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Rearrangement invariant Banach function space

Let X be a rearrangement invariant Banach function space (r.i.); that is

||f ||X = ||f ∗||X̄
where f ∗ is the decreasing rearrangement of f respect to the Lebesgue
measure:

f ∗(t) = inf{s > 0;λf(s) ≤ t}
with

λf(s) = |{x; |f (x)| > s}|.

Examples:

(i) X = Lp, 1 ≤ p ≤ ∞.

(ii) Orlicz spaces (Ex.: L logL).

(iii) Lorentz spaces Lp,q.



Definition 1 The upper Boyd index αX is defined as follows:

αX := lim
t→∞

log ||Dt||X
log t

,

with ||Dt||X the norm of the dilation operator

||Dt||X = sup
||f ||X≤1

||Dtf ||X, Dtf (s) = f (s/t).

And the lower Boyd index βX is defined by

βX := lim
t→0

log ||Dt||X
log t

.

We will be interested in the following classical result concerning the
following two important operators in Harmonic Analysis: the Hardy-
Littlewood maximal operator

Mf (x) = sup
x∈I

1

|I|

∫
I

|f (y)|dy,



where the supremum is taken over all intervals I of the real line, and the
Hilbert transform

Hf (x) =
1

π
lim
ε→0+

∫
|x−y|>ε

f (y)

x− y
dy,

whenever this limits exists almost everywhere.

Classical Results

Theorem 1 (Lorentz-Shimogaki, 1967)

Given a r.i. Banach Function Space X on R,

M : X −→ X is bounded ⇐⇒ αX < 1.

Theorem 2 (Boyd, 1967)

H : X −→ X is bounded ⇐⇒ αX < 1, and βX > 0.



Example 1: X = Lp, then ||Dt||Lp = t1/p and therefore

αX = βX =
1

p
.

Hence Lorentz-Shimogaki Theorem says that

M : Lp −→ Lp ⇐⇒ p > 1,

and Boyd’s Theorem

H : Lp −→ Lp ⇐⇒ 1 < p <∞.

That is, we recover the Riesz-Kolmogorov theorem (1920’s).



Idea of the Proof

Lorentz-Shimogaki’s

It is known that

(Mf )∗(t) ≈ 1

t

∫ t

0

f ∗(s)ds =

∫ 1

0

f ∗(st)ds,

and hence

||Mf ||X ≤
∫
||f (·s)||Xds ≤ ||f ||X

∫ 1

0

||D1/s||ds.

Everything follows now, from the fact that∫ 1

0

||D1/s||ds <∞ ⇐⇒ ||D1/s|| ≤
1

sα
, α < 1 ⇐⇒ αX < 1.

and the hidden reason because all these equivalences are true is the fact
that the function h(s) = ||D1/s|| is submultiplicative; that is h(st) ≤
h(s)h(t).



Boyd’s theorem:

(Hf )∗(t) .
1

t

∫ t

0

f ∗(s)ds+

∫ ∞
t

f ∗(s)
ds

s
=

∫ 1

0

f ∗(st)ds+

∫ 1

0

f ∗
( t
s

)ds
s
,

and, as before,

||Hf ||X . ||f ||X
(∫ 1

0

||D1/s||ds +

∫ 1

0

||Ds||
ds

s

)
The first term is controlled by the condition αX < 1 and the second term
by βX > 0 and again, the main property is the submultiplicity property.

Example 2:
Classical Lorentz spaces

Let us recall that the Lorentz spaces Λp(w) were introduced by Lorentz
in 1951 and are defined by the condition

‖f‖Λp(w) =

(∫ ∞
0

f ∗(t)pw(t)dt

)1/p

<∞.



Examples:

(i) If w = 1, Λp(w) = Lp.

(ii) If w(t) = tp/q−1, Λp(w) = Lq,p.

(iii) If w(t) = 1 + log+ 1
t , and p = 1, Λ1(w) = L logL.

(iv) If p = 1, Λ1(w) = ΛW is a minimal Lorentz space with fundamental
function W .

Question 1:

Since Λp(w) are r.i., what does the Lorentz-Shimogaki and Boyd’s theo-
rems say?



Proposition 1

For every 0 < p <∞,

αΛp(w) := lim
t→∞

logW
1/p

(t)

log t
, βΛp(w) := lim

t→0

logW
1/p

(t)

log t
,

where

W (t) := sup
s∈[0,+∞)

W (st)

W (s)
.

Then, the Lorentz-Shimogaki’s Theorem applied to Λp(w) says that

Corollary 3

M : Λp(w) −→ Λp(w) ⇐⇒ lim
t→∞

logW
1/p

(t)

log t
< 1.

Corollary 4

H : Λp(w) −→ Λp(w) ⇐⇒ lim
t→∞

logW
1/p

(t)

log t
< 1, lim

t→0

logW
1/p

(t)

log t
> 0.



Theorem 5 (Ariño-Muckenhoupt, 1990)

For every p > 0,
M : Λp(w) −→ Λp(w)

if and only if w ∈ Bp, that is

rp
∫ ∞
r

w(t)

tp
dt .

∫ r

0

w(t)dt.

Theorem 6 (E. Sawyer, 1991)

For every p > 0,
H : Λp(w) −→ Λp(w)

if and only if w ∈ Bp ∩B∗∞, where w ∈ B∗∞ if



∫ r

0

1

t

∫ t

0

w(s)dsdt .
∫ r

0

w(s)ds.

As a consequence:

Corollary 7

lim
t→∞

logW
1/p

(t)

log t
< 1 if and only if w ∈ Bp.

Corollary 8

lim
t→0

logW
1/p

(t)

log t
> 0 if and only if w ∈ B∗∞.

Remark 1

w ∈ Bp if and only if W
1/p

(t) . tα, α < 1.



Lemma 1

For every submutiplicative increasing function ϕ defined in [1,∞),

lim
t→∞

logϕ(t)

log t
< 1 if and only if ϕ(x) . xα

for some α < 1 and every x > 1.

Question 2: How can we define Boyd’s indices in spaces which are
Banach Function Spaces non necessarily rearrangement invariant?



Weighted Lebesgue spaces

In the 70’s the following theorem was proved.

Theorem 9 (Muckenhoupt, 1972)

If p > 1,
M : Lp(u)→ Lp(u)

if and only if u ∈ Ap:

sup
Q

(
1

|Q|

∫
Q

u(x)dx

)(
1

|Q|

∫
Q

u(x)−1/(p−1)dx

)p−1

<∞.

Theorem 10 (Hunt, Muckenhoupt, Wheeden, 1973)

H : Lp(u)→ Lp(u) ⇐⇒ u ∈ Ap



Question 3:

Is there an analogue to the Lorentz-Shimogaki and Boyd’s theorem for
the spaces Lp(u)?

In 2007, Lerner and Pérez defined the upper Boyd’s index for more gen-
eral spaces than r.i. and proved the analogue to Lorentz-Shimogaki’s
theorem.

To pursue this direction we introduce a generalized definition of the
upper Boyd index. In this new approach the main role is played by
the so-called local maximal operator mλf defined by

mλf (x) = sup
x∈Q

(fχQ)∗(λ|Q|), 0 < λ < 1.

We give the following generalization of the upper Boyd index.

Definition 2 For any quasi-Banach function space X over Rn we
define the non-increasing function ΦX on (0, 1) as the operator norm



of mλ on X, namely,

ΦX(λ) = ||mλ||X = sup
||f ||X≤1

||mλf ||X.

We define the generalized upper Boyd index as

αX = lim
λ→0

log ΦX(λ)

log 1
λ

.

Theorem 11 (Lerner-Pérez, 2007)

M : X −→ X

if and only if αX < 1.

Examples:

1)

αLp(u) = lim
t→∞

log ν
1/p
u (t)

log t
< 1,

where



νu(t) = sup

{
u(I)

u(E)
; E ⊂ I,

|I|
|E|

= t

}
Theorem 12 (Lerner-Pérez, 2007)

M : Lp(u) −→ Lp(u)

if and only if

αLp(u) = lim
t→∞

log ν
1/p
u (t)

log t
< 1,

where

νu(t) = sup

{
u(I)

u(E)
; E ⊂ I,

|I|
|E|

= t

}
Question 4: Where the functions mλ and ΦX appear?



1

|Q|

∫
Q

|f (x)|dx =

∫ 1

0

(fχQ)∗(λ|Q|)dλ,

and hence

Mf (x) ≤
∫ 1

0

mλf (x)dλ

||Mf ||X ≤
∫ 1

0

||mλf ||Xdλ ≤ ||f ||X
∫ 1

0

ΦX(λ)dx.

Question 5: how can we define the lower Boyd index for a general
BFS?

Weighted Lorentz Spaces, 1951

The weighted Lorentz spaces Λp
u(w) are defined by the condition

‖f‖Λ
p
u(w) =

(∫ ∞
0

f ∗u(t)pw(t)dt

)1/p

<∞,

where f ∗u is the decreasing rearrangement of f respect to u,



f ∗u(t) = inf{s > 0;λuf(s) ≤ t}

with
λuf(s) = u({x; |f (x)| > s}).

Examples:

1) If w = 1, then Λp
u(w) = Lp(u)

2) If u = 1, then Λp
u(w) = Λp(w)

3) If u = 1 and w(t) = tp/q−1 then Λp
u(w) = Lq,p.

4) If w(t) = tp/q−1 then Λp
u(w) = Lq,p(u).

Question 6: (J. A. Raposo’s thesis)

Which is the characterization of the weights u and w such that

M : Λp
u(w) −→ Λp

u(w)?



BRIEF ARTICLE

THE AUTHOR

Lp(u) Lp Λp(w)

Ap Bp

✻✻
70’s 90’s

R R+

1



BRIEF ARTICLE

THE AUTHOR

Lp(w) Lp Λp(w)

Ap Bp

✒

✒

Λp
u(w)

???

1



Theorem 13 (C-Raposo-Soria, 2007)

If 0 < p <∞,

M : Λp
u(w) −→ Λp

u(w)

is bounded if and only if there exists α < 1 such that for every t > 1,

W
1/p
u (t) . tα, (1)

where, for every t > 1,

W u(t) := sup


W
(
u
(⋃

j Ij

))
W
(
u
(⋃

j Sj

)) : Sj ⊆ Ij,
|Ij|
|Sj|

= t

 ,

with Ij disjoint intervals and all unions are finite.



Remark 2

In the paper of Lerner-Pérez, they compute

αΛ
p
u(w) = lim

t→∞

logW
1
p
u(t)

log t
, (2)

and proved that

M : Λp
u(w) −→ Λp

u(w) ⇐⇒ lim
t→∞

logW
1
p
u(t)

log t
< 1.

Since we also have that

M : Λp
u(w) −→ Λp

u(w) ⇐⇒ W
1/p
u (t) . tα, α < 1



Proposition 2

The function W u is submultiplicative on [1,∞).

Lemma 2

Let I be an interval and let S = ∪Nk=1(ak, bk) be union of disjoint
intervals such that S ⊂ I. Then, for every t ∈ [ 1, |I|/|S| ] there
exists a collection of disjoint subintervals {In}Mn=1 satisfying that S ⊂
∪nIn such that, for every n,

t|S ∩ In| = |In|. (3)



Question 6: (E. Agora’s thesis)

Which is the characterization of the weights u and w such that

H : Λp
u(w) −→ Λp

u(w)?



Theorem 14

If p > 1 then
H : Λp

u(w) −→ Λp
u(w)

if and only if the three following condition holds:

(i) u ∈ A∞ = ∪pAp.

(ii) w ∈ B∗∞.

(iii)
M : Λp

u(w) −→ Λp
u(w).

Question: Is there some relation between the conditions (i) and (ii) in
the previous theorem and some lower Boyd’s index?



The Boyd Theorem for Λp
u(w)

Definition 3

If λ ∈ (0, 1], we define

Wu(λ) := sup


W
(
u
(⋃

j Sj

))
W
(
u
(⋃

j Ij

)) : Sj ⊆ Ij,
|Sj|
|Ij|

= λ

 ,

where Ij are disjoint open intervals and all unions are finite.

Proposition 3

The function Wu is submultiplicative in [0, 1].

By analogy with the case of the upper index, we give the following defi-
nition.



Definition 4

We define the generalized lower Boyd index associated to Λp
u(w) as

βΛ
p
u(w) := lim

t→0

logWu
1/p(t)

log t
.

Proposition 4

A couple of weights u and w satisfy that u ∈ A∞ and w ∈ B∗∞ if and
only if

βΛ
p
u(w) > 0.

Theorem 15

If p > 1 then
H : Λp

u(w) −→ Λp
u(w)

if and only if

αΛ
p
u(w) < 1 and βΛ

p
u(w) > 0.



Theorem 16

Let 0 < p <∞. If
H : Λp

u(w) −→ Λp
u(w)

is bounded then
βΛ

p
u(w) > 0.

Theorem 17

Let 0 < p <∞. If

αΛ
p
u(w) < 1 and βΛ

p
u(w) > 0

then
H : Λp

u(w) −→ Λp
u(w)

is bounded.

So it remains to prove that, for every 0 < p ≤ 1,

H : Λp
u(w) −→ Λp

u(w) =⇒ αΛ
p
u(w) < 1.



Indices for Banach Function Spaces

Definition 5

Let X be a r.i. space with fundamental function ϕX and let

ϕX(t) = sup
s

ϕX(st)

ϕX(s)
.

Then the lower and upper fundamental indices are defined by

β
X

= lim
t→0

logϕX(t)

log t
and βX = lim

t→∞

logϕX(t)

log t
.



Remark 3 If we rewrite our function Wu
1/p

we see that, if X =
Λp
u(w),

Wu
1/p

(λ) = sup


W 1/p

(
u
(⋃

j Ij

))
W 1/p

(
u
(⋃

j Sj

)) : Sj ⊆ Ij,
|Ij|
|Sj|

= λ


= sup

{
||χ⋃

j Ij
||X

||χ⋃
j Sj
||X

: Sj ⊆ Ij,
|Ij|
|Sj|

= λ

}

Now, if we take the last expression and we think that X is r.i., we
obtain that

sup

{
||χ⋃

j Ij
||X

||χ⋃
j Sj
||X

: Sj ⊆ Ij,
|Ij|
|Sj|

= λ

}
= sup

{||χ(0,r)||X
||χ(0,s)||X

:
r

s
= λ

}
= sup

{
ϕX(r)

ϕX(s)
||X : r = sλ

}
= ϕX(λ)



And, if we rewrite our function Wu
1/p we see that, if X = Λp

u(w),

Wu
1/p(λ) = sup


W 1/p

(
u
(⋃

j Sj

))
W 1/p

(
u
(⋃

j Ij

)) : Sj ⊆ Ij,
|Sj|
|Ij|

= λ


= sup

{
||χ⋃

j Sj
||X

||χ⋃
j Ij
||X

: Sj ⊆ Ij,
|Sj|
|Ij|

= λ

}

and, if we take the last expression and we think that X is r.i., we
obtain that

sup

{
||χ⋃

j Sj
||X

||χ⋃
j Ij
||X

: Sj ⊆ Ij,
|Sj|
|Ij|

= λ

}
= sup

{||χ(0,r)||X
||χ(0,s)||X

:
r

s
= λ

}
= sup

{
ϕX(r)

ϕX(s)
||X : r = sλ

}
= ϕX(λ).



Definition 6

Given a Banach function space X, we define

ϕX(λ) = sup

{
||χ⋃

j Ij
||X

||χ⋃
j Sj
||X

: Sj ⊆ Ij,
|Ij|
|Sj|

= λ

}
, λ ≥ 1

and

ϕX(λ) = sup

{
||χ⋃

j Sj
||X

||χ⋃
j Ij
||X

: Sj ⊆ Ij,
|Sj|
|Ij|

= λ

}
, λ < 1.

Then, we define the lower and upper fundamental indices as follows:

β
X

= lim
t→0

logϕX(t)

log t
and βX = lim

t→∞

logϕX(t)

log t
.



Questions

(i) Which is the relation between this new upper index and the Boyd
index of Pérez-Lerner?

Open question.

(ii) Is the Lorentz-Shimogaki theorem true with this new upper index?

No. In 1970, Shimogaki gave an example of a r.i. space X such that the
fundamental function is the same than L2 but the maximal operator is
not bounded in X .

(iii) Is the Boyd theorem true with these new upper and lower index?

No.

... etc ...



Some progress and recent results

Proposition 5

ϕ̄X is submultiplicative in [0,∞).

Theorem 18

M : X → X =⇒ βX < 1.

Theorem 19

If βX < 1, then
||MχE||X ≤ ||χE||X

for every measurable set E.
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