Examen de topología. (Segunda parte)

28-Junio-2006

1. En \mathbb{R}^2 se define la topología τ mediante las bases de entornos siguientes:

$$\mathcal{B}(a,b) = \{J_{\epsilon}(a,b); \epsilon \in \mathbb{R}^+\} \text{ donde } J_{\epsilon}(a,b) = \{(x,b) \in \mathbb{R}^2, a-\epsilon < x < a+\epsilon\} \text{ si } (a,b) \neq (0,0)$$

 $\mathcal{B}(0,0) = \{ H \subseteq \mathbb{R}^2; \text{ tales que } (0,0) \in H, \text{ y } H \text{ cumple la condición } (*) \}$

- (*): Para toda recta horizontal L_h y toda recta vertical L_v , $H \cap L_h$ y $H \cap L_v$ son abiertos "usuales" de L_h y L_v respectivamente.
 - Comparar τ con la topología usual del plano \mathbb{R}^2 .
 - ¿Es cerrado en τ el subconjunto $\{(1/n, 1/n), n \in \mathbb{N}\}$?
 - Sea $M = \{a\} \times \mathbb{R}$, con $a \neq 0$. Hallar la topología inducida por τ en M.
 - Existe en (\mathbb{R}^2, τ) algún conjunto abierto y cerrado a la vez?
 - Sea $C := \{(x, y) \in \mathbb{R}^2; y \leq 0\}$. Probar que el punto (0, 1) se puede separar de C mediante una función real continua (es decir existe $f : \mathbb{R}^2 \to \mathbb{R}$ continua con $f(C) = \{0\}$ y f((0, 1)) = 1).
 - Estudiar si (\mathbb{R}^2, τ) es I-numerable, y si es separable.
- 2. Sea D un subconjunto denso de un espacio topológico (X, τ) . Probar
 - a) Si $W \subset X$ es un abierto en τ , $\overline{W \cap D} = \overline{W}$.
 - b) Si X es regular y un punto $x \in D$ admite una base numerable de entornos en D, también admite una base numerable de entornos en X.
 - c) La afirmación de b) no es cierta en general.
- 3. Sea $\mathbb Z$ dotado de la topología discreta; consideramos $\mathbb Z^{\mathbb N}$ con la topología producto.
 - Es $\mathbb{Z}^{\mathbb{N}}$ un espacio discreto?
 - ¿Contiene algún subespacio compacto infinito?.
 - ¿Es metrizable?. En caso afirmativo dar una métrica que genere la topología .