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Binz-Butzmann duality versus Pontryagin duality
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Introduction. A topological group G is said to be reflexive if the natural embedding ag
from G into its bidual G * is a topological isomorphism, assuming that both G" and
G" " are endowed with the compact open topology. The Pontryagin duality theorem says
that every locally compact abelian group is reflexive. This theorem has been extended in
order to establish other sorts of groups which are also reflexive. For instance every
Banach space considered in its additive structure is a reflexive group; locally convex
reflexive spaces are reflexive as groups; arbitrary products of reflexive groups are reflex-
1ve, etc.

On the other hand, Fischer defined the convergence groups, as groups endowed with
a convergence structure compatible with the addition. Every topological group defines a
convergence structure, the one given by its convergent filters or nets. However, not every
compatible convergence structure of a group comes from a topology on the supporting
set. Binz and Butzmann have defined reflexivity in convergence groups and also in
convergence vector spaces. In the present paper we deal with the relationship between
reflexivity in the sense of Pontryagin and reflexivity in the sense of Binz-Butzmann
(BB-reflexivity), for a topological group G.

A convergence structure E on a set X is a set of pairs (£, x), where & denotes a filter
on X, and x an element of X, such that:

1) For every x € X, (#,, x) € Z, where Z_ is the filter generated by {x}.

2) If (#,x), (9, x) are in E, (F Nn¥, x) is also in =.

3) If (#, x) is in E and ¥ is a filter finer than & (i.e. # < %), then (¥4, x) is also in Z.

If (#, x) € B, we say that # converges to x, and write # — x. The pair (X, ), denoted
also briefly by X, will be called a convergence space. In particular we shall deal with the
continuous convergence structure on the set of characters of a topological group, to be
defined below.

Many topological properties can be stated in terms of convergence, therefore they have
corresponding definitions for convergence spaces. For a detailed discussion on them see
[5], where products and quotients of convergence spaces are also described.

We recall, for a later use, the following definitions: In a convergence space (X, Z) a
subset K < X is compact if every ultrafilter in K converges to some x in K. The space X
is locally compact if every convergent filter in X has a member which is compact.
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A convergence group (G, Z) is defined as a group endowed with a convergence structure
Z such that the mapping u: Gx G — G given by u((x, y)) = xy~! is continuous in the
sense of convergence.

Denote by T the group R/Z, endowed with the natural quotient topology; we shall
identify the elements of T with points in (— 1, 1]. For an arbitrary abelian topological
group G, the symbol I'G denotes the set of characters (i.e. continuous homomorphisms
from G into T). A topology on I'G is called admissible if the evaluation mapping
w: I'G x G- T defined by w((£, x)) = &(x) is continuous. If G is locally compact and I'G
carries the compact open topology, then w is continuous, not being so without the former
assumptions.

The continuous convergence structure A, in I'G, is defined in the following way: a filter
& in I'G converges in A4 to an element ¢ € I'G if for every x € G and every filter 5 in G,
convergent to x, w(Z x #) converges to £(x) in T. (¥ x # denotes the filter generated
by the products Fx H, Fe # and He #,and w(F x H):= {f (x); f € F and x € H}). If
I'G is endowed with 4, w takes convergent filters into convergent filters, therefore it is
continuous and in fact A is the coarsest convergence structure making the evaluation map
continuous.

Summarizing: For an abelian topological group G, I'G is also an abelian group. If it
is endowed with the continuous convergence structure it becomes a convergence group,
from now on denoted by I, G. The same set endowed with the compact open topology
is a topological group, called G *. A neighborhood basis of zero in G " is given by the sets
S, V):={felG;f(S)< V}, where S < G is compact and V a zero neighborhood in T.
If G is locally compact then IG may be identified with G". We shall denote by
ILILG:=I(I,G) and G"":=(G")" the Binz-Butzmann bidual (BB-bidual) and the
Pontryagin bidual respectively, and by kg: G— LI.G, a;: G— G" " the correspond-
ing canonical embeddings.

Relationship between Pontryagin reflexivity and Binz-Butzmann reflexivity. The follow-
ing simple fact will be used repeatedly.

Lemma 1. If a filter # converges to ¢ in I, G, it also converges to ¢ in G".

Proposition 1. Let G be a topological group such that ag: G— G"" is continuous.
Then, the convergence group I.G is locally compact.

Proof. Suppose Z isafilter in I, G convergent to the zero homomorphism. Let E; (0)
be the filter of all the neighborhoods of zero in G; we have w(# x E;(0)) - 0, and
therefore we can find F € &, N € E;(0) such that f(N) < [— 1/4, 1/4], for every f in F.

The set N°:= {t e I'G, t(N) < [— 1/4, 1/4]} is compact in the compact open topology
7, being the annihilator of a zero neighborhood, [1] (1.5). Let us prove that N ° is compact
in the convergence structure 4. For this purpose take an ultrafilter % in N°. Since
N° is compact in the compact open topology t of I'G, % is t-convergent, say % — ¢.
We must see that % % ¢. Take a neighbourhood of zero in T, say (—¢, ¢); due to
_continuity of ag, N is equicontinuous; therefore, we can find V € E;(0) such that
(V)< (—¢,8), Vo e N° Thus w(U x V) < (—¢, ¢) for every U in %, which shows that
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W(U x E(0)) — ¢ (0) and consequently % %> ¢. On the other hand, N° contains F,
therefore N° e #.

Remark 1. Observe that for a topological group G with o, continuous, the above
argument together with Lemma 1 imply that I'G and G” have the same compact
subsets.

Corollary 1. If G is a topological group such that ag: G — G is continuous, then the
continuous convergence structure on I' (I, G) has exactly the same convergent filters as the
compact open topology on the same set. Thus we can say that I, I, G is topological.

Proof. Apply to I,G the following result of [2] (Th. 32, pg. 52): “A convergence
c-embedded space X is locally compact if and only if C,(X) is topological. Furthermore,
whenever C,(X) carries a topology, it must be the compact open topology”. Here C,(X)
denotes the set of continuous, real valued functions defined on X , endowed with the
structure of continuous convergence. In our case, IG is c-embedded [3], and locally
compact by Proposition 1. Therefore, by the quoted result, C, I G is topological, carrying
the compact open topology. Since I I G can be identified with a subspace of C, I G, it
is also topological.

Now we give the following:

Theorem 1. Let G be a topological group such that o;: G — G"* is continuous. The
Pontryagin bidual G" " is a topological subgroup of the Binz-Butzmann bidual I. I, G.

Proof. Let x be a continuous character defined on G *. We must prove that x is also
continuous on I G. To this end, take a convergent filter & in I.G, say # — £, By
Lemma 1 # is also t-convergent to &. Since « is t-continuous, the filter generated by k (%)
converges to k (§). Thus  is in I I; G, and this proves G"* < I I’ G. On the other hand,
I I. G carries the compact open topology, 7, and by Remark 1, I G and G * have the same
compact subsets. So G" " is a topological subgroup.

A few comments now will make clear that in general G"" + I.I.G, the equality
holding, for instance, when G is locally compact, and in some other cases as well.

Comments and examples. For a topological vector space X, the reflexivity in the sense
of Binz-Butzmann is defined as follows: let %,(X) be the set of all continuous linear
functionals on X endowed with the structure of continuous convergence. Then X is said
to be BB-reflexive if the natural embedding from X into ZL.Z.(X) is a bicontinuous
isomorphism. In [3] it is proved that X is BB-reflexive if and only if it is locally convex
and complete.

On the other hand, we can consider the topological group underlying the topological
vector space X. As defined above, X is a BB-reflexive group if the natural embedding from
X into I I' X is a bicontinuous isomorphism. In [4] it is proved that X is BB-reflexive as
a vector space iff it is BB-reflexive as a group. This is far from being so in the ordinary
sense. A reflexive topological vector space is reflexive regarded as a topological group [8],
however the converse does not hold, since for instance, every Banach space is reflexive
as a group.

Komura has given an example of a reflexive locally convex space X, which is not
complete [7]. Therefore, X is reflexive as a group, i.e. ay: X — X"" is a topological
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isomorphism. As mentioned in Remark 1, X * and I X have the same compact subsets
and I I X carries the compact open topology. Thus, if the sets X ** and I I. X were
equal, they should be equal as topological groups. However, since X is not complete, it
is not BB-reflexive as a vector space, nor as a group, i.e. X is not bicontinuously
isomorphic to I I; X.

This proves that the sets X * * and I I, X are distinct, and furthermore, in this example
X " is not a closed subgroup of I’ I, X.

A BB-reflexive group which is not Pontryagin reflexive. If a group G is BB-reflexive, but
not Pontryagin reflexive, the canonical embedding o;: G— G " * cannot be continuous,
otherwise, by Theorem 1, «; (G) can be identified with x4 (G). In [1] (17.6), an example of
a group N for which ay is not continuous is provided. We reproduce here the example
and we will see that it is suitable for our purposes. We also give an alternative proof of
the non continuity of «y.

Let D = 2(R) be the space of the test functions on the real line, and let D’ be its dual
space, 1.e. the space of all distributions on R. It is well-known that D is a locally convex
topological vector space, which is nuclear and non-metrizable. Smolyanov proved that
D contains a closed linear subspace L such that D/L is topologically isomorphic to a
nonclosed dense subspace M of the countable product of real lines, R®. In [1] it is proved
that M " coincides with (R®)", and since R® is Pontryagin reflexive, M " * is isomorphic
to R®. Thus M is not a Pontryagin reflexive group.

Let N = L° be the annihilator of Lin D, i.e. N = {f e D’, f(L) = {0}}. We have:

M =~ D/L=D"/I?° ~(L°Y = N'.

The topology of N’ coincides with the compact open topology, therefore N’ is topolog-
ically isomorphic to N * [8]. Since M is not Pontryagin reflexive we can conclude that
neither N *, nor N are Pontryagin reflexive.

On the other hand, N is a closed subspace of the space D’, thus, it is a complete, locally
convex vector space. As mentioned before, N is a BB-reflexive vector space and equiv-
alently a BB-reflexive group.

We will now state a direct elementary proposition, from which it follows that oy is not
continuous. Two new definitions are required.

A subgroup H of a topological group G is said to be:
dually closed if for every g in G — H there is a character t in G* with 7(g) # 0 and
t(H) = {0}.
dually embedded if every character in H" can be extended to a character in G *.

Proposition 2. Let H be a dually closed and dually embedded subgroup of a reflexive
topological group. Then ay: H — H"" is an open algebraic isomorphism.

Proof. The following diagramm

H— G
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where all the mappings have the obvious meaning, is commutative. Therefore oy, is
injective.

Since H is dually embedded, the restriction mapping i*: G* — H " is surjective, and
consequently i**: H** — G " " is injective. Take now ¢ in H " "; by the reflexivity of
G we can find g in G such that ag(g) =i" " ($). Observe that g must be in H, otherwise
there would exist a character 7 in G " such that t(g) # 0 and ¢ (H) = {0}, which contra-
dicts g (g) = i" " (). Thus,i " * ay(g) = i" " (¢)implies ay (g) = ¢, and this proves that
oy 18 surjective.

In order to prove that ay is open, take an open set O in H, and let U be open in G such
that Un H = 0. Then oz (0) =i" " "' (ag(U)nag(H) =i" " "1(ag(U)) is open in H.

Remark 2. If E is a locally convex topological vector space, since E’ and E "
are algebraically isomorphic [8], the annihilator of any subspace L of E, I =
{f€E"; f(L)=0}, is a dually closed and dually embedded subgroup of E”. In the
previous example, ay is not a topological isomorphism; thus, by Proposition 2 it cannot
be continuous.

Remark 3. Locally compact groups are both Pontryagin reflexive and BB-reflexive.
The test function space is an example of a non locally compact group with the same

property.

BB-reflexivity of sums and products of denumerably many locally compact abelian
groups. First we give some general considerations on product spaces. We recall that the
box topology on a product of topological spaces is the one generated by products of open
sets. Obviously it is finer than the Tychonoff product topology. On the other hand, the
product of convergence spaces is defined as the product of the underlying sets endowed
with the initial convergence structure relative to the canonical projections [2]. If the factor
spaces are topological, then the “product convergence” is precisely the convergence
associated with the product topology.

Let {G,; n € N} be a sequence of locally compact abelian groups. Consider the direct
sum X2'G, endowed with the topology 7 induced by the box topology of I1G,. It is well
known that (X G,, 7) is a Pontryagin reflexive group, whose dual may be identified with
I1G,} endowed with the Tychonoff topology 7, [6]. We establish now the relationship
between this group and the BB-dual of 2 G,, whose underlying set is also I1G,". We have:

Proposition 3. The continuous convergence structure A on the set I1 G, is finer than the
convergence of the product topology t, and coarser than that of the box topology t,.

Proof. The fact that 4 is finer than the convergence of 7, follows from the previous
considerations, since 7, may be identified with the compact open topology in I1G,.

In order to prove that A is coarser than the convergence of the box topology in I1G,",
we show that the evaluation mapping w: IIG,* x 2G, — T is continuous if I[1G,* x £G,
is endowed with 7, x 1.

Let N be a zero neighborhood in T, and let K, be a compact neighborhood of zero in
G, for every n in N. The set ITK,, is a zero neighborhood in t,, whereas (ITK,, N):=
{te(l1G,")", t(I1K,) = N} is a zero neighborhood in the compact open topology of
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(I1G,)", being 1, the topology considered for IIG,". Due to continuity of
a:2G, —» (IIG)" we can find a neighborhood of zero in XG,, say U, such that
a(U) < (IIK,, N). Thus w(II K, x U) = N, which proves that w is continuous and there-
fore 4 < 1,,. ’

Corollary 2. The continuous convergence structure in the product of topological dual
groups does not coincide in general with the product of the corresponding continuous
convergence structure of the factors.

Proof. Observe that by Proposition 1, I, (X G,) is locally compact in the sense of
convergence. As a set it coincides with I1G,". Therefore, if the groups G, are taken to be
locally compact but non compact, 4 is different from 7,, whose convergence structure is
precisely the product one.

The above example also shows that the inequality 7, < A is strict. On the other hand,
A < 7, is also strict; in fact, if for every ne N, G, is a compact non trivial group, then
A coincides with the convergence structure of the compact open topology, which is the
product topology 1, obviously different from that of the box topology.

Remark 4. From the arguments of Corollary 2 it is clear that the BB-dual of a sum
is not isomorphic to the product of the duals as it was for Pontryagin duality.

Proposition 4. The direct sum X G, of a sequence of locally compact abelian groups is
BB-reflexive.

Proof. By Theorem 1, (XG,)"" is a topological subgroup of I I(XG,). We will
prove that in fact they are equal, and the assertion follows from the reflexivity of the sum

in the ordinary Pontryagin sense.
Take « in I I(XG,). This means that x:(IIG,', 4) —» T is continuous. Denote by

m
H,:= T1 G, .The continuous convergence structure 4, on H, can be identified with the
n=1

compact open topology, since it is locally compact. For every me N, k,,:= x|y _1s a

(e 0]
continuous character. Taking into account that [T G, endowed with the product topol-

n=1
ogy is the projective limit of the sequence {H,,; m € N}, we obtain that x, being the limit
of the mappings k,,, is 7,-continuous. Therefore I; I;(2G,) = (2 G)"".

Proposition 5. The product I1G, of a sequence of locally compact abelian groups is
BB-reflexive.

Proof. An argument similar to the previous one gives the proof.
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