Problemas de topología. Espacios normales (Hoja 5)

24-IV-2008

- 1. Probar que la linea de Sorgenfrey \mathbb{R}_s es normal, pero $\mathbb{R}_s \times \mathbb{R}_s$ no lo es, (por tanto la normalidad no es propiedad multiplicativa).
- 2. Probar que todo subespacio cerrado de un espacio normal es normal. Sin embargo la "normalidad" no es propiedad hereditaria.
- 3. Demostrar que si en un espacio topológico normal (X,T) se tienen tres cerrados C_0 , C_1 y C_2 disjuntos dos a dos, entonces existe una función continua $f:(X,T) \to ([0,2],T_u|_{[0,2]})$ tal que $f(C_0)=0$, $f(C_1)=1$ y $f(C_2)=2$.
- 4. Probar que el plano de Niemytzki es completamente regular, pero no es normal. ¿Es localmente compacto?.
- 5. Un espacio (X, τ) es de Lindelöf si todo recubrimiento abierto de X posee un sub-recubrimiento numerable (No confundir con espacio numerablemente compacto). Probar las siguientes afirmaciones:
 - ullet Si un espacio X verifica el segundo axioma de numerabilidad, X es de Lindelöf.
 - El plano de Niemytzki no es de Lindelöf.
- 6. (Examen del 2002) Doble círculo de Alexandroff. Se considera el espacio (X,T) donde $X = C_1 \cup C_2$, C_i es la circunferencia de \mathbb{R}^2 de centro el origen y radio i, i = 1, 2, y T es la topología generada por la base (utilizamos notación de los números complejos para los elementos de \mathbb{R}^2).

$$\mathcal{B} = \left\{ \{z\} \mid z \in C_2 \right\} \cup \left\{ V(z, \epsilon) \mid z \in C_1, \epsilon > 0 \right\}$$
$$V(z, \epsilon) = \left\{ w \in X \mid \operatorname{Arg}(w) \in (\operatorname{Arg}(z) - \epsilon, \operatorname{Arg}(z) + \epsilon) \right\} - \left\{ 2e^{i\operatorname{Arg}(z)} \right\}.$$

- a) Es (X,T) compacto?
- b) Estudiar los axiomas de separación de (X,T).
- c) Estudiar los axiomas de numerabilidad.
- d) Demostrar que no toda aplicación continua de C_2 (con la topología inducida de X) en \mathbb{R} se puede extender a una aplicación continua de X en \mathbb{R} .

- e) Probar que el doble círculo de Alexandroff es secuencialmente compacto. Probar que no es separable ni metrizable.
- 7. Probar que el espacio definido en el ejercicio anterior, (doble círculo de Alexandroff) es una compactación del espacio discreto de la potencia del continuo.
- 8. Se dirá que un espacio topológico (X, τ) es perfectamente normal si es T_1 y para todo par de cerrados disjuntos no vacíos C_1, C_2 existe una función continua $f: X \to [0, 1]$ tal que $f^{-1}(0) = C_1$ y $f^{-1}(1) = C_2$. Probar: El espacio X es perfectamente normal sí y sólo si es normal, T_1 y todo cerrado de X es un G_{δ} (es decir, intersección numerable de abiertos).
- 9. (Examen del IX-99) ¿Es $\mathbb{R}^{\mathbb{N}}$ un espacio normal? ¿Es perfectamente normal?
- 10. Sea X un espacio topológico. Se define la cuasi-componente de un punto $x \in X$, Q_x , como la intersección de todos los abierto-cerrados que contienen a x. Probar:
 - $C_x \subseteq Q_x$, donde C_x designa la componente conexa de x.
 - Si X un espacio compacto, $\{M_i, i \in I\}$ una familia de cerrados con $\bigcap_{i \in I} M_i \neq \emptyset$, y U un abierto que contiene a $\bigcap_{i \in I} M_i$, probar que existe $F \subset I$ finito tal que $U \supseteq \bigcap_{i \in F} M_i$.
 - Si X un espacio compacto y T_2 , probar que Q_x es conexo, y por tanto $Q_x \subseteq C_x$, es decir, bajo estas hipótesis coinciden las componentes y las cuasi-componentes. (Indicación: X es normal en este caso).