Perturbation classes for semi-Fredholm operators in some Banach lattices

Manuel González

Departamento de Matemáticas Universidad de Cantabria Santander, Spain

Workshop Operators and Banach lattices Madrid, 25-26 October 2012

Joint work with Javier Pello, Universidad Rey Juan Carlos, Móstoles.

Manuel González (Cantabria)

Perturbation classes

- X, Y Banach spaces;
- $T: X \longrightarrow Y$ bounded operator: $T \in \mathcal{L}(X, Y)$.

T *upper semi-Fredholm:* dim ker(T) < ∞ and R(T) closed.

 $\Phi_+(X, Y)$: upper semi-Fredholm operators from X into Y.

$$T \in \Phi_+(X, Y) \Rightarrow$$

 $X = \ker(T) \oplus M$, with M closed subspace,
 T isomorphism from M into Y .

 $T \in \Phi_+$ means T isomorphism into, up to a finite dim. subspace.

∃ ► < ∃ ►</p>

T *lower semi-Fredholm:* dim $Y/R(T) < \infty$ and R(T) closed. $\Phi_{-}(X, Y)$: lower semi-Fredholm operators from X into Y.

 $T \in \Phi_{-}(X, Y)$ means T surjective, up to a finite dim. subspace.

Duality relations:

•
$$T \in \Phi_{-}(X, Y) \Leftrightarrow T^* \in \Phi_{+}(Y^*, X^*);$$

•
$$T \in \Phi_+(X, Y) \Leftrightarrow T^* \in \Phi_-(Y^*, X^*).$$

Let S be Φ_+ or Φ_- , and suppose $S(X, Y) \neq \emptyset$ $PS(X, Y) := \{K \in \mathcal{L}(X, Y) : \forall T \in S(X, Y), T + K \in S\}.$ *Perturbation class of S.*

Questions: for concrete pairs of spaces *X* and *Y*,

- determine PS(X, Y);
- find intrinsic characterizations PS(X, Y).

Given a closed subspace *M* of *X*, $J_M : M \to X$ is the inclusion and $Q_M : X \to X/M$ the quotient map.

 $K \in \mathcal{L}(X, Y)$ strictly singular $K \in \mathcal{SS}(X, Y)$: $(KJ_M)^{-1}$ continuous $\Rightarrow \dim M < \infty$.

Kato (1954): $\mathcal{SS}(X, Y) \subset P\Phi_+(X, Y)$ when $\Phi_+(X, Y) \neq \emptyset$.

 $K \in \mathcal{L}(X, Y)$ strictly cosingular $K \in \mathcal{SC}(X, Y)$: $Q_N K$ surjective $\Rightarrow \dim Y/N < \infty$.

Vladimirskii (1967): $\mathcal{SC}(X, Y) \subset P\Phi_{-}(X, Y)$ when $\Phi_{-}(X, Y) \neq \emptyset$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gohberg, Markus, Feldman (1960):

• $SS(X, Y) = P\Phi_+(X, Y)$? (when $\Phi_+(X, Y) \neq \emptyset$)

Caradus, Pfaffenberger, Yood (1974):

• $\mathcal{SC}(X, Y) \subset \mathcal{P}\Phi_{-}(X, Y)$? (when $\Phi_{-}(X, Y) \neq \emptyset$)

Positive answers for some pairs of spaces X, Y provide intrinsic characterizations of the perturbation classes.

A B F A B F

Some positive solutions (before 2002)

We have $P\Phi_+(X, Y) = SS(X, Y)$ in the following cases:

• Y subprojective. Whitley (1964);

•
$$X = Y = L_p(\mu), 1 \le p \le \infty$$
. Weis (1977);

- X hereditarily indecomposable. Aiena, G. (2001);
- X separable and Y ⊃ C[0, 1] complemented.
 Aiena, G., Martinón (2002).

We have $P\Phi_{-}(X, Y) = SC(X, Y)$ in the following cases:

- X superprojective. Aiena, G. (2001);
- $X = Y = L_p(\mu)$, $1 \le p \le \infty$. Weis (1977);
- Y quotient indecomposable. Aiena, G. (2001);
- X ⊃ ℓ₁ complemented and Y separable.
 Aiena, G., Martinón (2002).

- There exists a reflexive space X for which $SS(X) \neq P\Phi_+(X)$ and $SC(X^*) \neq P\Phi_-(X^*)$ G. (2003).
- 2 There exists a space Z with $Z^* \simeq \ell_1$ for which $SS(Z) = P\Phi_+(Z)$ and $SC(Z) \neq P\Phi_-(Z)$ G. (2011).
- Solution For each $1 there exists a reflexive <math>X_p$ such that $\mathcal{SC}(X_p \times \ell_p) \neq P\Phi_-(X_p \times \ell_p)$ and $\mathcal{SS}(X_p^* \times \ell_p^*) \neq P\Phi_+(X_p^* \times \ell_p^*)$ Giménez, G., Martínez-Abejón (2012).

Question 1. Find counterexamples with classical Banach spaces.

Theorem (G., Salas-Brown (2010))

Suppose that Y contains L_p and one of the following conditions holds:

- p = 1 and Y is weakly sequentially complete;
- **2** 1 and Y satisfies the Orlicz property;
- $3 2 \le p \le \infty.$
- Then $P\Phi_+(L_p, Y) = SS(L_p, Y)$.

Orlicz property: every weakly null (x_n) with $\inf_n ||x_n|| > 0$ has a subsequence satisfying a lower 2-estimate:

$$\|\sum_{k=1}^\infty a_k x_{n_k}\| \geq C \Big(\sum_{k=1}^\infty |a_k|^2\Big)^{1/2}$$
 for each $(a_k) \subset \mathbb{K}.$

Corollary

For $1 \leq q \leq p < 2$, $P\Phi_+(L_p, L_q) = \mathcal{SS}(L_p, L_q)$.

Proposition

Suppose that X has a quotient isomorphic to L_q and one of the following conditions holds:

1 $2 < q < \infty$ and X^* satisfies the Orlicz property;

2 $1 \le q \le 2$.

Then $P\Phi_{-}(X, L_q) = SC(X, L_q).$

Corollary

For $2 \leq q \leq p \leq \infty$, $P\Phi_{-}(L_{p}, L_{q}) = \mathcal{SC}(L_{p}, L_{q})$.

Further positive solutions revisited

We saw that $P\Phi_+(L_p, Y) = SS(L_p, Y)$ when Y contains L_p ,

- p = 1 and Y is weakly sequentially complete;
- 2 1 and Y satisfies the Orlicz property;
- $3 2 \le p \le \infty.$

Case 3: For $2 \le p < \infty$ the space L_p is strongly subprojective: every inf. dim. closed subspace contains an inf. dim. subspace complemented in L_p with complement isomorphic to L_p .

Cases 1 and 2: We need additional conditions on *Y*.

Questions.

- Are these additional conditions necessary?
- Is it possible to replace *L_p* by other Banach lattices?

3

Strictly singular operators on Banach lattices

Let X be a Banach lattice, Y a Banach space, and $T \in Lc(X, Y)$.

T disjointly strictly singular: *M* subspace of *X* generated by a disjoint sequence \Rightarrow *TJ_M* is not an isomorphism into.

Theorem (FHKT, 2009)

Under certain conditions, $T \in Lc(X, Y)$ is strictly singular if and only if it is disjointly strictly singular and ℓ_2 -singular.

[FHKT, 2009] J. Flores, F.L. Hernández, N.J. Kalton and P. Tradacete. *J. London Math. Soc. 79 (2009), 612–630.*

Theorem

Let $p \in (1, \infty)$ and let X be a Banach lattice with finite cotype such that (a) every copy of ℓ_2 in X contains a complemented copy; (b) every subspace of X spanned by a disjoint sequence contains a further subspace complemented in X and isomorphic to ℓ_p ; (c) for every subspace M of X isomorphic to ℓ_p , there exist subspaces N of M and H of X with $H \simeq X$, $N \cap H = 0$ and N + H is closed.

Let Y be a Banach space containing an isomorphic copy of X and such that $SS(\ell_2, Y) = \mathcal{K}(\ell_2, Y)$.

Then $P\Phi_+(X, Y) = SS(X, Y)$.

$$P\Phi_+(X, Y) = \mathcal{SS}(X, Y)$$
 for

$$X = L_{p,q}(0, 1), L_{p,q}(0, \infty)$$
, or $\Lambda(W, p)$ $(1 and Y containing a copy of X and satisfying $SS(\ell_2, Y) = \mathcal{K}(\ell_2, Y)$.$

< A

Theorem

Let $p \in (1,\infty)$ and let Y be a reflexive Banach lattice with finite type such that

(a) every copy of ℓ_2 in Y^{*} contains a complemented copy;

(b) every subspace of Y^{*} spanned by a disjoint sequence contains a further subspace complemented in Y^{*} and isomorphic to ℓ_p ;

(c) for every subspace M of Y^* isomorphic to ℓ_p , there exist subspaces $N \subseteq M$ and $H \subseteq Y^*$ such that H is isomorphic to Y^* , $N \cap H = 0$ and N + H is closed.

Let X be a Banach space admitting a quotient isomorphic to X and such that $SS(\ell_2, X^*) = \mathcal{K}(\ell_2, X^*)$.

Then $P\Phi_{-}(X, Y) = SC(X, Y)$.

$$P\Phi_{-}(X, Y) = \mathcal{SC}(X, Y)$$
 for

$$Y = L_{
ho,q}(0,1), \, L_{
ho,q}(0,\infty), \, ext{or} \, \Lambda(W,
ho) \, \, (2 <
ho < \infty, \, 1 < q < \infty)$$

and *X* admitting a quotient isomorphic to *Y* and satisfying $SS(\ell_2, X^*) = K(\ell_2, X^*)$.

(4) (5) (4) (5)

A D M A A A M M

Thank you for your attention.