 ・ ・ ヨ ・ ・

FSS versus Compactness

We always have, for an operator T,

Compact \Rightarrow FSS \Rightarrow SS

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Compact \Rightarrow FSS \Rightarrow SS

When *X* and *Y* are Hilbert spaces, these notions coincide.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

$\begin{array}{rccc} \text{Compact} & \Rightarrow & \text{FSS} & \Rightarrow & \text{SS} \end{array}$

When X and Y are Hilbert spaces, these notions coincide. The same is true if $X = Y = \ell^p$ ($1 \le p < +\infty$) or $X = Y = c_0$.

(四) (日) (日) 日

$\mathsf{Compact} \ \Rightarrow \ \mathsf{FSS} \ \Rightarrow \ \mathsf{SS}$

When X and Y are Hilbert spaces, these notions coincide. The same is true if $X = Y = \ell^p$ ($1 \le p < +\infty$) or $X = Y = c_0$. But in general

$$FSS \notin SS$$

 $\begin{array}{rcl} \text{Compact} & \Rightarrow & \text{FSS} & \Rightarrow & \text{SS} \end{array}$

When X and Y are Hilbert spaces, these notions coincide. The same is true if $X = Y = \ell^p$ ($1 \le p < +\infty$) or $X = Y = c_0$. But in general

FSS
$$\notin$$
 SS

Ex. 1:

Take the inclusion map of $\ell^1 = \bigoplus_{\ell^1} \ell_n^1$ into the space $\bigoplus_{\ell^2} \ell_n^1$. It is not FSS, but it is SS.

(雪) (ヨ) (ヨ)

 $\begin{array}{rccc} \text{Compact} & \Rightarrow & \text{FSS} & \Rightarrow & \text{SS} \end{array}$

When X and Y are Hilbert spaces, these notions coincide. The same is true if $X = Y = \ell^p$ ($1 \le p < +\infty$) or $X = Y = c_0$. But in general

Compact \notin FSS \notin SS

Ex. 1:

Take the inclusion map of $\ell^1 = \bigoplus_{\ell^1} \ell_n^1$ into the space $\bigoplus_{\ell^2} \ell_n^1$. It is not FSS, but it is SS.

 $\begin{array}{rccc} \text{Compact} & \Rightarrow & \text{FSS} & \Rightarrow & \text{SS} \end{array}$

When X and Y are Hilbert spaces, these notions coincide. The same is true if $X = Y = \ell^p$ ($1 \le p < +\infty$) or $X = Y = c_0$. But in general

Compact \notin FSS \notin SS

Ex. 1:

Take the inclusion map of $\ell^1 = \bigoplus_{\ell^1} \ell_n^1$ into the space $\bigoplus_{\ell^2} \ell_n^1$. It is not FSS, but it is SS.

Ex. 2: (V. Milman '70)

For $1 \le p < q \le \infty$, the inclusion map $\ell^p \hookrightarrow \ell^q$ is FSS, but it is not compact.

Ex. 3:

For $1 , the inclusion map <math>\mathcal{C}[0,1] \hookrightarrow L^{p}[0,1]$ is FSS, but it is not compact. The same for $L^{\infty}[0,1] \hookrightarrow L^{p}[0,1]$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Ex. 3:

For $1 , the inclusion map <math>\mathcal{C}[0,1] \hookrightarrow L^{p}[0,1]$ is FSS, but it is not compact. The same for $L^{\infty}[0,1] \hookrightarrow L^{p}[0,1]$.

Proposition (Mitiagin, Pełczyński '68)

Every absolutely *p*-summing operator is FSS.

イロト イ押ト イヨト イヨトー

Ex. 3:

For $1 , the inclusion map <math>\mathcal{C}[0,1] \hookrightarrow L^{p}[0,1]$ is FSS, but it is not compact. The same for $L^{\infty}[0,1] \hookrightarrow L^{p}[0,1]$.

Proposition (Mitiagin, Pełczyński '68)

Every absolutely *p*-summing operator is FSS.

Proposition (Flores, Hernández, Raynaud)

If E[0, 1] is a rearrangement invariant space and $E \neq L^{\infty}$; then the inclusion map $L^{\infty}[0, 1] \hookrightarrow E[0, 1]$ is FSS.

イロト イポト イヨト イヨト 三日

More examples

Ex. 4: (Plichko '04) The Fourier transform $\mathcal{F} \colon L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ sending $f \mapsto (\hat{f}(m))_{m \in \mathbb{Z}}$

is SS, but is not FSS.

・ 同 ト ・ ヨ ト ・ ヨ ト …

More examples

Ex. 4: (Plichko '04) The Fourier transform $\mathcal{F} \colon L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ sending $f \mapsto (\hat{f}(m))_{m \in \mathbb{Z}}$

is SS, but is not FSS.

Given $n \in \mathbb{N}$ consider *n* real numbers t_1, t_2, \ldots, t_n such that π , t_1, t_2, \ldots, t_n are \mathbb{Q} linearly independent. Then, by Kronecker's theorem the set { $(e^{imt_1}, e^{imt_2}, \ldots, e^{imt_n}) : m \in \mathbb{Z}$ } is dense in \mathbb{T}^n and, putting $z_j = e^{imt_j}$, for all scalars α_j , we have

$$\left\|\sum_{j} \alpha_{j} \widehat{\delta_{z_{j}}}\right\|_{\ell^{\infty}(\mathbb{Z})} = \sup_{m} \left|\sum_{j} \alpha_{j} e^{imt_{j}}\right| = \sum_{j} |\alpha_{j}| = \left\|\sum_{j} \alpha_{j} \delta_{z_{j}}\right\|_{M(\mathbb{T})}.$$

More examples

Ex. 4: (Plichko '04) The Fourier transform $\mathcal{F} \colon L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ sending $f \mapsto (\hat{f}(m))_{m \in \mathbb{Z}}$

is SS, but is not FSS.

Given $n \in \mathbb{N}$ consider *n* real numbers t_1, t_2, \ldots, t_n such that π , t_1, t_2, \ldots, t_n are \mathbb{Q} linearly independent. Then, by Kronecker's theorem the set { $(e^{imt_1}, e^{imt_2}, \ldots, e^{imt_n}) : m \in \mathbb{Z}$ } is dense in \mathbb{T}^n and, putting $z_j = e^{imt_j}$, for all scalars α_j , we have

$$\left\|\sum_{j} \alpha_{j} \widehat{\delta_{z_{j}}}\right\|_{\ell^{\infty}(\mathbb{Z})} = \sup_{m} \left|\sum_{j} \alpha_{j} e^{imt_{j}}\right| = \sum_{j} |\alpha_{j}| = \left\|\sum_{j} \alpha_{j} \delta_{z_{j}}\right\|_{M(\mathbb{T})}.$$

Changing δ_{z_j} by $F_N * \delta_{z_j}$, where F_N is the *N*'th Fejér Kernel with *N* large enough, we see that

$$b_n(\mathcal{F}) = 1$$
, for every *n*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

The set $\mathcal{F}SS(X, Y)$ of all finitely strictly singular operators from X to Y is a closed linear subspace of $\mathcal{L}(X, Y)$ with the ideal property. That is, $S \circ T \circ R \in \mathcal{F}SS(X_1, Y_1)$, whenever $R \in \mathcal{L}(X_1, X), T \in \mathcal{F}SS(X, Y)$, and $S \in \mathcal{L}(Y, Y_1)$.

The set $\mathcal{F}SS(X, Y)$ of all finitely strictly singular operators from X to Y is a closed linear subspace of $\mathcal{L}(X, Y)$ with the ideal property. That is, $S \circ T \circ R \in \mathcal{F}SS(X_1, Y_1)$, whenever $R \in \mathcal{L}(X_1, X), T \in \mathcal{F}SS(X, Y)$, and $S \in \mathcal{L}(Y, Y_1)$.

This result can be obtained as a corollary to Hernández, Flores, Raynaud characterization and the fact that strictly singular operators form an operator ideal.

The set $\mathcal{F}SS(X, Y)$ of all finitely strictly singular operators from X to Y is a closed linear subspace of $\mathcal{L}(X, Y)$ with the ideal property. That is, $S \circ T \circ R \in \mathcal{F}SS(X_1, Y_1)$, whenever $R \in \mathcal{L}(X_1, X), T \in \mathcal{F}SS(X, Y)$, and $S \in \mathcal{L}(Y, Y_1)$.

This result can be obtained as a corollary to Hernández, Flores, Raynaud characterization and the fact that strictly singular operators form an operator ideal.

Directly it is easy to prove: $\mathcal{FSS}(X, Y)$ is stable by multiplication by scalars, is closed in $\mathcal{L}(X, Y)$ and has the ideal property.

The set $\mathcal{F}SS(X, Y)$ of all finitely strictly singular operators from X to Y is a closed linear subspace of $\mathcal{L}(X, Y)$ with the ideal property. That is, $S \circ T \circ R \in \mathcal{F}SS(X_1, Y_1)$, whenever $R \in \mathcal{L}(X_1, X), T \in \mathcal{F}SS(X, Y)$, and $S \in \mathcal{L}(Y, Y_1)$.

This result can be obtained as a corollary to Hernández, Flores, Raynaud characterization and the fact that strictly singular operators form an operator ideal.

Directly it is easy to prove: $\mathcal{FSS}(X, Y)$ is stable by multiplication by scalars, is closed in $\mathcal{L}(X, Y)$ and has the ideal property.

It is not so obvious:

$$T, S \in \mathcal{FSS}(X, Y) \implies T + S \in \mathcal{FSS}(X, Y)$$

イロト イポト イヨト イヨト 三日

Let $T \in \mathcal{L}(X, Y)$. Then T is FSS if and only if for every sequence $\{E_n\}$ of subspaces of X with dim $(E_n) \to \infty$, there exist subspaces $F_n \subset E_n$ such that:

Let $T \in \mathcal{L}(X, Y)$. Then T is FSS if and only if for every sequence $\{E_n\}$ of subspaces of X with dim $(E_n) \to \infty$, there exist subspaces $F_n \subset E_n$ such that:

•
$$||T|_{F_n}|| \rightarrow 0$$
, and

三) (

Let $T \in \mathcal{L}(X, Y)$. Then T is FSS if and only if for every sequence $\{E_n\}$ of subspaces of X with dim $(E_n) \to \infty$, there exist subspaces $F_n \subset E_n$ such that:

- $||T|_{F_n}|| \rightarrow 0$, and
- dim $(F_n) \rightarrow \infty$.

▲御♪ ▲臣♪ ▲臣♪ 二臣

Let $T \in \mathcal{L}(X, Y)$. Then T is FSS if and only if for every sequence $\{E_n\}$ of subspaces of X with dim $(E_n) \to \infty$, there exist subspaces $F_n \subset E_n$ such that:

- $||T|_{F_n}|| \rightarrow 0$, and
- dim $(F_n) \rightarrow \infty$.

Equivalent to the problem of the sum is the following fact:

$$egin{aligned} \mathcal{T}_1 \in \mathcal{FSS}(X_1, Y_1)\,, & \mathcal{T}_2 \in \mathcal{FSS}(X_2, Y_2) & \Longrightarrow \ & \mathcal{T}_1 \oplus \mathcal{T}_2 \in \mathcal{FSS}(X_1 imes X_2, Y_1 imes Y_2), \end{aligned}$$

where

$$T_1 \oplus T_2(x_1, x_2) = (Tx_1, Tx_2), \quad (x_1, x_2) \in X_1 \times X_2.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …
The diagonal Theorem

Suppose $\{T_n\}_n$ is a uniformly bounded sequence of operators $T_n: X_n \to Y_n$. Let $1 \le p < q \le \infty$. Then the diagonal operator

$$\mathbf{X} = \bigoplus_{\ell^p} X_n, \quad \mathbf{Y} = \bigoplus_{\ell^q} Y_n, \qquad \mathbf{T} \colon \mathbf{X} \to \mathbf{Y},$$

defined by $\mathbf{T}((x_n)_n) = (T_n x_n)_n$ is bounded.

米間 とくほ とくほ とうほう

The diagonal Theorem

Suppose $\{T_n\}_n$ is a uniformly bounded sequence of operators $T_n: X_n \to Y_n$. Let $1 \le p < q \le \infty$. Then the diagonal operator

$$\mathbf{X} = \bigoplus_{\ell^p} X_n, \quad \mathbf{Y} = \bigoplus_{\ell^q} Y_n, \qquad \mathbf{T} \colon \mathbf{X} \to \mathbf{Y},$$

defined by $\mathbf{T}((x_n)_n) = (T_n x_n)_n$ is bounded.

Is it **T** an FSS operator?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose $\{T_n\}_n$ is a uniformly bounded sequence of operators $T_n: X_n \to Y_n$. Let $1 \le p < q \le \infty$. Then the diagonal operator

$$\mathbf{X} = \bigoplus_{\ell^p} X_n, \quad \mathbf{Y} = \bigoplus_{\ell^q} Y_n, \qquad \mathbf{T} \colon \mathbf{X} \to \mathbf{Y},$$

defined by $\mathbf{T}((x_n)_n) = (T_n x_n)_n$ is bounded.

Is it **T** an FSS operator?

We say that a sequence $\{T_n\}_n$ of operators $T_n: X_n \to Y_n$ is uniformly finitely strictly singular if for every $\varepsilon > 0$, there exists N_{ε} such that for every $n \in \mathbb{N}$, and every subspace E of X_n with dim $(E) \ge N_{\varepsilon}$, there exists $x \in S_E$, such that $||T_n x|| \le \varepsilon$.

・ロト ・ 理 ト ・ ヨ ト ・

The diagonal operator **T** is finitely strictly singular if and only if the sequence $\{T_n\}_n$ is uniformly finitely strictly singular.

・ 同 ト ・ 国 ト ・ 国 ト …

The diagonal operator **T** is finitely strictly singular if and only if the sequence $\{T_n\}_n$ is uniformly finitely strictly singular.

About the proof:

イロト イ押ト イヨト イヨトー

The diagonal operator **T** is finitely strictly singular if and only if the sequence $\{T_n\}_n$ is uniformly finitely strictly singular.

About the proof:

• One implication is easy. The other one is very technical.

イロト イ押ト イヨト イヨトー

The diagonal operator **T** is finitely strictly singular if and only if the sequence $\{T_n\}_n$ is uniformly finitely strictly singular.

About the proof:

- One implication is easy. The other one is very technical.
- It can be reduced to the case $q = \infty$. use: $\|y\|_q \le \|y\|_{\infty}^{\theta} \|y\|_p^{1-\theta}$, for $1 \le p < q < \infty$

イロト イ押ト イヨト イヨトー

The diagonal operator **T** is finitely strictly singular if and only if the sequence $\{T_n\}_n$ is uniformly finitely strictly singular.

About the proof:

- One implication is easy. The other one is very technical.
- It can be reduced to the case $q = \infty$.

• If $E \subset \mathbf{X}$ is finite dimensional, and $\|\mathbf{T}\mathbf{x}\|_{\infty} \ge \delta \|\mathbf{x}\|_{p}$, $\forall \mathbf{x} \in E$. Then there exists $N \in \mathbb{N}$ and $\varepsilon > 0$, only depending on δ , such that there is $A \subset \mathbb{N}$ with card $(A) \le N$ and

$$\max\{\|T_nx_n\|:n\in A\}\geq \varepsilon\|\mathbf{x}\|_{p},\quad\forall\mathbf{x}\in E.$$

イロト イポト イヨト イヨト

Fourier Transform again

We have seen $\mathcal{F} \colon L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ is SS, but not FSS.

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

< 回 > < 回 > < 回 > … 回

Fourier Transform again

We have seen $\mathcal{F} \colon L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ is SS, but not FSS. Of course $\mathcal{F} \colon L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ is not SS.

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

(四) (日) (日) 日

We have seen $\mathcal{F}: L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ is SS, but not FSS.

Of course $\mathcal{F} \colon L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ is not SS.

Theorem (Lefèvre, R-P)

If $1 , and <math>p^*$ is its conjugate exponent, then the Fourier Transform

$$\mathcal{F}\colon L^p(\mathbb{T})\to \ell^{p^*}(\mathbb{Z})$$

is finitely strictly singular.

We have seen $\mathcal{F}: L^1(\mathbb{T}) \to c_0(\mathbb{Z})$ is SS, but not FSS.

Of course $\mathcal{F} \colon L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ is not SS.

Theorem (Lefèvre, R-P)

If $1 , and <math>p^*$ is its conjugate exponent, then the Fourier Transform

$$\mathcal{F}\colon L^p(\mathbb{T})\to \ell^{p^*}(\mathbb{Z})$$

is finitely strictly singular.

In fact this result is valid for the Fourier transform in every locally compact abelian group; in particular, for the Fourier transform in \mathbb{R}^d . Moreover this is a direct consequence of a more general result.

Suppose (Ω, μ) and (Δ, ν) are two measure spaces and T is an operator such that

 $T: L^2(\mu) \to L^2(\nu)$, and

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Suppose (Ω, μ) and (Δ, ν) are two measure spaces and T is an operator such that

 $T: L^2(\mu) \to L^2(\nu)$, and $T: L^1(\mu) \to L^{\infty}(\nu)$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Suppose (Ω, μ) and (Δ, ν) are two measure spaces and T is an operator such that

$$T: L^2(\mu) \to L^2(\nu)$$
, and $T: L^1(\mu) \to L^{\infty}(\nu)$.

Then, for $1 \le p \le 2$, we have

$$T_{
ho}=T\colon L^{
ho}(\mu) o L^{
ho^*}(
u)$$
 is bounded

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Suppose (Ω, μ) and (Δ, ν) are two measure spaces and T is an operator such that

$$T: L^2(\mu) \to L^2(\nu), \text{ and } T: L^1(\mu) \to L^{\infty}(\nu).$$

Then, for $1 \le p \le 2$, we have

$$T_{
ho}=T\colon L^{
ho}(\mu) o L^{
ho^*}(
u)$$
 is bounded

Theorem

For $1 , the operator <math>T_p$ is FSS.

イロト イポト イヨト イヨト

Suppose (Ω, μ) and (Δ, ν) are two measure spaces and T is an operator such that

$$T: L^2(\mu) \to L^2(\nu)$$
, and $T: L^1(\mu) \to L^{\infty}(\nu)$.

Then, for $1 \le p \le 2$, we have

$$T_{
ho}=T\colon L^{
ho}(\mu) o L^{
ho^*}(
u)$$
 is bounded

Theorem

For $1 , the operator <math>T_p$ is FSS. Moreover, for every $p \in (1, 2)$, there exists $K_p > 0$ such that, if $||T_1|| \le 1$ and $||T_2|| \le 1$, then

$$b_n(T_p) \le k_p n^{-1/r}$$
, for every n ,

where
$$\frac{1}{r} = \frac{1}{p} - \frac{1}{2}$$

▲ 御 ▶ ▲ 三 ▶

Suppose *T* is like in the theorem, and $\frac{1}{r} = \frac{1}{p} - \frac{1}{2} = \frac{1}{2} - \frac{1}{p^*}$.

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Suppose *T* is like in the theorem, and $\frac{1}{r} = \frac{1}{p} - \frac{1}{2} = \frac{1}{2} - \frac{1}{p^*}$. Take $g \in L^r(\mu)$, $u \in L^r(\nu)$ and define

$$T_{g,u}: L^2(\mu) \to L^2(\nu), \qquad T_{g,u}f = u \cdot T(g \cdot f)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Suppose *T* is like in the theorem, and $\frac{1}{r} = \frac{1}{p} - \frac{1}{2} = \frac{1}{2} - \frac{1}{p^*}$. Take $g \in L^r(\mu)$, $u \in L^r(\nu)$ and define

$$T_{g,u}: L^2(\mu) \to L^2(\nu), \qquad T_{g,u}f = u \cdot T(g \cdot f),$$

That is $T_{g,u} = M_u \circ T \circ M_g$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Suppose *T* is like in the theorem, and $\frac{1}{r} = \frac{1}{p} - \frac{1}{2} = \frac{1}{2} - \frac{1}{p^*}$. Take $g \in L^r(\mu)$, $u \in L^r(\nu)$ and define

$$T_{g,u}: L^2(\mu) \to L^2(\nu), \qquad T_{g,u}f = u \cdot T(g \cdot f).$$

That is $T_{g,u} = M_u \circ T \circ M_g$ We have

Lemma

The operator $T_{g,h}$ is in the Schatten class $S_r(L^2(\mu), L^2(\nu))$. Moreover, if $||g||_r \le 1$, and $||u||_r \le 1$, we have

$$\sum_{k=1}^{\infty}a_k(T_{g,h})^r\leq 1 \quad ext{and} \quad a_n(T_{g,h})\leq n^{-1/r}\,, orall n\in\mathbb{N}$$

ヘロト 人間 ト ヘヨト ヘヨト

э

Proof of the lemma. Assume $||T_1||, ||T_2|| \le 1$. For $r \in [2, +\infty]$, consider the following bilinear operator:

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof of the lemma. Assume $||T_1||, ||T_2|| \le 1$. For $r \in [2, +\infty]$, consider the following bilinear operator:

$$\Phi \colon L^{r}(\mu) \times L^{r}(\nu) \longrightarrow \mathcal{L}(L^{2}(\mu), L^{2}(\nu))$$
$$(g, u) \longmapsto T_{g, u}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof of the lemma. Assume $||T_1||, ||T_2|| \le 1$. For $r \in [2, +\infty]$, consider the following bilinear operator:

$$\Phi: L^{r}(\mu) \times L^{r}(\nu) \longrightarrow \mathcal{L}(L^{2}(\mu), L^{2}(\nu))$$
$$(g, u) \longmapsto T_{g, u}$$

• For r = 2, $T_{g,u}$ is an order bounded operator. Indeed

 $|T_{g,u}f| = |u| \cdot |T(gf)| \le ||T(gf)||_{L^{\infty}(\nu)} |u| \le ||g||_{2} ||f||_{2} |u|,$

▲□ → ▲ 三 → ▲ 三 → つく(~

Proof of the lemma. Assume $||T_1||, ||T_2|| \le 1$. For $r \in [2, +\infty]$, consider the following bilinear operator:

$$\Phi \colon L^{r}(\mu) \times L^{r}(\nu) \longrightarrow \mathcal{L}(L^{2}(\mu), L^{2}(\nu))$$
$$(g, u) \longmapsto T_{g, u}$$

• For r = 2, $T_{g,u}$ is an order bounded operator. Indeed

$$|T_{g,u}f| = |u| \cdot |T(gf)| \le ||T(gf)||_{L^{\infty}(\nu)} |u| \le ||g||_2 ||f||_2 |u|,$$

Then $T_{g,u}$ is in the Schatten class S_2 , and $||T_{g,u}||_{S_2} \le ||g||_2 ||u||_2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Proof of the lemma. Assume $||T_1||, ||T_2|| \le 1$. For $r \in [2, +\infty]$, consider the following bilinear operator:

$$\Phi: L^{r}(\mu) \times L^{r}(\nu) \longrightarrow \mathcal{L}(L^{2}(\mu), L^{2}(\nu))$$
$$(g, u) \longmapsto T_{g, u}$$

• For r = 2, $T_{g,u}$ is an order bounded operator. Indeed

$$|T_{g,u}f| = |u| \cdot |T(gf)| \le ||T(gf)||_{L^{\infty}(\nu)}|u| \le ||g||_2 ||f||_2 |u|,$$

Then $T_{g,u}$ is in the Schatten class S_2 , and $||T_{g,u}||_{S_2} \le ||g||_2 ||u||_2$.

• For
$$r = \infty$$
, $\|T_{g,u}\| \leq \|g\|_{\infty} \|u\|_{\infty}$

Proof of the lemma. Assume $||T_1||, ||T_2|| \le 1$. For $r \in [2, +\infty]$, consider the following bilinear operator:

$$\Phi \colon L^{r}(\mu) \times L^{r}(\nu) \longrightarrow \mathcal{L}(L^{2}(\mu), L^{2}(\nu))$$
$$(g, u) \longmapsto T_{g, u}$$

• For r = 2, $T_{g,u}$ is an order bounded operator. Indeed

$$|T_{g,u}f| = |u| \cdot |T(gf)| \le ||T(gf)||_{L^{\infty}(\nu)} |u| \le ||g||_2 ||f||_2 |u|,$$

Then $T_{g,u}$ is in the Schatten class S_2 , and $||T_{g,u}||_{S_2} \le ||g||_2 ||u||_2$.

• For
$$r = \infty,$$
 $\|T_{g,u}\| \leq \|g\|_{\infty} \|u\|_{\infty}$

From an interpolation argument the lemma follows: Φ sends $L^{r}(\mu) \times L^{r}(\nu)$ into S_{r} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

(日) (四) (日) (日) (日)

æ

Suppose dim E = n, $\delta > 0$, and $||Tf||_{p^*} \ge \delta ||f||_p$, for every $f \in E$

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Suppose dim E = n, $\delta > 0$, and $||Tf||_{p^*} \ge \delta ||f||_p$, for every $f \in E$

$$L^{p}(\mu) \supseteq E \xrightarrow{T} T(E) \subseteq L^{p^{*}}(\nu)$$

$$\|T^{-1}\| \leq 1/\delta,$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Suppose dim E = n, $\delta > 0$, and $||Tf||_{p^*} \ge \delta ||f||_p$, for every $f \in E$

$||T^{-1}|| \le 1/\delta$, and we can apply Kwapien's Theorem

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ りへで

Suppose dim E = n, $\delta > 0$, and $||Tf||_{p^*} \ge \delta ||f||_p$, for every $f \in E$

 $\|T^{-1}\| \le 1/\delta$, and we can apply Kwapien's Theorem dim H = n, $\|\beta\| = 1$, $\|\alpha\| \lessapprox 1/\delta$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Suppose dim E = n, $\delta > 0$, and $||Tf||_{p^*} \ge \delta ||f||_p$, for every $f \in E$

 $||T^{-1}|| \leq 1/\delta$, and we can apply Kwapien's Theorem

dim H = n, $\|\beta\| = 1$, $\|\alpha\| \leq 1/\delta$

Observe that $Id_H = \alpha \circ T \circ \beta$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

We have dim H = n, $\|\beta\| = 1$, $\|\alpha\| \leq 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

We have dim H = n, $\|\beta\| = 1$, $\|\alpha\| \leq 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We apply Maurey's Factorization Theorem to β

We have dim H = n, $\|\beta\| = 1$, $\|\alpha\| \leq 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We apply Maurey's Factorization Theorem to β $\exists g \in L^{r}(\mu), \quad ||g||_{r} = 1, \quad \widetilde{E} = \{f/g : f \in E\}, \quad ||\beta_{0}|| \leq ||\beta|| = 1$ $\frac{1}{r} = \frac{1}{p} - \frac{1}{2}$
We have dim H = n, $\|\beta\| = 1$, $\|\alpha\| \leq 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We apply Maurey's Factorization Theorem to β and to α : $\exists g \in L^{r}(\mu), \quad ||g||_{r} = 1, \quad \widetilde{E} = \{f/g : f \in E\}, \quad ||\beta_{0}|| \leq ||\beta|| = 1$ $\frac{1}{r} = \frac{1}{\rho} - \frac{1}{2}$

We have dim H = n, $\|\beta\| = 1$, $\|\alpha\| \lesssim 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We apply Maurey's Factorization Theorem to β and to α : $\exists g \in L^r(\mu), \quad \|g\|_r = 1, \quad \widetilde{E} = \{f/g : f \in E\}, \quad \|\beta_0\| \leq \|\beta\| = 1$ $\frac{1}{r} = \frac{1}{p} - \frac{1}{2} = \frac{1}{2} - \frac{1}{p^*} \qquad \exists u \in L^r(\nu), \quad \|u\|_r = 1,$ $\widetilde{T(E)} = \{h \cdot u : h \in T(E)\}, \qquad \|\alpha_0\| \leq \|\alpha\| \leq 1/\delta.$

Then dim H = n, $\|\beta_0\| \lesssim 1$, $\|\alpha_0\| \lesssim 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

프 🖌 🛪 프 🕨

Then dim H = n, $\|\beta_0\| \lesssim 1$, $\|\alpha_0\| \lesssim 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We have $Id_H = \alpha \circ T \circ \beta = \alpha_0 \circ M_u \circ T \circ M_g \circ \beta_0$, and then

Then dim H = n, $\|\beta_0\| \lesssim 1$, $\|\alpha_0\| \lesssim 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We have $Id_H = \alpha \circ T \circ \beta = \alpha_0 \circ M_u \circ T \circ M_g \circ \beta_0$, and then

 $1 = a_n(\mathit{Id}_H) \le \|\beta_0\|a_n(\mathit{M}_u \circ \mathit{T} \circ \mathit{M}_g)\|\alpha_0\|$

Then dim H = n, $\|\beta_0\| \lesssim 1$, $\|\alpha_0\| \lesssim 1/\delta$, $Id_H = \alpha \circ T \circ \beta$.

We have $Id_H = \alpha \circ T \circ \beta = \alpha_0 \circ M_u \circ T \circ M_g \circ \beta_0$, and then

$$1 = a_n(\mathit{Id}_H) \leq \|\beta_0\|a_n(\mathit{M}_u \circ \mathit{T} \circ \mathit{M}_g)\|\alpha_0\| \leq \frac{\mathit{K}_p}{\delta} n^{-1/r}.$$

 $\text{Then } \dim H = n, \quad \|\beta_0\| \lessapprox 1, \quad \|\alpha_0\| \lessapprox 1/\delta, \quad \textit{Id}_H = \alpha \circ \textit{T} \circ \beta.$

We have $Id_H = \alpha \circ T \circ \beta = \alpha_0 \circ M_u \circ T \circ M_g \circ \beta_0$, and then

$$1 = a_n(Id_H) \le \|\beta_0\|a_n(M_u \circ T \circ M_g)\|\alpha_0\| \le \frac{K_p}{\delta} n^{-1/r}.$$

Therefore $\delta \leq K_p n^{-1/r}$, and we have, for the Bernstein numbers,

$$b_n(T_p) \leq K_p n^{-1/r}$$
, for every $n_{\text{Branch and }}$

(雪) (ヨ) (ヨ)

Let us denote, for $m \in \mathbb{Z}$, by e_m the exponential

$$e_m(t) = e^{imt}$$

and consider the subspace *E* of $L^{p}(\mathbb{T})$, generated by $\{e_m : 1 \leq m \leq n\}$.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三日

Let us denote, for $m \in \mathbb{Z}$, by e_m the exponential

$$e_m(t) = e^{imt}$$

and consider the subspace *E* of $L^{p}(\mathbb{T})$, generated by $\{e_m : 1 \le m \le n\}$. Then dim E = n, and for every $f \in E$ we have \hat{f} is supported by $\{1, 2, ..., n\}$ and

$$n^{1/r} \|\hat{f}\|_{p^*} \ge \|\hat{f}\|_2 = \|f\|_2 \ge \|f\|_p.$$

< 回 > < 回 > < 回 > …

Let us denote, for $m \in \mathbb{Z}$, by e_m the exponential

$$e_m(t) = e^{imt}$$

and consider the subspace *E* of $L^{p}(\mathbb{T})$, generated by $\{e_m : 1 \le m \le n\}$. Then dim E = n, and for every $f \in E$ we have \hat{f} is supported by $\{1, 2, ..., n\}$ and

$$n^{1/r} \|\hat{f}\|_{p^*} \ge \|\hat{f}\|_2 = \|f\|_2 \ge \|f\|_p.$$

This yields $b_n(\mathcal{F}_p) \ge n^{-1/r}$.

(過) (ヨ) (ヨ)

Hardy spaces

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

イロン イロン イヨン イヨン

æ

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ the open unit disk, and $1 \le p < +\infty$.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ the open unit disk, and $1 \le p < +\infty$. The Hardy space $H^p = H^p(\mathbb{D})$ is formed by the holomorphic functions $f : \mathbb{D} \to \mathbb{C}$ such that

$$\|f\|_{H^{p}} = \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt\right)^{1/p} < +\infty.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ the open unit disk, and $1 \le p < +\infty$. The Hardy space $H^p = H^p(\mathbb{D})$ is formed by the holomorphic functions $f : \mathbb{D} \to \mathbb{C}$ such that

$$\|f\|_{H^p} = \sup_{0 \le r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p \, dt \right)^{1/p} < +\infty \, .$$

Let $\mathbb{T} = \partial \mathbb{D} = \{z \in \mathbb{C} : |z| = 1\}$. On the torus \mathbb{T} we consider the normalized arc–length measure *m*. Every $f \in H^p(\mathbb{D})$ has almost everywhere radial limit f^*

$$f^*(e^{it}) = \lim_{r \to 1^-} f(re^{it}).$$

It is known that $f^* \in L^p(\mathbb{T}) = L^p(m)$ and $||f||_{H^p} = ||f^*||_{L^p}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Bergman spaces

Let us denote by \mathcal{A} the normalized area measure on the unit disk \mathbb{D} ; that is $d\mathcal{A} = \frac{dx \, dy}{\pi}$. Let $1 \leq q < \infty$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Let us denote by \mathcal{A} the normalized area measure on the unit disk \mathbb{D} ; that is $d\mathcal{A} = \frac{dx \, dy}{\pi}$. Let $1 \leq q < \infty$.

The Bergman space $B^q(\mathbb{D})$ is $B^q(\mathbb{D}) = L^p(\mathcal{A}) \cap \mathcal{H}(\mathbb{D})$; that is $B^q(\mathbb{D})$ is formed by the holomorphic functions $f \colon \mathbb{D} \to \mathbb{C}$ such that

$$\|f\|_{B^q} = \left(\int_{\mathbb{D}} |f(z)|^q \, d\mathcal{A}(z)\right)^{1/q} < +\infty$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let us denote by \mathcal{A} the normalized area measure on the unit disk \mathbb{D} ; that is $d\mathcal{A} = \frac{dx \, dy}{\pi}$. Let $1 \leq q < \infty$.

The Bergman space $B^q(\mathbb{D})$ is $B^q(\mathbb{D}) = L^p(\mathcal{A}) \cap \mathcal{H}(\mathbb{D})$; that is $B^q(\mathbb{D})$ is formed by the holomorphic functions $f \colon \mathbb{D} \to \mathbb{C}$ such that

$$\|f\|_{B^q} = \left(\int_{\mathbb{D}} |f(z)|^q \, d\mathcal{A}(z)\right)^{1/q} < +\infty \, .$$

Observe that, putting $f_r(z) = f(rz)$. We have

$$\|f\|_{B^q}^q = \int_0^1 \|f_r\|_{H^q}^q 2r \, dr$$
.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

It is known that $H^p \subset B^q$ if and only if $q \leq 2p$.

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

ヘロト ヘアト ヘビト ヘビト

ъ

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

For q < 2p, the inclusion $H^p \hookrightarrow B^q$ is a compact operator.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

For q < 2p, the inclusion $H^p \hookrightarrow B^q$ is a compact operator.

The inclusion $H^p \hookrightarrow B^{2p}$ is not compact.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

For q < 2p, the inclusion $H^p \hookrightarrow B^q$ is a compact operator.

The inclusion $H^p \hookrightarrow B^{2p}$ is not compact.

Theorem (Lefèvre, R-P)

The natural inclusion $H^p \hookrightarrow B^{2p}$ is FSS, for every $p \in [1, +\infty)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

For p = 1 we can use Hardy inequality. We denote by $\hat{f}(n)$ the *n*'th Taylor coefficient in 0 of $f \in \mathcal{H}(\mathbb{D})$. Then

$$f(z)=\sum_{n\geq 0} \widehat{f}(n) z^n\,,\quad ext{for all }z\in\mathbb{D}\,.$$

(本間) (本語) (本語) (二語)

For p = 1 we can use Hardy inequality. We denote by $\hat{f}(n)$ the *n*'th Taylor coefficient in 0 of $f \in \mathcal{H}(\mathbb{D})$. Then

$$f(z) = \sum_{n \geq 0} \hat{f}(n) z^n$$
, for all $z \in \mathbb{D}$.

Hardy inequality For every $f \in H^1(\mathbb{D})$, we have $\sum_{n \ge 0} \frac{|\hat{f}(n)|}{n+1} \le \pi ||f||_{H^1}$.

イロト イ押ト イヨト イヨトー

For p = 1 we can use Hardy inequality. We denote by $\hat{f}(n)$ the *n*'th Taylor coefficient in 0 of $f \in \mathcal{H}(\mathbb{D})$. Then

$$f(z) = \sum_{n \geq 0} \hat{f}(n) z^n$$
, for all $z \in \mathbb{D}$.

Hardy inequality

For every
$$f \in H^1(\mathbb{D})$$
, we have $\sum_{n \ge 0} \frac{|\hat{f}(n)|}{n+1} \le \pi \|f\|_{H^1}$.

It is not difficult to see that

$$||f||_{B^2}^2 = \sum_{n\geq 0} \frac{|\hat{f}(n)|^2}{n+1}$$

This allows us to factorize the inclusion $H^1 \hookrightarrow B^2$ through the inclusion $L^1(\mu) \cap L^{\infty}(\mu) \hookrightarrow L^2(\mu)$, for μ the measure defined on \mathbb{N} by

$$\mu(B) = \sum_{n \in B} \frac{1}{n+1}, \qquad B \subset \mathbb{N}.$$

・ 回 と ・ ヨ と ・ ヨ と

ъ

This allows us to factorize the inclusion $H^1 \hookrightarrow B^2$ through the inclusion $L^1(\mu) \cap L^{\infty}(\mu) \hookrightarrow L^2(\mu)$, for μ the measure defined on \mathbb{N} by

$$\mu(B) = \sum_{n \in B} \frac{1}{n+1}, \qquad B \subset \mathbb{N}.$$

We conclude thanks to

Proposition (Lefèvre, R-P)

For every positive measure μ , the natural inclusion $L^1(\mu) \cap L^{\infty}(\mu) \hookrightarrow L^2(\mu)$ is FSS.

イロト イ理ト イヨト イヨト

Proof of the Proposition.

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

ヘロト 人間 とくほとくほとう

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

・聞き ・ヨト ・ヨト

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

From $\|\cdot\|_{\infty} \leq (1/\delta) \|\cdot\|_2$, we deduce $\|S\|_{\infty} \leq 1/\delta$.

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

From $\|\cdot\|_{\infty} \leq (1/\delta) \|\cdot\|_2$, we deduce $\|\boldsymbol{S}\|_{\infty} \leq 1/\delta$.

If $\{r_j\}$ are Rademacher functions, we have $\|S\|_1 \le K_1 \int \int_0^1 \left|\sum_{j=1}^n r_j(t)f_j\right| dt d\mu$

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

From $\|\cdot\|_{\infty} \leq (1/\delta)\|\cdot\|_2$, we deduce $\|\boldsymbol{S}\|_{\infty} \leq 1/\delta$.

If $\{r_j\}$ are Rademacher functions, we have $\|S\|_1 \leq K_1 \int_0^1 \left|\sum_{j=1}^n r_j(t)f_j\right| dt d\mu = K_1 \int_0^1 \left\|\sum_{j=1}^n r_j(t)f_j\right\|_{L^1} dt$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

From $\|\cdot\|_{\infty} \leq (1/\delta) \|\cdot\|_2$, we deduce $\|S\|_{\infty} \leq 1/\delta$.

If $\{r_j\}$ are Rademacher functions, we have $\|S\|_1 \le K_1 \int_0^1 |\sum_{j=1}^n r_j(t)f_j| dt d\mu = K_1 \int_0^1 ||\sum_{j=1}^n r_j(t)f_j||_{L^1} dt$ $\le \frac{K_1}{\delta} \left(\int_0^1 ||\sum_{j=1}^n r_j(t)f_j||_{L^2}^2 dt \right)^{1/2} = \frac{K_1\sqrt{n}}{\delta}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

From $\|\cdot\|_{\infty} \leq (1/\delta) \|\cdot\|_2$, we deduce $\|S\|_{\infty} \leq 1/\delta$.

If $\{r_j\}$ are Rademacher functions, we have $\|S\|_1 \le K_1 \int \int_0^1 \left|\sum_{j=1}^n r_j(t) f_j\right| dt d\mu = K_1 \int_0^1 \left\|\sum_{j=1}^n r_j(t) f_j\right\|_{L^1} dt$ $\le \frac{K_1}{\delta} \left(\int_0^1 \left\|\sum_{j=1}^n r_j(t) f_j\right\|_{L^2}^2 dt\right)^{1/2} = \frac{K_1 \sqrt{n}}{\delta}.$

In consequence $n = \int S^2 d\mu \le \|S\|_1 \|S\|_{\infty} \le \frac{K_1 \sqrt{n}}{\delta^2}$,

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

-
Proof for p = 1

Proof of the Proposition. Suppose *E* is an *n*-dimensional subspace such that $||f||_2 \ge \delta \max\{||f||_1, ||f||_\infty\}$, for every $f \in E$,

 $\{f_j\}_{j=1}^n$ an orthonormal basis of *E*, and $S = \left(\sum_{j=1}^n |f_j|^2\right)^{1/2}$.

From $\|\cdot\|_{\infty} \leq (1/\delta) \|\cdot\|_2$, we deduce $\|S\|_{\infty} \leq 1/\delta$.

If $\{r_j\}$ are Rademacher functions, we have $\|S\|_1 \le K_1 \int \int_0^1 \left|\sum_{j=1}^n r_j(t) f_j\right| dt d\mu = K_1 \int_0^1 \left\|\sum_{j=1}^n r_j(t) f_j\right\|_{L^1} dt$ $\le \frac{K_1}{\delta} \left(\int_0^1 \left\|\sum_{j=1}^n r_j(t) f_j\right\|_{L^2}^2 dt\right)^{1/2} = \frac{K_1 \sqrt{n}}{\delta}.$

In consequence $n = \int S^2 d\mu \le \|S\|_1 \|S\|_{\infty} \le \frac{\kappa_1 \sqrt{n}}{\delta^2}$, and $n \le \kappa_1^2 / \delta^4$.

ヘロト ヘアト ヘビト ヘビト

We use here Littlewood-Paley decomposiiton. For $j \ge 0$,

$$\Lambda_j = (2^{j-1} - 1, 2^j) \cap \mathbb{Z}.$$

< 回 > < 回 > < 回 > … 回

We use here Littlewood-Paley decomposiiton. For $j \ge 0$,

$$\Lambda_j=(2^{j-1}-1,2^j)\cap\mathbb{Z}.$$

For $f \in H^p$ let us define $P_j f$ by

$$P_j f(z) = \sum_{m \in \Lambda_j} \hat{f}(m) z^m, \quad z \in \mathbb{D}.$$

Littewood-Paley decomposition

For 1 , we have:

We use here Littlewood-Paley decomposiiton. For $j \ge 0$,

$$\Lambda_j = (\mathbf{2}^{j-1} - \mathbf{1}, \mathbf{2}^j) \cap \mathbb{Z}.$$

For $f \in H^p$ let us define $P_j f$ by

$$P_j f(z) = \sum_{m \in \Lambda_j} \hat{f}(m) z^m, \quad z \in \mathbb{D}.$$

Littewood-Paley decomposition

For 1 , we have:

•
$$\|f\|_{H^p} \approx \left\|\left(\sum_{j\geq o} |P_j f|^2\right)^{1/2}\right\|_{L^p(\mathbb{T})}$$

We use here Littlewood-Paley decomposiiton. For $j \ge 0$,

$$\Lambda_j=(2^{j-1}-1,2^j)\cap\mathbb{Z}.$$

For $f \in H^p$ let us define $P_j f$ by

$$P_j f(z) = \sum_{m \in \Lambda_j} \hat{f}(m) z^m, \quad z \in \mathbb{D}.$$

Littewood-Paley decomposition

For 1 , we have:

•
$$||f||_{H^p} \approx \left\| \left(\sum_{j \ge o} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{T})}.$$

• $||f||_{B^p} \approx \left\| \left(\sum_{j \ge o} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathcal{A})}.$

As a consequence we have, for 1 ,

$$\left(\sum_{j\geq 0} \|P_j f\|_{H^p}^2\right)^{1/2} \lesssim \|f\|_{H^p} \lesssim \left(\sum_{j\geq 0} \|P_j f\|_{H^p}^p\right)^{1/p};$$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

As a consequence we have, for 1 ,

$$\left(\sum_{j\geq 0} \|P_j f\|_{H^p}^2\right)^{1/2} \lesssim \|f\|_{H^p} \lesssim \left(\sum_{j\geq 0} \|P_j f\|_{H^p}^p\right)^{1/p};$$

and, for $p \ge 2$,

$$\left(\sum_{j\geq 0} \|P_j f\|_{H^{\rho}}^{\rho}\right)^{1/\rho} \lesssim \|f\|_{H^{\rho}} \lesssim \left(\sum_{j\geq 0} \|P_j f\|_{H^{\rho}}^{2}\right)^{1/2};$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Lemma 1

If $f \in H^p$, and $\hat{f}(m) = 0$, for m < N; Then $\|f\|_{B^p}^p \le \frac{2}{N} \|f\|_{H^p}^p$

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma 1

If $f \in H^p$, and $\hat{f}(m) = 0$, for m < N; Then $\|f\|_{B^p}^p \leq \frac{2}{N} \|f\|_{H^p}^p$

Define $H_k^p = \{f \in H^p : \hat{f}(m) = 0, \text{ for all } m \notin \Lambda_k\}$

・ 回 ト ・ ヨ ト ・ ヨ ト

Lemma 1

If
$$f \in H^p$$
, and $\hat{f}(m) = 0$, for $m < N$; Then $\|f\|_{B^p}^p \le \frac{2}{N} \|f\|_{H^p}^p$

Define
$$H_k^p = \{f \in H^p : \hat{f}(m) = 0, \text{ for all } m \notin \Lambda_k\}$$

Lemma 2

For
$$f \in H_k^p$$
, we have $\|f\|_{B^p}^p \approx 2^{-k} \|f\|_{H^p}^p$

ヘロア 人間 アメヨア 人口 ア

ъ

Lemma 1

If
$$f \in H^p$$
, and $\hat{f}(m) = 0$, for $m < N$; Then $\|f\|_{B^p}^p \le \frac{2}{N} \|f\|_{H^p}^p$

Define
$$H_k^p = \{ f \in H^p : \hat{f}(m) = 0, \text{ for all } m \notin \Lambda_k \}$$

Lemma 2

For
$$f \in H_k^p$$
, we have $\|f\|_{B^p}^p \approx 2^{-k} \|f\|_{H^p}^p$

Lemma 3

Let J_k be the inclusion $J_k: H_k^p \hookrightarrow B^{2p}$. Then the sequence $\{J_k\}_{k\geq 0}$ is uniformly finitely strictly singular.

ヘロン 人間 とくほ とくほ とう

Proposition

For $1 , there exists <math>M_p > 0$ such that:

Luis Rodríguez-Piazza Some Finitely Strictily Singular Operators in Analysis.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Proposition

For $1 , there exists <math>M_p > 0$ such that: (1) $||f||_{B^{2p}} \le M_p \left(\sum_k ||P_k f||_{H^p}^{2p}\right)^{1/2p}$, when $p \le 2$, and

Proposition

For
$$1 , there exists $M_p > 0$ such that:
(1) $||f||_{B^{2p}} \le M_p \left(\sum_k ||P_k f||_{H^p}^{2p} \right)^{1/2p}$, when $p \le 2$, and
(2) $||f||_{B^{2p}} \le M_p \left(\sup_k ||P_k f||_{H^p} \right)^{1/2} \left(\sum_k ||P_k f||_{H^p}^p \right)^{1/2p}$, when $p \ge 2$.$$

ヘロン ヘアン ヘビン ヘビン

ъ

Proposition

For
$$1 , there exists $M_p > 0$ such that:
(1) $||f||_{B^{2p}} \le M_p \left(\sum_k ||P_k f||_{H^p}^{2p} \right)^{1/2p}$, when $p \le 2$, and
(2) $||f||_{B^{2p}} \le M_p \left(\sup_k ||P_k f||_{H^p} \right)^{1/2} \left(\sum_k ||P_k f||_{H^p}^p \right)^{1/2p}$, when $p \ge 2$.$$

Proof of (1) for p = 2**.**

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proposition

For
$$1 , there exists $M_p > 0$ such that:
(1) $||f||_{B^{2p}} \le M_p \left(\sum_k ||P_k f||_{H^p}^{2p} \right)^{1/2p}$, when $p \le 2$, and
(2) $||f||_{B^{2p}} \le M_p (\sup_k ||P_k f||_{H^p})^{1/2} \left(\sum_k ||P_k f||_{H^p}^p \right)^{1/2p}$, when $p \ge 2$.$$

Proof of (1) for p = 2. Put $f_k = P_k f$. By Littlewood–Paley

$$\|f\|_{B^4}^4 \lesssim \int_{\mathbb{D}} \left(\sum_k |f_k|^2\right)^2 d\mathcal{A} = \sum_{k,l} \int_{\mathbb{D}} |f_k|^2 |f_l|^2 d\mathcal{A} = \sum_{k,l} \|f_k f_l\|_{B^2}^2$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proposition

For
$$1 , there exists $M_p > 0$ such that:
(1) $||f||_{B^{2p}} \le M_p \left(\sum_k ||P_k f||_{H^p}^{2p} \right)^{1/2p}$, when $p \le 2$, and
(2) $||f||_{B^{2p}} \le M_p \left(\sup_k ||P_k f||_{H^p} \right)^{1/2} \left(\sum_k ||P_k f||_{H^p}^p \right)^{1/2p}$, when $p \ge 2$.$$

Proof of (1) for p = 2. Put $f_k = P_k f$. By Littlewood–Paley

$$\|f\|_{B^4}^4 \lesssim \int_{\mathbb{D}} \left(\sum_k |f_k|^2\right)^2 d\mathcal{A} = \sum_{k,l} \int_{\mathbb{D}} |f_k|^2 |f_l|^2 d\mathcal{A} = \sum_{k,l} \|f_k f_l\|_{B^2}^2$$

If $k \leq l$, we have $\|f_k f_l\|_{B^2}^2 \lesssim 2^{-l} \|f_k f_l\|_{H^2}^2 \leq 2^{k-l} \|f_k\|_{H^2}^2 \|f_l\|_{H^2}^2$.

Therefore

$$\|f\|_{B^4}^4 \lessapprox 2\sum_{k \le l} \|f_k f_l\|_{B^2}^2 \lessapprox 2\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} 2^{-j} \|f_k\|_{H^2}^2 \|f_{k+j}\|_{H^2}^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Therefore

$$\|f\|_{B^4}^4 \lessapprox 2\sum_{k \le l} \|f_k f_l\|_{B^2}^2 \lessapprox 2\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} 2^{-j} \|f_k\|_{H^2}^2 \|f_{k+j}\|_{H^2}^2$$

by Cauchy-Schwartz

$$\|f\|_{B^4}^4 \lesssim \sum_j 2^{-j} \left(\sum_k \|f_k\|_{H^2}^4\right)^{1/2} \left(\sum_k \|f_{k+j}\|_{H^2}^4\right)^{1/2} \lesssim \sum_k \|f_k\|_{H^2}^4.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ