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E = (E , ‖ · ‖), F = (F , ‖ · ‖) Banach lattices

Arnoud C. M. van Rooij, When do regular operators between
two Riesz spaces form a Riesz space ? (Report 8410,
Department of Mathematics, Catholic University Nijmegen,
1984, 97 pp.)

positive operators L+(E , F ) (T (E+) ⊂ F+)

regular operators Lr (E , F ) (T = T1 − T2, Ti ∈ L+(E , F ),
Lr (E , F ) = span L+(E , F ))

order bounded operators Lb(E , F ) (A ⊂ E order bounded ⇒
T (A) order bounded in F )

continuous operators L(E , F )

Lr (E , F ), Lb(E , F ), L(E , F ) are ordered vector space with
respect to the order generated by L+(E , F ):
T 6 S ⇔ S − T ∈ L+(E , F )
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T : E → F order continuous (xα
(o)−→ x ⇒ T (xα)

(o)−→ T (x))
⇒ T ∈ Lb(E , F )

Lb(E , F ) ⊂ L(E , F )

‖xn‖ → 0 ⇒passing to a subsequence if necessary x =
∑∞

n=1 n|xn| ⇒
{nxn : n ∈ N} ⊂ [−x , x ] ⇒ {nT (xn) : n ∈ N} order bounded
‖nT (xn)‖ < M ⇒ ‖T (xn)‖ → 0

L+(E , F )  Lr (E , F )  Lb(E , F )  L(E , F )

for E = C[0, 1], F = C[0, 1]× `p (p < ∞)

Lr (`
1, F ) = Lb(`1, F ) = L(`1, F ) for an arbitrary F

T ∈ L(`1, F ) ⇒
∑∞

n=1 an|T (en)| = S((an))
S, (S − T ) ∈ L+(`1, F ) and T = S − (S − T )
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Lr (E , F ) = Lb(E , F ) = L(E , F ) for an arbitrary F ⇒ E is
order isomorphic to `1(Γ)

Lb(E , F ) = Lr (E , F δ)∩ L(E , F ) because F is full (= cofinal) in its
Dedekind completion F δ (i.e., ∀y∈Fδ∃x∈F y 6 x)

finite rank operators F(E , F ) ⊂ Lr (E , F ): T =
∑n

k=1 fk ⊗ xk ,
xk ∈ E , fk ∈ F ∗, then
T =

∑n
k=1 |fk | ⊗ |xk | − (

∑n
k=1 |fk | ⊗ |xk | − T )

T1 =
∨n

k=1 |fk | ⊗
∨n

k=1 |xk | ⇒ T = T1 − (T1 − T )

Question: Is an operator of rank k a difference of two positive
operators of the same rank k ?
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f ⊗ x is a difference of two positive rank-one operators iff x or f
is comparable with zero.

Suppose f and x are not comparable with zero but
T = f ⊗ x = T1 − T2 where Ti = fi ⊗ xi > 0.
Ti > 0 ⇒ we can assume without loss of generality xi , fi > 0.
T is not comparable with zero ⇒ Ti 6= 0.
f ⊗ x = f1 ⊗ x1 − f2 ⊗ x2 ⇒ Ker f1 ∩ Ker f2 ⊂ Ker f . Hence
f = αf1 + βf2
Suppose f1, f2 are linearly independent. Therefore
Ker f2 * Ker f1. Hence f (y)x = αf1(y)x1 6= 0 for some y ∈ E
which is impossible because x is not comparable with zero.
Assume now that f1, f2 are linearly dependent. But now f = γf1
for some nonzero γ which is impossible again because f is not
comparable with zero.
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Lr (E , F ) contains nuclear operators, i.e., operators of the form∑∞
k=1 fk ⊗ xk where

∑∞
k=1 ‖fk‖ < ∞ and

∑∞
k=1 ‖xk‖ < ∞.

Topological properties of Lr (E , F ) and Lb(E , F ).

Let K be a metrizable compact space.
c0 is Dedekind complete ⇒ Lr (C(K ), c0) = Lb(C(K ), c0)
order bounded sets in c0 = relatively compact sets in c0 ⇒
Lr (C(K ), c0) = K(C(K ), c0) but K(C(K ), c0) 6= L(C(K ), c0)
because C(K ) is separable and and so c0 is complemented in
C(K ) but a projection is not compact.

Let p, q ∈ (1,∞). There exists T ∈ K(`p, `q)r Lr (`
p, `q).

`q has the approximation property ⇒ T = limn→∞ Tn where
Tn ∈ F(`p, `q) ⊂ Lr (`

p, `q), i.e., Lr (`
p, `q) = Lb(`p, `q) is not

closed in L(`p, `q). If q < p, then Lr (`
p, `q) is a proper dense

subset in L(`p, `q) because L(`p, `q) = K(`p, `q) by Pitt’s
theorem.
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Lr (E , F ) is a Banach space with respect to a norm called the
regular norm ‖ · ‖r
‖T‖r = inf{‖S‖ : ±T 6 S} =
inf{‖T1 + T2‖ : T = T1 − T2, Ti ∈ L+(E , F )}.
‖T‖ 6 ‖T‖r (there exists T : (R2n

, ‖ · ‖2) → (R2n
, ‖ · ‖2) with

‖T‖ = 1 and ‖T‖r =
√

2n; for n = 1 we can choose

T = 1√
2

[
1 1
1 −1

]
)
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When do spaces Lr (E , F ) form a Riesz space ?

F is Dedekind complete ⇒ Lr (E , F ) is a Dedekind complete
Riesz space for every E and the modulus |T | = sup{T ,−T} of
T is given by the Kantorovich’s formula
|T |(x) = sup|y |6x |T (y)| for every positive x ∈ E

On the other hand if F is not necessary Dedekind complete but
T : E → F is such that the above formula makes sense for
each x ∈ E+ then it defines a positive operator, and it is
precisely the modulus of T . When this is the case we say that
the modulus exists properly, or that T has a proper modulus.
Also, when the modulus |T | exists we shall say that it exists
properly at x if |T |(x) is given by the Kantorovich’s equality.

old open question: does there exist a regular operator with
non-proper modulus?
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Assume that an operator T : E → F possesses the modulus
and let Ep|T | = {x ∈ E+ : T exists properly at x}

Proposition
The set Ep|T | possesses the following properties.

Ep|T | is a cone.
0 6 y 6 x ∈ Ep|T | ⇒ y ∈ Ep|T |.
Ep|T | is closed under finite infima and suprema
(x , y ∈ Ep|T | ⇒ x ∧ y , x ∨ y ∈ Ep|T |).
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If T = f ⊗ x , then |T | = |f | ⊗ |x | – but there exists a finite rank
operator whose modulus is not a finite rank operator.

Theorem
If E , F are Banach lattices, then every continuous finite rank
operator T : E → F has a proper modulus |T | in Lr (E , F ) and
the modulus |T | is compact.

F is Dedekind complete ⇒ Lr (E , F ) is a Riesz space – what
about ⇐ ?
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Y.A. Abramovich, V.A. Gejler, A.C.M. van Rooij, A.W.
Wickstead:

Theorem
For a Banach lattice F the following statements are equivalent.
(a) Lr (E , F ) is a Riesz space for all Banach lattices E.
(b) Lr (L1(µ), F ) is a Riesz space for all measures µ.
(c) Lr (C(K ), F ) is a Riesz space for every compact set K .
(d) Lr (c(S), F ) is a Riesz space for every set S, where

c(S) = {f ∈ RS : ∃r>0 ∀ε>0 |f (s)− r | >
ε for at most finitely many s}, and ‖f‖ = sups∈S |f (s)|.

(e) F is Dedekind complete.
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A. van Rooij’s characterization of σ-Dedekind complete Banach
lattices.

Theorem
For a Banach lattice F the following statements are equivalent.
(a) Lr (L1[0, 1], F ) is a Riesz space.
(b) Lr (c, F ) is a Riesz space, where c = c(N).
(c) Lr (C(K ), F ) is a Riesz space for every infinite metrizable

compact space K .
(d) F is σ-Dedekind complete.

Y.A. Abramovich, A.W. Wickstead:

Theorem
(d) ⇔ (e): Lr (E , F ) are σ-Dedekind complete Riesz spaces for
all separable Banach lattices E.
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Proposition

If Lr (c, F ) is a Riesz space, then every T ∈ Lr (c, F ) has the
proper modulus.

Theorem
For a Banach lattice E the following statements are equivalent.
(a) Lr (E , F ) is a Riesz space for all Banach lattices F and

every T ∈ Lr (E , F ) has the proper modulus.
(b) Lr (E , F ) is a Riesz space for all Banach lattices F .
(c) Lr (E , C(K )) is a Riesz space for every compact space K .
(d) E is discrete and its norm is order continuous.
(e) E is σ-Dedekind complete and L(E , c0) = Lr (E , c0).
(f) Every x ∈ E lies in an ideal of E that is order isomorphic to

a quotient Riesz space of c0.
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0 < x ∈ E is discrete iff |y | 6 x ⇒ y = tx for some scalar t
(unit vectors are discrete in classical sequence Banach
lattices).

E is discrete if ∀0<x∈E ∃discrete e∈E e 6 x .

E is discrete ⇒ ∃Γ ∃sublattice F⊂RΓ such that
span{1{γ} : γ ∈ Γ} ⊂ F ∼ E .

Examples of discrete spaces: all classical sequence Banach
lattices.

A Banach lattice is continuous when it contains none discrete
elements (C[0, 1], Lp(µ) for atomless measures µ, `∞/c0).

A Banach lattice E = (E , ‖ · ‖) has order continuous norm if
xα ↓ 0 ⇒ ‖xα‖ → 0.
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When is Lr (E , F ) discrete or continuous ?

Theorem
Let E , F be two Banach lattices and let F be Dedekind
complete.
(a) Lr (E , F ) is discrete iff E∗ and F are discrete.
(b) Lr (E , F ) is continuous iff E∗ or F is continuous.

Moreover, T ∈ Lr (E , F ) is discrete iff T = f ⊗ e where e is
discrete in E and f ∈ F ∗ is a homomorphism (i.e., f is discrete
in the dual space ).
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Z.L. Chen

Theorem
The regular norm is order continuous on Lr (E , F ) iff positive
operators between E and F are simultaneously L-weakly and
M-weakly compact ( i.e., ‖yn‖ → 0 whenever yn ∈ sol T (BE) are
disjoint and ‖Txn‖ → 0 for each norm bounded disjoint
sequence (xn) ⊂ E ).
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Corollary
If a Banach lattice F has order continuous norm, then the
regular norm on Lr (C(K ), F ) is order continuous too.

norm on F is order continuous ⇔ regular operators from
C(K ) into F are weakly compact, but weakly compact operators
on C(K ) spaces coincide with M-weakly compact operators.
The dual of C(K ) has order continuous norm and now we can
use the Dodds-Fremlin theorem: M-weakly compact operators
mapping T : E → F are L-weakly compact and vice versa
whenever E∗ and F have order continuous norms.

Corollary

The regular norm is order continuous on Lr (E , E) iff E is finite
dimensional.
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E is a KB space ⇔ (0 6 xn ↑ and supn ‖xn‖ < ∞) ⇒ (xn)
is convergent ⇔ E does not contain any subspace
isomorphic to c0

Z.L. Chen

Theorem
The following statements are equivalent.
(a) (Lr (E , F ), ‖ · ‖r ) is a KB-space.
(b) ‖ · ‖r is order continuous and F is a KB-space.
(c) F is a KB-space and every positive T : E → F is M-weakly

compact.

Corollary

If Lp(µ), Lq(ν) are infinite dimensional, then
(Lr (Lp(µ), Lq(ν)), ‖ · ‖r ) is a KB-space iff q < p.
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E has the positive Schur property (E ∈ (PSP)) whenever

0 6 xn
σ(E ,E∗)−−−−−→ 0 ⇒ ‖xn‖ → 0.

L1(µ) ∈ (PSP)
D. Leung: µ finite, ϕ an Orlicz function such that
lims→∞

ϕ∗(2s)
ϕ∗(s) = ∞ (where ϕ∗(t) = supt>0(st − ϕ(s))) ⇒

Lϕ(µ) ∈ (PSP); moreover (Lϕ(µ))(2n) ∈ (PSP) for all n.

Corollary
Suppose that E∗ (respectively F ) possesses the positive Schur
property. Then Lr (E , F ) with the regular norm is a KB-space iff
F (respectively E∗) is a KB-space.
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A. van Rooij

Proposition

The space Lr (`
∞, F ) is a Riesz space iff F is c-complete, i.e.,

every order bounded from above subset X with card X 6 c has
a supremum.
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When L(E , F ) = Lr (E , F ) ?

? L.V Kantorovich, B.Z. Vulikh

Theorem
If E, F are such that F is order isomorphic to a Dedekind
complete space C(K ) or E is order isomorphic to L1(µ) and
simultaneously there exists norm one positive projection
P : F ∗∗ → F, then every continuous operator T : E → F is
regular (and so L(E , F ) is a Riesz space ). Moreover the
operator and regular norms are equal.

conjecture: L(E , F ) = Lr (E , F ) ⇒ E is order isomorphic to
L1(µ) or F is order isomorphic to a closed Riesz subspace in
some C(K ) space.
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D. Cartwright and H.P. Lotz

Theorem
Let E , F be Banach lattices such that F (resp. E∗) contains a
closed Riesz subspace order isomorphic to `p for a finite p. If
every compact operator T : E → F belongs to Lr (E , F ∗∗), then
E is order isomorphic to L1(µ) (resp. F is order isomorphic to a
closed Riesz subspace of some C(K )).

Corollary

L(E , L1(µ)) = Lr (E , L1(µ)) for infinite dimensional L1(µ) iff E is
order isomorphic to L1(ν).
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Y.A. Abramovich and A.W. Wickstead: arguments “supporting”
the conjecture.

Theorem
The following conditions on a Banach lattice F are equivalent.
(a) F is order isomorphic to a Dedekind complete C(K ) space.
(b) For every Banach lattice E the space L(E , F ) is a Riesz

space.
(c) For every Banach lattice E every continuous T : E → F is

regular and Lr (E , F ) forms a Riesz space.

Y.A. Abramovich disproved the conjecture – there exits E and F
such that E is not order isomorphic to any L1(µ), F is not order
isomorphic to any AM-space but every T ∈ L(E , F ) has the
modulus (in particular L(E , F ) = Lr (E , F )).
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We have already mentioned that L(L1(µ), F ) = Lr (L1(µ), F )
whenever there exists a contractive positive projection
P : F ∗∗ → F . The assumption about F can be slightly
weakened – it is enough to require that F has the Levi property,
i.e., increasing norm bounded nets of positive elements have a
supremum in F .

Abramovich and Wickstead noticed that this modified version of
the theorem can be reversed.

Theorem
The following conditions on a Banach lattice F are equivalent.
(a) F has the Levi property.
(b) L(L1(µ), F ) is a Riesz space for every measure µ.
(c) L(L1(µ), F ) = Lr (L1(µ), F ) for every µ and F is Dedekind

complete.
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‖ · ‖ is order continuous on E (E ∈ (o.c.)) iff xα ↓ 0 ⇒
‖xα‖ → 0

‖ · ‖ is σ-order continuous on E (E ∈ (σ-o.c.)) iff xn ↓ 0 ⇒
‖xn‖ → 0

order continuity = σ-order continuity when E is σ-Dedekind
complete

‖ · ‖∞ is (σ-o.c.) on spaces c(S) for every uncountable sets S
but ‖ · ‖∞ /∈ (o.c.)
the same holds for the quotient norm on E/F whenever E
consists of sequences, F = span{en : n ∈ N} and F 6= E
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EA = {x ∈ E : |x | > xα ↓ 0 ⇒ ‖xα‖ → 0}
EA is always a norm closed ideal (but it may happen EA = {0})

Theorem
If EA is a proper order dense ideal in a σ-Dedekind complete
Banach lattice E, then the quotient norm on E/EA is σ-order
continuous and the norm is not order continuous. Additionally
E/EA is continuous and none nonzero ideal in the quotient is
σ-Dedekind complete.



Introduction Lr R.s. Lr o.c. norm L = Lr (o.c.) SP PSP revisited DPSP

Characterizations of order continuity:
G.Ja. Lozanovskii – A σ-Dedekind complete Banach lattice has
order continuous norm iff E does not contain any closed
subspace isomorphic to `∞ (equivalently: E does not contain
any closed Riesz subspace order isomorphic to `∞)
D. Fremlin and P. Meyer-Nieberg: E has order continuous norm
iff xn ∧ xm = 0 and xn 6 x ⇒ ‖xn‖ → 0.
Characterizations of σ-order continuity:

Theorem
For a Banach lattice E the following statements are equivalent.
(a) E ∈ (σ-o.c.).
(b) E is order complete and E does not contain any closed

σ-regular Riesz subspace order isomorphic to `∞.
(c) E is order complete and if elements xn ∈ E, n ∈ N are

such that xn ∧ xm = 0 and supn xn exists, then ‖xn‖ → 0.
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Explanations:
E is order complete means that every sequence (xn) ⊂ E
satisfying the order Cauchy condition:

∃vn↓0 ∀n,k |xn+k − xn| 6 vn

is order convergent.
Examples: σ-Dedekind complete Banach lattices, `∞/c0 (it is
not σ-Dedekind complete); the spaces C[0, 1] and c are not
order complete.

A Riesz subspace F ⊂ E is σ-regular if every countable subset
of F having an infimum (or a supremum) in F has the same
infimum (supremum) in E .
Examples: ideals, order dense Riesz subspace; but
{(xn) ∈ c0 : x2n = 0} ⊕ R1N is not σ-regular in `∞.

Let us note that `∞/c0 contains many Riesz subspaces order
isomorphic to `∞ but none copy is σ-regular.
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Problem: does every Banach space possess an unconditional
basic sequence ? (No – W.T. Gowers and B. Maurey)

T. Figiel, J. Lindenstaruss, L. Tzafriri

Theorem
A Banach lattice E has an order continuous norm iff it is
σ-Dedekind complete and every closed subspace of E has an
unconditional basic sequence.
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Operator characterizations of the order continuity.

Theorem
For a Banach lattice E the following statements are equivalent.
(a) E has order continuous norm.
(b) If K is an arbitrary compact space and T : C(K ) → E is

positive, then T is weakly compact.
(c) E is σ-Dedekind complete and every positive operator

T : `∞ → E is weakly compact.
(d) E is σ-Dedekind complete and every Dunford-Pettis

operator T : E → c0 is order bounded.
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Theorem
For a Banach lattice E the following statements are equivalent.
(a) E∗ ∈ (o.c.).
(b) Every Dunford-Pettis operator on E is weakly compact.
(c) Every continuous operator T from E into a Banach space

without any subspace isomorphic to c0 is weakly compact.
(d) Every continuous operator T : E → L1(µ) is weakly

compact.
(e) Every positive operator T : E → L1[0, 1] is weakly compact.
(f) Every positive operator T : E → `1 is compact.

(g) Every continuous operator T : E → E∗ is weakly compact.
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Operator characterizations of the σ-order continuity.
C. Aliprantis, O. Burkinshaw, P. Kranz

Theorem
For a Banach lattice E the following statements are equivalent.
(a) E ∈ (σ-o.c.).
(b) If 0 6 Tn, T : E → E satisfy Tn(x) ↑ T (x) for each x > 0,

then also T 2
n (x) ↑ T 2(x).
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J. Schur (1920): (xn) ⊂ `1, xn
σ(`1,`∞)−−−−−→ 0 ⇒ ‖xn‖ → 0

Proof: gliding hump technique or the theory of basis argument

– if xn
σ(`1,`∞)−−−−−→ 0 and ‖xn‖ > ε > 0 ⇒ ∃(nk ) (xnk ) ∼ (ek )`1

X has the Schur property (X ∈ (SP)) if

xn
σ(X ,X∗)−−−−−→ 0 ⇒ ‖xn‖ → 0
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Examples.
1. `1(Γ) ∈ (SP) for every set Γ.
2. Xn ∈ (SP) ⇒ (⊕Xn)`1 ∈ (SP),
in particular X = (⊕`2

n)`1 ∈ (SP), but X � `1 because X ∗

contains a complemented copy of `2.
3. Consider a weighted Orlicz sequence space `ϕ(an)
generated by a convex function ϕ satisfying two conditions:
limu→0

ϕ(u)
u = 0, limu→∞

ϕ(u)
u = ∞ and let

(an) ∈ `1
++ = {(cn) ∈ `1 : ∀n cn > 0}. If limu→∞

ϕ∗(2u)
ϕ∗(u) = ∞,

then `ϕ(an) ∈ (SP).
Wϕ = {(bn) ∈ `1

++ : `ϕ(bn) ∼ `1} is of the first category in `1
+

and `1
++ is a dense Gδ set in `1

+. Hence `1
++ rWϕ 6= ∅.

Conclusion: for every ϕ there exists a lot (an) such that
`ϕ(an) ∈ (SP) and `ϕ(an) � `1.
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4. Nakano sequence space `(pn), pn ∈ [1,∞).
I. Halperin and H. Nakano (1953): `(pn) ∈ (SP) iff pn → 1
If (1− 1

pn
) log n →∞, then `(pn) � `1.

5. R. Ryan (1987) – L(X , Y ) ∈ (SP) iff X ∗, Y ∈ (SP).
(⊕`∞n )`1) is not isomorphic to any subspace of `1 ⇒
L(c0, (⊕`∞n )`1) � `1(Γ) for every Γ because L(X , Y ) contains Y
isometrically.
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Theorem
(a) E ∈ (SP).
(b) If µ is an arbitrary measure, then every weakly compact

operator T : L1(µ) → E is compact.
(c) Every positive weakly compact operator T : `1 → E is

compact.
(d) E has order continuous norm and every continuous linear

operator T : E → c0 is Dunford-Pettis (= T maps weak null
sequences into norm null).
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Every Banach lattice possessing the Schur property is a dual
space.

Theorem
For a Banach lattice E the following statements are equivalent.
(a) E∗ ∈ (SP).
(b) Every weakly compact operator on E is compact.
(c) Every weakly compact operator T : E → c0 is compact.
(d) If F is a Banach lattice with order continuous norm and

T : E → F is weakly compact, then T is L-weakly compact.
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E has the positive Schur property (E ∈ (PSP)) whenever

0 6 xn
σ(E ,E∗)−−−−−→ 0 ⇒ ‖xn‖ → 0

Useful characterization:
E ∈ (PSP) ⇔ (xk ∧ xm = 0, xn

σ(E,E∗)−−−−−→ 0 ⇒ ‖xn‖ → 0)
If E is discrete, then E ∈ (PSP) ⇔ E ∈ (SP).

Theorem
For a Banach lattice E the following statements are equivalent.
(a) E ∈ (PSP).
(b) Every normalized sequence of pairwise disjoint positive

elements contains a subsequence equivalent to the unit
vector basis in `1 (and so E is saturated by order copies of
`1 ).

(c) E is σ-Dedekind complete and an operator T : E → c0 is a
Dunford-Pettis operator iff T is regular
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Josefson-Nissenzweig theorem –

dim X = ∞ ⇒ ∃(fn)∈X∗ ‖fn‖ = 1 and fn
σ(X∗,X)−−−−−→ 0.

But if 0 6 fn
σ((C(K ))∗,C(K ))−−−−−−−−−−→ 0 and µn are regular Borel

measures representing fn, then ‖fn‖ =
∫

K 1 dµn = fn(1) → 0.
B. Aqzzouz, A. Elbour, A. Wickstead (2010) – E has the dual
positive Schur property (E ∈ (DPSP)) if

0 6 fn
σ(E∗,E)−−−−−→ 0 ⇒ ‖fn‖ → 0.

E ∈ (DPSP) ⇒ E has the positive Grothendieck property

(E ∈ (PGP)), i.e., 0 6 fn
σ(E∗,E)−−−−−→ 0 ⇒ fn

σ(E∗,E∗∗)−−−−−−→ 0
E ∈ (DPSP) ⇔ E ∈ (PGP) and E∗ ∈ (PSP) ⇔ every
0 6 T : E → c0 is compact
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Examples.
1.

Theorem
For an AM-space E (= E is order isomorphic and isometric to a
closed sublattice in some C(K )) the following statements are
equivalent.

E ∈ (DPSP).
E ∈ (PGP).
E does not contain any positively complemented order
copy of c0.
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2. If Lϕ(µ) is an Orlicz space, then
Lϕ(µ) ∈ (DPSP) ⇔ Lϕ∗(µ) ∈ (PSP). Moreover
Lϕ(µ) ∈ (DPSP) ⇒ (Lϕ(µ))∗∗ ∈ (DPSP), (Lϕ(µ))∗∗∗∗ ∈ (DPSP),
. . . , (Lϕ(µ))(2n) ∈ (DPSP)

For a finite measure µ and an Orlicz function ϕ satisfying
limu→∞

ϕ(2u)
ϕ(u) = ∞ we obtain Lϕ(µ) ∈ (DPSP).

3. Let 1 6 qn →∞ and let ϕn(u) = 1
qn

uqn . Then
`(ϕn) ∈ (DPSP), (`(ϕn))∗∗ ∈ (DPSP), (`(ϕn))∗∗∗∗ ∈ (DPSP), . . . ,
(`(ϕn))(2n) ∈ (DPSP) and
(⊕`qn

n )`∞ ∈ (DPSP), ((⊕`
qn
n )`∞)∗∗ ∈ (DPSP),

((⊕`qn
n )`∞)∗∗∗∗ ∈ (DPSP), . . . , ((⊕`qn

n )`∞)(2n) ∈ (DPSP)
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Theorem
For a Banach lattice E the following statements are equivalent.
(a) E ∈ (DPSP).

(b) If fm ∧ fk = 0 and fn
σ(E∗,E)−−−−−→ 0, then ‖fn‖ → 0.

(c) Every order weakly compact operator on E is M-weakly
compact.

(d) Every positive weakly compact operator T : E → F is
semi-compact
(i.e.,∀ε>0∃06y∈F T (BE(1)) ⊂ [−y , y ] + εBF (1)).

(e) If F is a discrete Banach lattice with order continuous
norm, then every positive operator T : E → F is compact.

The word “discrete”can not be rejected in the last statement.
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The last statement formulated in the theorem motivates
considerations of the following property of a Banach lattice E .
(∗) If F is a Banach lattice with order continuous norm and
T : E → F is positive, then T is compact.
It is a surprise that σ-Dedekind complete Banach lattices E
satisfying (∗) are finite dimensional. On the other hand there
exist spaces C(K ) satisfying (∗) and we can characterize them.
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Theorem
For a space E = C(K ) the following statements are equivalent.
(a) E∗ is order isomorphic to `1(Γ) for some set Γ.
(b) E does not contain any closed subspace isomorphic (i.e.,

linearly homeomorphic ) to `1.
(c) E satisfies (∗).
(d) Every positive operator T : E → (`∞)∗ is compact.

If K is a countable compact space then C(K ) satisfies (∗)
because (C(K ))∗ is isomorphic to `1.
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