

Selected topics in positive and regular operators acting between Banach lattices

Witold Wnuk

A. Mickiewicz University Faculty of Mathematics and Computer Science Poznań, Poland e-mail: wnukwit@amu.edu.pl

Workshop on Operators and Banach Lattices October 25–26, 2012 Madrid

$E = (E, \|\cdot\|), F = (F, \|\cdot\|)$ Banach lattices

Arnoud C. M. van Rooij, *When do regular operators between two Riesz spaces form a Riesz space ?* (Report 8410, Department of Mathematics, Catholic University Nijmegen, 1984, 97 pp.)

positive operators $L_+(E,F)$ ($T(E_+) \subset F_+$)

regular operators $L_r(E, F)$ $(T = T_1 - T_2, T_i \in L_+(E, F), L_r(E, F) = \operatorname{span} L_+(E, F))$

order bounded operators $L_b(E, F)$ ($A \subset E$ order bounded \Rightarrow T(A) order bounded in F)

continuous operators L(E, F)

 $L_r(E, F), L_b(E, F), L(E, F)$ are ordered vector space with respect to the order generated by $L_+(E, F)$: $T \leq S \Leftrightarrow S - T \in L_+(E, F)$ Introduction PSP revisited $T: E \to F$ order continuous $(x_{\alpha} \xrightarrow{(o)} x \Rightarrow T(x_{\alpha}) \xrightarrow{(o)} T(x))$ $\Rightarrow T \in L_b(E, F)$ $L_b(E,F) \subset L(E,F)$ $||x_n|| \to 0 \Rightarrow_{\text{passing to a subsequence if necessary}} x = \sum_{n=1}^{\infty} n |x_n| \Rightarrow$ $\{nx_n : n \in \mathbb{N}\} \subset [-x, x] \Rightarrow \{nT(x_n) : n \in \mathbb{N}\}$ order bounded $||nT(x_n)|| < M \Rightarrow ||T(x_n)|| \rightarrow 0$ $L_{+}(E,F) \subsetneq L_{r}(E,F) \subsetneq L_{b}(E,F) \subsetneq L(E,F)$ for $E = C[0, 1], F = C[0, 1] \times \ell^p \ (p < \infty)$ $L_r(\ell^1, F) = L_b(\ell^1, F) = L(\ell^1, F)$ for an arbitrary F $T \in L(\ell^1, F) \Rightarrow \sum_{n=1}^{\infty} a_n |T(e_n)| = S((a_n))$ $S, (S-T) \in L_{+}(\ell^{1}, F)$ and T = S - (S-T)

 $L_r(E, F) = L_b(E, F) = L(E, F)$ for an arbitrary $F \Rightarrow E$ is order isomorphic to $\ell^1(\Gamma)$

 $L_b(E, F) = L_r(E, F^{\delta}) \cap L(E, F)$ because *F* is full (= cofinal) in its Dedekind completion F^{δ} (i.e., $\forall_{y \in F^{\delta}} \exists_{x \in F} y \leq x$)

finite rank operators $\mathcal{F}(E, F) \subset L_r(E, F)$: $T = \sum_{k=1}^n f_k \otimes x_k$, $x_k \in E, f_k \in F^*$, then $T = \sum_{k=1}^n |f_k| \otimes |x_k| - (\sum_{k=1}^n |f_k| \otimes |x_k| - T)$ $T_1 = \bigvee_{k=1}^n |f_k| \otimes \bigvee_{k=1}^n |x_k| \Rightarrow T = T_1 - (T_1 - T)$

Question: Is an operator of rank k a difference of two positive operators of the same rank k ?

 $f \otimes x$ is a difference of two positive rank-one operators iff x or f is comparable with zero.

Suppose f and x are not comparable with zero but $T = f \otimes x = T_1 - T_2$ where $T_i = f_i \otimes x_i \ge 0$. $T_i \ge 0 \Rightarrow$ we can assume without loss of generality $x_i, f_i \ge 0$. T is not comparable with zero \Rightarrow $T_i \neq 0$. $f \otimes x = f_1 \otimes x_1 - f_2 \otimes x_2 \Rightarrow \text{Ker } f_1 \cap \text{Ker } f_2 \subset \text{Ker } f$. Hence $f = \alpha f_1 + \beta f_2$ Suppose f_1, f_2 are linearly independent. Therefore Ker $f_2 \not\subseteq$ Ker f_1 . Hence $f(y)x = \alpha f_1(y)x_1 \neq 0$ for some $y \in E$ which is impossible because x is not comparable with zero. Assume now that f_1 , f_2 are linearly dependent. But now $f = \gamma f_1$ for some nonzero γ which is impossible again because f is not comparable with zero.

 $L_r(E, F)$ contains nuclear operators, i.e., operators of the form $\sum_{k=1}^{\infty} f_k \otimes x_k$ where $\sum_{k=1}^{\infty} ||f_k|| < \infty$ and $\sum_{k=1}^{\infty} ||x_k|| < \infty$.

Topological properties of $L_r(E, F)$ and $L_b(E, F)$.

Let *K* be a metrizable compact space.

 c_0 is Dedekind complete $\Rightarrow L_r(C(K), c_0) = L_b(C(K), c_0)$ order bounded sets in c_0 = relatively compact sets in $c_0 \Rightarrow L_r(C(K), c_0) = \mathcal{K}(C(K), c_0)$ but $\mathcal{K}(C(K), c_0) \neq L(C(K), c_0)$ because C(K) is separable and and so c_0 is complemented in C(K) but a projection is not compact.

Let $p, q \in (1, \infty)$. There exists $T \in \mathcal{K}(\ell^p, \ell^q) \setminus L_r(\ell^p, \ell^q)$. ℓ^q has the approximation property $\Rightarrow T = \lim_{n \to \infty} T_n$ where $T_n \in \mathcal{F}(\ell^p, \ell^q) \subset L_r(\ell^p, \ell^q)$, i.e., $L_r(\ell^p, \ell^q) = L_b(\ell^p, \ell^q)$ is not closed in $L(\ell^p, \ell^q)$. If q < p, then $L_r(\ell^p, \ell^q)$ is a proper dense subset in $L(\ell^p, \ell^q)$ because $L(\ell^p, \ell^q) = \mathcal{K}(\ell^p, \ell^q)$ by Pitt's theorem.

$$\begin{split} &L_r(E,F) \text{ is a Banach space with respect to a norm called the regular norm } \|\cdot\|_r \\ &\|T\|_r = \inf\{\|S\| : \pm T \leqslant S\} = \\ &\inf\{\|T_1 + T_2\| : T = T_1 - T_2, T_i \in L_+(E,F)\}. \\ &\|T\| \leqslant \|T\|_r \text{ (there exists } T : (\mathbb{R}^{2^n}, \|\cdot\|_2) \to (\mathbb{R}^{2^n}, \|\cdot\|_2) \text{ with } \\ &\|T\| = 1 \text{ and } \|T\|_r = \sqrt{2^n}; \text{ for } n = 1 \text{ we can choose} \\ &T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}) \end{split}$$

When do spaces $L_r(E, F)$ form a Riesz space ?

F is Dedekind complete $\Rightarrow L_r(E, F)$ is a Dedekind complete Riesz space for every *E* and the modulus $|T| = \sup\{T, -T\}$ of *T* is given by the Kantorovich's formula

$$|T|(x) = \sup_{|y| \leq x} |T(y)|$$
 for every positive $x \in E$

On the other hand if *F* is not necessary Dedekind complete but $T: E \to F$ is such that the above formula makes sense for each $x \in E_+$ then it defines a positive operator, and it is precisely the modulus of *T*. When this is the case we say that the *modulus exists properly*, or that *T* has a proper modulus. Also, when the modulus |T| exists we shall say that it exists properly at *x* if |T|(x) is given by the Kantorovich's equality.

old open question: does there exist a regular operator with non-proper modulus?

Assume that an operator $T : E \to F$ possesses the modulus and let $E_{p|T|} = \{x \in E_+ : T \text{ exists properly at } x\}$

Proposition

The set $E_{p|T|}$ possesses the following properties.

• E_{p|T|} is a cone.

•
$$0 \leqslant y \leqslant x \in E_{\rho|T|} \Rightarrow y \in E_{\rho|T|}.$$

• $E_{p|T|}$ is closed under finite infima and suprema $(x, y \in E_{p|T|} \Rightarrow x \land y, x \lor y \in E_{p|T|}).$

If $T = f \otimes x$, then $|T| = |f| \otimes |x|$ – but there exists a finite rank operator whose modulus is not a finite rank operator.

Theorem

If E, F are Banach lattices, then every continuous finite rank operator $T : E \to F$ has a proper modulus |T| in $L_r(E, F)$ and the modulus |T| is compact.

F is Dedekind complete \Rightarrow $L_r(E, F)$ is a Riesz space – what about \Leftarrow ?

Y.A. Abramovich, V.A. Gejler, A.C.M. van Rooij, A.W. Wickstead:

Theorem

For a Banach lattice F the following statements are equivalent.

- (a) $L_r(E, F)$ is a Riesz space for all Banach lattices E.
- (b) $L_r(L^1(\mu), F)$ is a Riesz space for all measures μ .
- (c) $L_r(C(K), F)$ is a Riesz space for every compact set K.
- (d) $L_r(c(S), F)$ is a Riesz space for every set *S*, where $c(S) = \{f \in \mathbb{R}^S : \exists_{r>0} \forall_{\varepsilon>0} | f(s) - r| \ge \varepsilon$ for at most finitely many *s*}, and $||f|| = \sup_{s \in S} |f(s)|$.

(e) F is Dedekind complete.

A. van Rooij's characterization of σ -Dedekind complete Banach lattices.

Theorem

For a Banach lattice F the following statements are equivalent.

- (a) $L_r(L^1[0, 1], F)$ is a Riesz space.
- (b) $L_r(c, F)$ is a Riesz space, where $c = c(\mathbb{N})$.
- (c) $L_r(C(K), F)$ is a Riesz space for every infinite metrizable compact space K.
- (d) F is σ -Dedekind complete.

Y.A. Abramovich, A.W. Wickstead:

Theorem

(d) \Leftrightarrow (e): $L_r(E, F)$ are σ -Dedekind complete Riesz spaces for all separable Banach lattices E.

Proposition

If $L_r(c, F)$ is a Riesz space, then every $T \in L_r(c, F)$ has the proper modulus.

Theorem

For a Banach lattice E the following statements are equivalent.

- (a) $L_r(E, F)$ is a Riesz space for all Banach lattices F and every $T \in L_r(E, F)$ has the proper modulus.
- (b) $L_r(E, F)$ is a Riesz space for all Banach lattices F.
- (c) $L_r(E, C(K))$ is a Riesz space for every compact space K.
- (d) E is discrete and its norm is order continuous.
- (e) *E* is σ -Dedekind complete and $L(E, c_0) = L_r(E, c_0)$.
- (f) Every x ∈ E lies in an ideal of E that is order isomorphic to a quotient Riesz space of c₀.

 $0 < x \in E$ is discrete iff $|y| \leq x \Rightarrow y = tx$ for some scalar t (unit vectors are discrete in classical sequence Banach lattices).

E is discrete if $\forall_{0 < x \in E} \exists_{\text{discrete } e \in E} e \leq x$.

 $E \text{ is discrete } \Rightarrow \exists_{\Gamma} \exists_{\text{sublattice } F \subset \mathbb{R}^{\Gamma}} \text{ such that } \text{span}\{\mathbf{1}_{\{\gamma\}} : \gamma \in \Gamma\} \subset F \sim E.$

Examples of discrete spaces: all classical sequence Banach lattices.

A Banach lattice is continuous when it contains none discrete elements ($C[0, 1], L^{p}(\mu)$ for atomless measures $\mu, \ell^{\infty}/c_{0}$).

A Banach lattice $E = (E, \|\cdot\|)$ has order continuous norm if $x_{\alpha} \downarrow 0 \Rightarrow \|x_{\alpha}\| \rightarrow 0$.

When is $L_r(E, F)$ discrete or continuous ?

Theorem

Let E, F be two Banach lattices and let F be Dedekind complete.

(a) $L_r(E, F)$ is discrete iff E^* and F are discrete.

(b) $L_r(E, F)$ is continuous iff E^* or F is continuous.

Moreover, $T \in L_r(E, F)$ is discrete iff $T = f \otimes e$ where e is discrete in E and $f \in F^*$ is a homomorphism (i.e., f is discrete in the dual space).

Introduction	Lr R.s.	L_r o.c. norm	$L = L_r$	(o.c.)	SP	PSP revisited	DPSP

Z.L. Chen

Theorem

The regular norm is order continuous on $L_r(E, F)$ iff positive operators between E and F are simultaneously L-weakly and M-weakly compact (i.e., $||y_n|| \rightarrow 0$ whenever $y_n \in \text{sol } T(B_E)$ are disjoint and $||Tx_n|| \rightarrow 0$ for each norm bounded disjoint sequence $(x_n) \subset E$).

Introduction	<i>L</i> _{<i>r</i>} R.s.	L_r o.c. norm	$L = L_r$	(o.c.)	SP	PSP revisited	DPSP

Corollary

If a Banach lattice F has order continuous norm, then the regular norm on $L_r(C(K), F)$ is order continuous too.

norm on *F* is order continuous \Leftrightarrow regular operators from C(K) into *F* are weakly compact, but weakly compact operators on C(K) spaces coincide with M-weakly compact operators. The dual of C(K) has order continuous norm and now we can use the Dodds-Fremlin theorem: M-weakly compact operators mapping $T : E \to F$ are L-weakly compact and vice versa whenever E^* and *F* have order continuous norms.

Corollary

The regular norm is order continuous on $L_r(E, E)$ iff E is finite dimensional.

E is a KB space \Leftrightarrow ($0 \le x_n \uparrow \text{ and } \sup_n ||x_n|| < \infty$) \Rightarrow (x_n) is convergent \Leftrightarrow *E* does not contain any subspace isomorphic to c_0

Z.L. Chen

Theorem

The following statements are equivalent.

(a) $(L_r(E, F), \|\cdot\|_r)$ is a KB-space.

(b) $\|\cdot\|_r$ is order continuous and F is a KB-space.

(c) *F* is a KB-space and every positive $T : E \rightarrow F$ is M-weakly compact.

Corollary

If $L^{p}(\mu), L^{q}(\nu)$ are infinite dimensional, then $(L_{r}(L^{p}(\mu), L^{q}(\nu)), \|\cdot\|_{r})$ is a KB-space iff q < p.

E has the positive Schur property ($E \in (PSP)$) whenever $0 \leq x_n \xrightarrow{\sigma(E,E^*)} 0 \Rightarrow ||x_n|| \to 0.$ *L*¹(μ) $\in (PSP)$ D. Leung: μ finite, φ an Orlicz function such that $\lim_{s\to\infty} \frac{\varphi^*(2s)}{\varphi^*(s)} = \infty$ (where $\varphi^*(t) = \sup_{t>0} (st - \varphi(s))) \Rightarrow$ $L^{\varphi}(\mu) \in (PSP)$; moreover ($L^{\varphi}(\mu)$)⁽²ⁿ⁾ $\in (PSP)$ for all *n*.

Corollary

Suppose that E^* (respectively F) possesses the positive Schur property. Then $L_r(E, F)$ with the regular norm is a KB-space iff F (respectively E^*) is a KB-space.

Introduction	L _r R.s.	L_r o.c. norm	$L = L_r$	(o.c.)	SP	PSP revisited	DPSP

A. van Rooij

Proposition

The space $L_r(\ell^{\infty}, F)$ is a Riesz space iff F is \mathfrak{c} -complete, i.e., every order bounded from above subset X with card $X \leq \mathfrak{c}$ has a supremum.

Introduction L_r R.s. L_r o.c. norm $\mathbf{L} = \mathbf{L}_r$ (o.c.) SP PSP revisited DPSP

When
$$L(E, F) = L_r(E, F)$$
?

? L.V Kantorovich, B.Z. Vulikh

Theorem

If E, F are such that F is order isomorphic to a Dedekind complete space C(K) or E is order isomorphic to $L^1(\mu)$ and simultaneously there exists norm one positive projection $P: F^{**} \to F$, then every continuous operator $T: E \to F$ is regular (and so L(E, F) is a Riesz space). Moreover the operator and regular norms are equal.

conjecture: $L(E, F) = L_r(E, F) \Rightarrow E$ is order isomorphic to $L^1(\mu)$ or F is order isomorphic to a closed Riesz subspace in some C(K) space.

D. Cartwright and H.P. Lotz

Theorem

Let E, F be Banach lattices such that F (resp. E^*) contains a closed Riesz subspace order isomorphic to ℓ^p for a finite p. If every compact operator $T : E \to F$ belongs to $L_r(E, F^{**})$, then E is order isomorphic to $L^1(\mu)$ (resp. F is order isomorphic to a closed Riesz subspace of some C(K)).

Corollary

 $L(E, L^{1}(\mu)) = L_{r}(E, L^{1}(\mu))$ for infinite dimensional $L^{1}(\mu)$ iff E is order isomorphic to $L^{1}(\nu)$.

Y.A. Abramovich and A.W. Wickstead: arguments "supporting" the conjecture.

Theorem

The following conditions on a Banach lattice F are equivalent.

- (a) F is order isomorphic to a Dedekind complete C(K) space.
- (b) For every Banach lattice E the space L(E, F) is a Riesz space.
- (c) For every Banach lattice E every continuous $T : E \to F$ is regular and $L_r(E, F)$ forms a Riesz space.

Y.A. Abramovich disproved the conjecture – there exits *E* and *F* such that *E* is not order isomorphic to any $L^1(\mu)$, *F* is not order isomorphic to any AM-space but every $T \in L(E, F)$ has the modulus (in particular $L(E, F) = L_r(E, F)$).

We have already mentioned that $L(L^1(\mu), F) = L_r(L^1(\mu), F)$ whenever there exists a contractive positive projection $P: F^{**} \rightarrow F$. The assumption about *F* can be slightly weakened – it is enough to require that *F* has the Levi property, i.e., increasing norm bounded nets of positive elements have a supremum in *F*.

Abramovich and Wickstead noticed that this modified version of the theorem can be reversed.

Theorem

The following conditions on a Banach lattice F are equivalent.

- (a) F has the Levi property.
- (b) $L(L^1(\mu), F)$ is a Riesz space for every measure μ .
- (c) $L(L^{1}(\mu), F) = L_{r}(L^{1}(\mu), F)$ for every μ and F is Dedekind complete.

 $\|\cdot\|$ is order continuous on E ($E \in (o.c.)$) iff $x_{\alpha} \downarrow 0 \Rightarrow \|x_{\alpha}\| \rightarrow 0$

 $\|\cdot\|$ is σ -order continuous on E ($E \in (\sigma$ -o.c.)) iff $x_n \downarrow 0 \Rightarrow \|x_n\| \to 0$

order continuity = σ -order continuity when *E* is σ -Dedekind complete

 $\|\cdot\|_{\infty}$ is (σ -o.c.) on spaces c(S) for every uncountable sets S but $\|\cdot\|_{\infty} \notin (o.c.)$ the same holds for the quotient norm on E/F whenever E

consists of sequences, $F = \overline{\text{span}} \{ e_n : n \in \mathbb{N} \}$ and $F \neq E$

$$E_{A} = \{ x \in E : |x| \ge x_{\alpha} \downarrow 0 \implies ||x_{\alpha}|| \to 0 \}$$

 E_A is always a norm closed ideal (but it may happen $E_A = \{0\}$)

Theorem

If E_A is a proper order dense ideal in a σ -Dedekind complete Banach lattice E, then the quotient norm on E/E_A is σ -order continuous and the norm is not order continuous. Additionally E/E_A is continuous and none nonzero ideal in the quotient is σ -Dedekind complete. Characterizations of order continuity:

G.Ja. Lozanovskii – A σ -Dedekind complete Banach lattice has order continuous norm iff *E* does not contain any closed subspace isomorphic to ℓ^{∞} (equivalently: *E* does not contain any closed Riesz subspace order isomorphic to ℓ^{∞}) D. Fremlin and P. Meyer-Nieberg: *E* has order continuous norm iff $x_n \wedge x_m = 0$ and $x_n \leq x \implies ||x_n|| \rightarrow 0$. Characterizations of σ -order continuity:

Theorem

For a Banach lattice E the following statements are equivalent.

- (a) $E \in (\sigma$ -o.c.).
- (b) *E* is order complete and *E* does not contain any closed σ -regular Riesz subspace order isomorphic to ℓ^{∞} .
- (c) *E* is order complete and if elements $x_n \in E$, $n \in \mathbb{N}$ are such that $x_n \wedge x_m = 0$ and $\sup_n x_n$ exists, then $||x_n|| \to 0$.

Explanations:

E is order complete means that every sequence $(x_n) \subset E$ satisfying the order Cauchy condition:

 $\exists_{v_n \downarrow 0} \forall_{n,k} |x_{n+k} - x_n| \leqslant v_n$

is order convergent.

Examples: σ -Dedekind complete Banach lattices, ℓ^{∞}/c_0 (it is not σ -Dedekind complete); the spaces C[0, 1] and c are not order complete.

A Riesz subspace $F \subset E$ is σ -regular if every countable subset of *F* having an infimum (or a supremum) in *F* has the same infimum (supremum) in *E*.

Examples: ideals, order dense Riesz subspace; but

 $\{(x_n) \in c_0 : x_{2n} = 0\} \oplus \mathbb{R}1_{\mathbb{N}} \text{ is not } \sigma \text{-regular in } \ell^{\infty}.$

Let us note that ℓ^{∞}/c_0 contains many Riesz subspaces order isomorphic to ℓ^{∞} but none copy is σ -regular.

Problem: does every Banach space possess an unconditional basic sequence ? (No – W.T. Gowers and B. Maurey)

T. Figiel, J. Lindenstaruss, L. Tzafriri

Theorem

A Banach lattice E has an order continuous norm iff it is σ -Dedekind complete and every closed subspace of E has an unconditional basic sequence.

Operator characterizations of the order continuity.

Theorem

For a Banach lattice E the following statements are equivalent.

- (a) E has order continuous norm.
- (b) If K is an arbitrary compact space and $T : C(K) \rightarrow E$ is positive, then T is weakly compact.
- (c) *E* is σ -Dedekind complete and every positive operator $T : \ell^{\infty} \to E$ is weakly compact.
- (d) *E* is σ -Dedekind complete and every Dunford-Pettis operator $T : E \rightarrow c_0$ is order bounded.

Introduction	L _r R.s.	L_r o.c. norm	$L = L_r$	(o.c.)	SP	PSP revisited	DPSP

Theorem

For a Banach lattice E the following statements are equivalent.

(a) $E^* \in (o.c.)$.

- (b) Every Dunford-Pettis operator on E is weakly compact.
- (c) Every continuous operator T from E into a Banach space without any subspace isomorphic to c₀ is weakly compact.
- (d) Every continuous operator $T : E \to L^1(\mu)$ is weakly compact.
- (e) Every positive operator $T : E \to L^1[0, 1]$ is weakly compact.
- (f) Every positive operator $T : E \to \ell^1$ is compact.
- (g) Every continuous operator $T : E \to E^*$ is weakly compact.

Operator characterizations of the σ -order continuity. C. Aliprantis, O. Burkinshaw, P. Kranz

Theorem

For a Banach lattice E the following statements are equivalent.
(a) E ∈ (σ-o.c.).
(b) If 0 ≤ T_n, T : E → E satisfy T_n(x) ↑ T(x) for each x ≥ 0, then also T²_n(x) ↑ T²(x).

J. Schur (1920): $(x_n) \subset \ell^1$, $x_n \xrightarrow{\sigma(\ell^1, \ell^\infty)} 0 \Rightarrow ||x_n|| \to 0$ Proof: gliding hump technique or the theory of basis argument $- \text{ if } x_n \xrightarrow{\sigma(\ell^1, \ell^\infty)} 0 \text{ and } ||x_n|| \ge \varepsilon > 0 \Rightarrow \exists_{(n_k)} (x_{n_k}) \sim (e_k)_{\ell^1}$ *X* has the Schur property ($X \in (SP)$) if $x_n \xrightarrow{\sigma(X, X^*)} 0 \Rightarrow ||x_n|| \to 0$

Examples.

1. $\ell^1(\Gamma) \in (SP)$ for every set Γ .

$$2. \quad X_n \in (SP) \ \Rightarrow \ (\oplus X_n)_{\ell^1} \in (SP),$$

in particular $X = (\oplus \ell_n^2)_{\ell^1} \in (SP)$, but $X \sim \ell^1$ because X^* contains a complemented copy of ℓ^2 .

3. Consider a weighted Orlicz sequence space $\ell^{\varphi}(a_n)$ generated by a convex function φ satisfying two conditions: $\lim_{u\to 0} \frac{\varphi(u)}{u} = 0$, $\lim_{u\to\infty} \frac{\varphi(u)}{u} = \infty$ and let $(a_n) \in \ell_{++}^1 = \{(c_n) \in \ell^1 : \forall_n \ c_n > 0\}$. If $\lim_{u\to\infty} \frac{\varphi^*(2u)}{\varphi^*(u)} = \infty$, then $\ell^{\varphi}(a_n) \in (SP)$. $W_{\varphi} = \{(b_n) \in \ell_{++}^1 : \ell^{\varphi}(b_n) \sim \ell^1\}$ is of the first category in ℓ_{+}^1 and ℓ_{++}^1 is a dense G_{δ} set in ℓ_{+}^1 . Hence $\ell_{++}^1 \setminus W_{\varphi} \neq \emptyset$. Conclusion: for every φ there exists a lot (a_n) such that $\ell^{\varphi}(a_n) \in (SP)$ and $\ell^{\varphi}(a_n) \approx \ell^1$.

4. Nakano sequence space $\ell^{(p_n)}$, $p_n \in [1, \infty)$. I. Halperin and H. Nakano (1953): $\ell^{(p_n)} \in (SP)$ iff $p_n \to 1$ If $(1 - \frac{1}{p_n}) \log n \to \infty$, then $\ell^{(p_n)} \approx \ell^1$. 5. R. Ryan (1987) – $L(X, Y) \in (SP)$ iff $X^*, Y \in (SP)$. $(\oplus \ell_n^{\infty})_{\ell^1})$ is not isomorphic to any subspace of $\ell^1 \Rightarrow L(c_0, (\oplus \ell_n^{\infty})_{\ell^1}) \approx \ell^1(\Gamma)$ for every Γ because L(X, Y) contains Y isometrically.

Introduction	L _r R.s.	L _r o.c. norm	$L = L_r$	(o.c.)	SP	PSP revisited	DPSP

Theorem

- (a) $E \in (SP)$.
- (b) If µ is an arbitrary measure, then every weakly compact operator T : L¹(µ) → E is compact.
- (c) Every positive weakly compact operator $T : \ell^1 \to E$ is compact.
- (d) *E* has order continuous norm and every continuous linear operator $T : E \rightarrow c_0$ is Dunford-Pettis (= T maps weak null sequences into norm null).

Every Banach lattice possessing the Schur property is a dual space.

Theorem

For a Banach lattice E the following statements are equivalent.

(a) $E^* \in (SP)$.

- (b) Every weakly compact operator on E is compact.
- (c) Every weakly compact operator $T : E \rightarrow c_0$ is compact.
- (d) If F is a Banach lattice with order continuous norm and $T: E \rightarrow F$ is weakly compact, then T is L-weakly compact.

E has the positive Schur property ($E \in (PSP)$) whenever $0 \leq x_n \xrightarrow{\sigma(E,E^*)} 0 \Rightarrow ||x_n|| \to 0$

Useful characterization:

$$m{E} \in (\mathrm{PSP}) \ \Leftrightarrow \ (\mathbf{x}_k \wedge \mathbf{x}_m = 0, \ \mathbf{x}_n \xrightarrow{\sigma(\mathrm{E},\mathrm{E}^*)} 0 \ \Rightarrow \ \|\mathbf{x}_n\| \to 0)$$

If *E* is **discrete**, then $E \in (PSP) \Leftrightarrow E \in (SP)$.

Theorem

For a Banach lattice E the following statements are equivalent.

(a)
$$E \in (PSP)$$
.

- (b) Every normalized sequence of pairwise disjoint positive elements contains a subsequence equivalent to the unit vector basis in l¹ (and so E is saturated by order copies of l¹).
- (c) *E* is σ -Dedekind complete and an operator $T : E \rightarrow c_0$ is a Dunford-Pettis operator iff *T* is regular

Introduction L_r R.s. L_r o.c. norm $L = L_r$ (o.c.) SP PSP revisited DPSP Josefson-Nissenzweig theorem –

dim $X = \infty \Rightarrow \exists_{(f_n) \in X^*} ||f_n|| = 1$ and $f_n \xrightarrow{\sigma(X^*, X)} 0$. But if $0 \leq f_n \xrightarrow{\sigma((C(K))^*, C(K))} 0$ and μ_n are regular Borel measures representing f_n , then $||f_n|| = \int_{\kappa} 1 \ d\mu_n = f_n(1) \rightarrow 0$. B. Agzzouz, A. Elbour, A. Wickstead (2010) – E has the dual positive Schur property ($E \in (DPSP)$) if $0 \leqslant f_n \xrightarrow{\sigma(E^*,E)} 0 \Rightarrow ||f_n|| \to 0.$ $E \in (DPSP) \Rightarrow E$ has the positive Grothendieck property $(E \in (PGP))$, i.e., $0 \leq f_n \xrightarrow{\sigma(E^*,E)} 0 \Rightarrow f_n \xrightarrow{\sigma(E^*,E^{**})} 0$ $E \in (DPSP) \Leftrightarrow E \in (PGP) \text{ and } E^* \in (PSP) \Leftrightarrow every$ $0 \leq T : E \rightarrow c_0$ is compact

Introduction	L _r R.s.	L_r o.c. norm	$L = L_r$	(0.C.)	SP	PSP revisited	DPSP

Examples.

1.

Theorem

For an AM-space $E (= E \text{ is order isomorphic and isometric to a closed sublattice in some <math>C(K)$) the following statements are equivalent.

- $E \in (DPSP)$.
- $E \in (PGP)$.
- *E* does not contain any positively complemented order copy of *c*₀.

2. If $L^{\varphi}(\mu)$ is an Orlicz space, then $L^{\varphi}(\mu) \in (\text{DPSP}) \Leftrightarrow L^{\varphi^*}(\mu) \in (\text{PSP}).$ Moreover $L^{\varphi}(\mu) \in (\text{DPSP}) \implies (L^{\varphi}(\mu))^{**} \in (\text{DPSP}), (L^{\varphi}(\mu))^{****} \in (\text{DPSP}),$ $\ldots, (L^{\varphi}(\mu))^{(2n)} \in (\text{DPSP})$ For a finite measure μ and an Orlicz function φ satisfying $\lim_{u\to\infty} \frac{\varphi(2u)}{\varphi(u)} = \infty$ we obtain $L^{\varphi}(\mu) \in (DPSP)$. 3. Let $1 \leq q_n \to \infty$ and let $\varphi_n(u) = \frac{1}{\alpha_n} u^{q_n}$. Then $\ell^{(\varphi_n)} \in (\text{DPSP}), (\ell^{(\varphi_n)})^{**} \in (\text{DPSP}), (\ell^{(\varphi_n)})^{****} \in (\text{DPSP}), \dots,$ $(\ell^{(\varphi_n)})^{(2n)} \in (DPSP)$ and $(\oplus \ell_n^{q_n})_{\ell^{\infty}} \in (\text{DPSP}), ((\oplus \ell_n^{q_n})_{\ell^{\infty}})^{**} \in (\text{DPSP}),$ $((\oplus \ell_n^{q_n})_{\ell^{\infty}})^{****} \in (\text{DPSP}), \ldots, ((\oplus \ell_n^{q_n})_{\ell^{\infty}})^{(2n)} \in (\text{DPSP})$

Introduction	L _r R.s.	L _r o.c. norm	$L = L_r$	(0.C.)	SP	PSP revisited	DPSP

Theorem

For a Banach lattice E the following statements are equivalent.

- (a) $E \in (DPSP)$.
- (b) If $f_m \wedge f_k = 0$ and $f_n \xrightarrow{\sigma(E^*,E)} 0$, then $||f_n|| \to 0$.

(c) Every order weakly compact operator on E is M-weakly compact.

(d) Every positive weakly compact operator T : E → F is semi-compact
 (*i.e.*,∀_{ε>0}∃_{0≤y∈F} T(B_E(1)) ⊂ [-y, y] + εB_F(1)).

(e) If F is a discrete Banach lattice with order continuous norm, then every positive operator $T : E \rightarrow F$ is compact.

The word "discrete" can not be rejected in the last statement.

The last statement formulated in the theorem motivates considerations of the following property of a Banach lattice *E*. (*) If *F* is a Banach lattice with order continuous norm and

 $T: E \rightarrow F$ is positive, then T is compact.

It is a surprise that σ -Dedekind complete Banach lattices *E* satisfying (*) are finite dimensional. On the other hand there exist spaces C(K) satisfying (*) and we can characterize them.

Introduction	L _r R.s.	L _r o.c. norm	$L = L_r$	(o.c.)	SP	PSP revisited	DPSP

Theorem

For a space E = C(K) the following statements are equivalent.

- (a) E^* is order isomorphic to $\ell^1(\Gamma)$ for some set Γ .
- (b) E does not contain any closed subspace isomorphic (i.e., linearly homeomorphic) to ℓ¹.
- (c) E satisfies (*).
- (d) Every positive operator $T: E \to (\ell^{\infty})^*$ is compact.

If *K* is a countable compact space then C(K) satisfies (*) because $(C(K))^*$ is isomorphic to ℓ^1 .