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For a locally compact group G we consider the class G-M of all proper (in the
sense of R. Palais) G-spaces that are metrizable by a G-invariant metric. We show
that each X ∈ G-M admits a compatible G-invariant metric whose closed unit
balls are small subsets of X. This is a key result to prove that X admits a closed
equivariant embedding into an invariant convex subset V of a Banach G-space L
such that L\{0} ∈ G-M and V is a G-absolute extensor for the class G-M. On this
way we establish two equivariant embedding results for proper G-spaces which may
be considered as equivariant versions of the well-known Kuratowski–Wojdyslawski
theorem and Arens–Eells theorem, respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout the paper G will denote a locally compact Hausdorff topological group. All topological spaces
under discussion are Tychonoff.

The notion of a proper G-space was introduced in 1961 by R. Palais [28]. It allows to extend a substantial
portion of the theory of compact Lie group actions to the case of noncompact ones. Recall that a G-space X

is called proper (in the sense of Palais [28, Definition 1.2.2]), if X has an open cover consisting of small sets.
Here a subset V ⊂ X is called small, if for every point of X there is a neighborhood U with the property
that the set 〈U, V 〉 = {g ∈ G | gU ∩ V �= ∅} has compact closure in G.

Our focus in this paper is on the class G-M of all proper G-spaces that are metrizable by a G-invariant
metric. In his seminal work [28], R. Palais proved that G-M includes all separable metrizable proper G-spaces

* Corresponding author.
E-mail addresses: nantonya@itesm.mx (N. Antonyan), antonyan@unam.mx (S. Antonyan), peinador@mat.ucm.es

(E. Martín-Peinador).
1 The first author was supported by grant 165195 from CONACYT (Mexico).
2 The second author was supported by grant 165246 from CONACYT (Mexico).

0166-8641/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.topol.2013.10.003



Author's personal copy

12 N. Antonyan et al. / Topology and its Applications 163 (2014) 11–24

provided that G is a Lie group. J. de Vries [31] observed that the same holds true for any locally compact
metrizable group G. In [11] it was shown that any locally metrizable proper G-space is in G-M even for
arbitrary locally compact group G. However, it is an open problem of long standing whether the separability
condition can entirely be omitted in this result of Palais. In other words, it remains open whether G-M
coincides with the class of all metrizable proper G-spaces (even for G = R and G = Z). We refer to [11] for
a further discussion of this interesting problem.

This paper is devoted to the theory of equivariant embeddings of metrizable proper G-spaces in normed
linear G-spaces. Several authors have contributed to this theory. Thus, E. Elfving [17,18] has established
equivariant embeddings for proper actions of Lie groups on locally compact metrizable spaces. For more
special proper G-spaces similar results were obtained earlier by M. Kankaanrinta [22,23]. A. Feragen [20]
obtained equivariant embedding results for an arbitrary G-space X from the class G-M provided that
G is a Lie group. Other related equivariant embedding results the reader can find in the papers [5]
and [10].

Here we shall establish equivariant versions of the classical Kuratowski–Wojdyslawski theorem (see [14,
Ch. 3, §8]) and Arens–Eells theorem (see [13]) in the class G-M. Our Theorem 5.1 and its Corollary 5.2,
roughly, assert that every G-space X ∈ G-M admits an equivariant embedding i : X ↪→ Q(X) in an
appropriately defined Banach G-space Q(X) of continuous functions X → R such that Q(X) \ {0} is a
proper G-space and the image i(X) is closed in its convex hull. Theorem 5.4 and its Corollary 5.5 assert
that every G-space X ∈ G-M admits a closed equivariant embedding i : X ↪→ L in a normed linear G-space
L such that L\{0} is a proper G-space, ‖i(x)‖ = 1 for all x ∈ X and the image i(X) is a Hamel basis for L.
These equivariant embedding results, similar to their nonequivariant counterparts, may play an important
role in the equivariant theory of retracts and infinite-dimensional manifolds. At least one example of such
an application is shown in Section 6, where in a very short way it is proved that the notions of G-A(N)R
and G-A(N)E coincide in G-M. Perhaps, Theorem 3.2 is the key result in our argument. It claims that each
X ∈ G-M admits a compatible G-invariant metric ρ such that every closed unit ball Bρ(x, 1) is a small set.
If in addition, X is locally compact then, as it is proved in [3], an invariant metric on X can be chosen in
such a way that every ball of finite radius has compact closure (a so-called, proper metric).

2. Notations and terminology

Throughout the paper, unless otherwise is stated, by a group we shall mean a locally compact topolog-
ical group satisfying the Hausdorff separation axiom. All topological spaces are assumed to be Tychonoff
(= completely regular and Hausdorff). Basic definitions and facts of the theory of G-spaces or topological
transformation groups can be found in the monographs G. Bredon [15], K.H. Hofmann and S.A. Morris [21],
and R. Palais [27]. Our basic reference on proper group actions is Palais’ article [28]. Other good sources
are [24,1,2] (see also [5] and [11]).

However, for the convenience of the reader we recall some more special definitions and facts below.
By a G-space we mean a topological space X together with a fixed continuous action G ×X → X of a

topological group G on X. By gx we shall denote the image of the pair (g, x) ∈ G×X under the action.
If Y is another G-space, a map f : X → Y is called equivariant, if f(gx) = gf(x) for every x ∈ X and

g ∈ G. A continuous equivariant map is called a G-map.
If X is a G-space, then for a subset S ⊂ X and a subset H ⊂ G, the H-hull (or H-saturation) of S is

defined as follows: H(S) = {hs | h ∈ H, s ∈ S}. If S is the one point set {x}, then the G-hull G({x})
usually is denoted by G(x) and called the orbit of x. The orbit space X/G is always considered in its quotient
topology.

A subset S ⊂ X is called G-invariant or, simply, invariant if it coincides with its G-hull, i.e., S = G(S).
For a closed subgroup H ⊂ G, by G/H we will denote the G-space of cosets {gH | g ∈ G} under the

action induced by left translations.
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A compatible metric ρ on a metrizable G-space X is called invariant or G-invariant, if ρ(gx, gy) = ρ(x, y)
for all g ∈ G and x, y ∈ X. In this case the action is called isometric and the pair (X, ρ) is named a metric
G-space.

If ρ is a G-invariant metric on X, then it is easy to verify that the formula

ρ̃
(
G(x), G(y)

)
= inf

{
ρ
(
x′, y′

) ∣∣ x′ ∈ G(x), y′ ∈ G(y)
}

defines a pseudometric ρ̃, compatible with the quotient topology of X/G. If, in addition, X is a proper
G-space then ρ̃ is, in fact, a metric on X/G [28, Theorem 4.3.4].

By a normed linear G-space (respectively, a Banach G-space) we shall mean a G-space L, where L is
a normed linear space (respectively, a Banach space) on which G acts by means of linear isometries, i.e.,
g(λx + μy) = λ(gx) + μ(gy) and ‖gx‖ = ‖x‖ for all g ∈ G, x, y ∈ L and λ, μ ∈ R.

In 1961 Palais [28] introduced the fundamental concept of a proper action of an arbitrary locally compact
group G and extended a substantial part of the theory of compact Lie transformation groups to noncompact
ones.

Let G be a locally compact group and X a G-space. Two subsets U and V in X are called thin relative
to each other [28, Definition 1.1.1], if the set

〈U, V 〉 = {g ∈ G | gU ∩ V �= ∅}

called the transporter from U to V , has compact closure in G. A subset U of a G-space X is called G-small,
or just small, if every point in X has a neighborhood thin relative to U . A G-space X is called proper (in
the sense of Palais), if every point in X has a small neighborhood.

Each orbit in a proper G-space is closed, and each stabilizer is compact [28, Proposition 1.1.4]. It is easy
to check the following two statements: (1) the product of two G-spaces is proper whenever one of them is
so; (2) the inverse image of a proper G-space under a G-map is again a proper G-space.

Important examples of proper G-spaces are the coset spaces G/H with H a compact subgroup of a locally
compact group G. Other interesting examples can be found in [1,2,24,28]. The reader is referred to [11] for
a discussion of the relationship between Palais proper G-spaces and Bourbaki proper G-spaces.

3. Existence of small metrics

Recall that a compatible metric ρ on a proper G-space X is called small, if every closed unit ball Bρ(x, 1)
is a small subset of X.

A subset S of a proper G-space is called fundamental, if S is a small set and the saturation G(S) = {gs |
g ∈ G, s ∈ S} coincides with the whole space.

We begin this section with the following simple

Lemma 3.1. Let X be a metrizable space and F ⊂ X a closed subset, and U a neighborhood of F . Then
there is a compatible metric d on X such that d(x, y) > 1 whenever x ∈ F and y ∈ X \ U .

Proof. By normality, there exists an open subset V ⊂ X such that

F ⊂ V ⊂ V ⊂ U.

Let ϕ : X → [0, 1], be a continuous function such that ϕ|V ≡ 1 and ϕ|X\U ≡ 0. If ρ is a compatible metric
on X, then it is easily verified that the formula

d(x, y) = ρ(x, y) +
∣∣ϕ(x) − ϕ(y)

∣∣, x, y ∈ X,

defines a compatible metric on X.
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It follows from the definition of d that d(x, y) = ρ(x, y)+1 > 1 for x ∈ F and y ∈ X \U , which completes
the proof. �

The following theorem is, perhaps, the key result in our argument.

Theorem 3.2. Let G be a locally compact group. Then every X ∈ G-M admits a compatible G-invariant
small metric.

Proof. Since the orbit space X/G is metrizable, and hence paracompact, one can apply [2, Theorem 1.7],
according to which X admits a fundamental set S ⊂ X. Since the closure of each fundamental set is also
fundamental, we can assume that S is closed.

Choose identity neighborhoods V ⊂ W ⊂ G such that V = V −1, V · V ⊂ W and the closure W is
compact. In particular, the closure K = V is a compact symmetric set and K ⊂ W . Then K(S) is closed
(see [2, Proposition 1.4(c)]), W (S) is small (see [2, Proposition 1.2(e)]) and K(S) ⊂ W (S). Finally, due to
paracompactness of the orbit space X/G, one can take an open small subset U of X such that W (S) ⊂ U

(see [2, Proposition 1.8]).
Then according to Lemma 3.1, one can choose a compatible metric d on X satisfying the following

property:

d(x, y) > 1 whenever x ∈ K(S) and y ∈ X \ U. (3.1)

Define

r(x) = d(x,X \ U), x ∈ X.

Then for any x, y ∈ X, we have r(x) − r(y) � d(x, y), and hence,

r(x) + r(z) � d(x, y) + r(y) + r(z) for all x, y, z ∈ X.

Therefore, if we write

μ(x, y) = min
{
d(x, y), r(x) + r(y)

}
, x, y ∈ X,

then it is obvious that μ is a pseudometric on X. Define

ρ(x, y) = sup
g∈G

μ(gx, gy), x, y ∈ X.

It is clear that ρ is a G-invariant pseudometric. Let us check that, in fact, it is a metric. Let x and y be two
different points of X. Since X = G(U), we infer that g0x ∈ U for some g0 ∈ G, yielding r(g0x) > 0. Since
the points g0x and g0y are also different, we see that d(g0x, g0y) > 0. Consequently, μ(g0x, g0y) > 0 which
yields that ρ(x, y) > 0. Thus, ρ is a G-invariant metric on X.

We show that ρ is compatible with the topology of X. Let (xn) be a sequence in X such that ρ(xn, x0) � 0
for some point x0 ∈ X. Take an arbitrary ε > 0 and let Od(x0, ε) be the open ε-neighborhood of x0 in
the original metric of X. Since G(U) = X, there is an element g0 ∈ G with g0x0 ∈ U . Since the map
g−1
0 : X → X is continuous and U is open, there is a δ > 0 such that Od(g0x0, δ) ⊂ U and g−1

0 (Od(g0x0, δ)) ⊂
Od(x0, ε).

The inclusion Od(g0x0, δ) ⊂ U implies that r(g0x0) � δ > 0. Since ρ(xn, x0) � 0, there exists n0 ∈ N
such that ρ(xn, x0) < δ/2 for all n � n0. Also, since μ(g0xn, g0x0) � ρ(xn, x0), we see that μ(g0xn, g0x0) <
δ/2. Now, since r(g0xn) + r(g0x0) � r(g0x0) � δ, we infer that μ(g0xn, g0x0) = d(g0xn, g0x0) < δ/2; so
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g0xn ∈ Od(g0x0, δ/2). Therefore xn = g−1
0 (g0xn) ∈ g−1

0 (Od(g0x0, δ/2)) ⊂ Od(x0, ε) for all n � n0, showing
that (xn) converges to x0 relative to the original topology of X.

Conversely, assume that d(xn, x0) � 0 for a sequence (xn) ⊂ X and a point x0 ∈ X, while ρ(xn, x0) �� 0.
Then, for some ε0 > 0, there must be a subsequence (yk) ⊂ (xn) such that ρ(yk, x0) � ε0 for all indices k.
Therefore, μ(gkyk, gkx0) � ε0/2 for a suitable sequence (gk) ⊂ G. Consequently,

r(gkyk) + r(gkx0) � ε0/2. (3.2)

Next, since U is a small set, one can choose a neighborhood A of the point x0 such that the transporter
〈A,U〉 has compact closure in G. Since d(yk, x0) � 0, by passing to a subsequence, we can suppose that
yk ∈ A, k � 1.

Now, since the set {x0} ∪ (yk) is contained in A, the inequality (3.2) implies that (gk) ⊂ 〈A,U〉. But the
transporter 〈A,U〉 has compact closure in G, and hence, the sequence (gk) has a cluster point, say g ∈ G

(see [19, Theorem 3.1.23]). Then, by continuity of the action of G on X, the point gx0 is a cluster point for
both sequences (gkx0) and (gkyk) in X. Since X is metrizable (gkx0) and (gkyk) should contain subsequences
which converge to the cluster point gx0. Without loss of generality, one can assume that the sequences (gkx0)
and (gkyk) themselves converge to gx0, and hence, there is an index k0 such that d(gkyk, gkx0) < ε0/2
whenever k � k0. However, this contradicts the condition d(gkyk, gkx0) � μ(gkyk, gkx0) � ε0/2 above.

It remains to show that every closed unit ball Bρ(x, 1) is a small subset of X. Since S is a fundamental
subset of X and ρ is G-invariant, one can assume, without loss of generality, that x ∈ S. We claim the
Bρ(x, 1) is contained in K(U). Indeed, if y ∈ X \K(U) and g ∈ K, then gy ∈ X \ U because K = K−1.
Also one has gx ∈ K(S). Consequently, by virtue of the property (3.1), this yields that d(gx, gy) > 1. By
the same reason, r(gx) > 1. Consequently, μ(gx, gy) > 1 whenever y ∈ X \K(U) and g ∈ K. This implies
that

ρ(x, y) � sup
g∈K

μ(gx, gy) > 1

for all y ∈ X \K(U), i.e., Bρ(x, 1) ⊂ K(U). But K(U) is a small set because U is small and K is compact
(see e.g., [2, Proposition 1.2(e)]). This yields that Bρ(x, 1) is small, and the proof is complete. �
4. Important examples of proper G-spaces

Recall that a continuous function f : X → R defined on a G-space X is called G-uniform, if for each
ε > 0 there is a unity neighborhood U in G such that |f(gx) − f(x)| < ε for all x ∈ X and g ∈ U (see [29]
and [12]).

By A(X) we denote the linear space of all G-uniform bounded functions on X endowed with the sup-norm
and the following G-action:

(g, f) → gf, (gf)(x) = f
(
g−1x

)
, x ∈ X.

It is known that A(X) is a Banach G-space (see [7]).
In general, the complement A(X) \ {0} may not be a proper G-space even for X a proper G-space. In

this connection, for a proper G-space X, we shall define a G-invariant closed linear subspace Q(X) of A(X)
such that the complement Q0(X) = Q(X)\{0} is a proper G-space. Namely, we denote by Q(X) the subset
of A(X) consisting of all those functions f ∈ A(X) which vanish at the infinity in the following sense: for
every ε > 0, there exists an open small subset U ⊂ X such that |f(x)| � ε for all x ∈ X \ U .

Proposition 4.1. Let G be locally compact group and X a proper G-space. Then Q(X) is a closed G-invariant
linear subspace of A(X), and hence, Q(X) is a Banach G-space.
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Proof. Since the other two properties of Q(X) are evident, we will show that Q(X) is closed in A(X).
Indeed, let (fn) be a sequence in Q(X) that converges to a limit f ∈ A(X). Take ε > 0 arbitrary and choose
an index n such that ‖f − fn‖ < ε/2. Then |f(x) − fn(x)| < ε/2 for all x ∈ X. Since fn ∈ Q(X), there
exists an open small subset U ⊂ X such that |fn(x)| � ε for all x ∈ X \ U . Then, for every x ∈ X \ U one
has |f(x)| � |f(x) − fn(x)| + |fn(x)| < ε/2 + ε/2 = ε. Hence f ∈ Q(X), as required. �

Below, in a metric space, we shall denote by O(x, r) the open ball of a radius r > 0 centered at the
point x.

Proposition 4.2. Let G be any group and X any proper G-space. Then for every f ∈ Q0(X) = Q(X) \ {0},
the open ball O(f, ‖f‖

2 ) is a small set in Q0(X). In particular, Q0(X) is a proper G-space.

Proof. Let h ∈ Q0(X). We are going to show that for the sets O(f, ‖f‖
2 ) and O(h, ‖f‖

4 ) are relatively thin,
i.e., the transporter 〈O(f, ‖f‖

2 ), O(h, ‖f‖
4 )〉 has compact closure.

Indeed, fix a small set U in X such that |h(x)| � ‖f‖
20 whenever x ∈ X \ U . Choose x0 ∈ X such that

|f(x0)| > 4‖f‖
5 . Since the transporter 〈{x0}, U〉 has compact closure in G, it suffices to show that〈

O

(
f,

‖f‖
2

)
, O

(
h,

‖f‖
4

)〉
⊂
〈
{x0}, U

〉
.

Let g ∈ 〈O(f, ‖f‖
2 ), O(h, ‖f‖

4 )〉. Then there is h′ ∈ O(h, ‖f‖
4 ) such that g−1h′ ∈ O(f, ‖f‖

2 ). This implies
that

∣∣h′(gx0)
∣∣ �

∣∣f(x0)
∣∣− ‖f‖

2 and
∣∣h(gx0)

∣∣ �
∣∣h′(gx0)

∣∣− ‖f‖
4 .

Consequently,

∣∣h(gx0)
∣∣ �

∣∣f(x0)
∣∣− ‖f‖

2 − ‖f‖
4 >

4‖f‖
5 − ‖f‖

2 − ‖f‖
4 = ‖f‖

20 .

It then follows that gx0 ∈ U , i.e., g ∈ 〈{x0}, U〉, as required. �
Further, we denote by P(X) the linear subspace of Q(X) consisting of all functions f ∈ Q(X) whose

support

supp f =
{
x ∈ X

∣∣ f(x) �= 0
}

is a small subset of X. It is easy to see that P(X) is an invariant subset of Q(X).
Denote the complement P(X) \ {0} by P0(X).
Since open small sets constitute a base of the (Tychonoff) topology of X, we see that P0(X) �= ∅.
The G-space P(X) will play a central role in our further constructions.
In the sequel the following closed convex subsets of P0(X) and Q0(X), respectively, will play an important

role:

P+(X) =
{
f ∈ P0(X)

∣∣ f(x) � 0, ∀x ∈ X
}
,

Q+(X) =
{
f ∈ Q0(X)

∣∣ f(x) � 0, ∀x ∈ X
}
.

Clearly, Q+(X) and P+(X) are convex G-invariant subsets of Q0(X), and hence, they also are proper
G-spaces.
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The following proposition clarifies the relationship between P(X) and Q(X); namely it shows that when
the proper G-space X is a normal topological space, then Q(X) is the completion of P(X).

Proposition 4.3. Let G be locally compact group and X a normal proper G-space. Then P(X) is dense in
Q(X).

Proof. Indeed, let f ∈ Q(X) and ε > 0. We have to find a ϕ ∈ P(X) such that ‖f −ϕ‖ < ε. First we choose
an open small subset U ⊂ X such that |f(x)| � ε/4 for all x ∈ X \ U .

Define Aε = {x ∈ X | |f(x)| � ε/2}. Clearly, Aε is a closed (possibly, empty) subset of X and
Aε ⊂ U . The fact that f is G-uniform easily implies that the disjoint closed sets Aε and X \ U are, in
fact, G-disjoint in the following sense due to M. Megrelishvili [26]: there is a unity neighborhood O ⊂ G

such that O(Aε)∩O(X \U) = ∅ (see also [4, Corollary 2.2]). By the equivariant Urysohn lemma (see [26,30]
and [4, Corollary 2.7]), there exists a G-uniform function λ : X → [0, 1] such that Aε ⊂ λ−1(1) and
X \U ⊂ λ−1(0). Set ϕ(x) = λ(x)f(x) for all x ∈ X. Since both λ and f are G-uniform functions, so is their
product ϕ. Further, since U is a small set and ϕ(x) = λ(x)f(x) = 0 · f(x) = 0 for every x ∈ X \U , we infer
that ϕ ∈ P(X).

Let us check that ‖f−ϕ‖ < ε. Indeed, for x ∈ Aε one has |f(x)−ϕ(x)| = 0. If x ∈ X \U then |f(x)| � ε/4
and ϕ(x) = λ(x)f(x) = 0 · f(x) = 0. Thus, |f(x)− ϕ(x)| = |f(x)| � ε/4 for all x ∈ (X \U) ∪Aε. Finally, if
x ∈ U \Aε, then |f(x)| < ε/2, and therefore,∣∣f(x) − ϕ(x)

∣∣ =
∣∣f(x) − λ(x)f(x)

∣∣ =
∣∣f(x)

∣∣ · ∣∣1 − λ(x)
∣∣ �

∣∣f(x)
∣∣ < ε/2.

Thus, |f(x) − ϕ(x)| < ε/2 for every x ∈ X, yielding that ‖f − ϕ‖ = supx∈X |f(x) − ϕ(x)| � ε/2 < ε, as
required. �

It is in order to recall here some relevant definitions about equivariant extensors and equivariant retracts.
A G-space Y is called an equivariant absolute neighborhood extensor for the class G-M (notation:

Y ∈ G-ANE), if for every X ∈ G-M, any closed invariant subset A ⊂ X and any G-map f : A → Y , there
exist an invariant neighborhood U of A in X and a G-map ψ : U → Y such that ψ|A = f . If, in addition,
one can always take U = X, then we say that Y is an equivariant extensor for X (notation: Y ∈ G-AE).
The map ψ is called a G-extension of f .

A G-space Y ∈ G-M is called a G-equivariant absolute neighborhood retract for the class G-M (notation:
Y ∈ G-ANR), provided that for any closed G-embedding Y ↪→ X in a G-space X ∈ G-M, there exists a
G-retraction r : U → Y , where U is an invariant neighborhood of Y in X. If, in addition, one can always
take U = X, then we say that Y is a G-equivariant absolute retract (notation: Y ∈ G-AR).

We note that, in general, a metrizable G-A(N)E space Y need not be a G-A(N)R, because it may not
belong to the class G-M. But if Y ∈ G-M and Y ∈ G-A(N)E, then clearly Y ∈ G-A(N)R. The converse
is also true; below, in Corollary 6.3, we shall give a very transparent prove of this result based on our
Theorem 6.1.

Now we establish the following fundamental property of Q+(X):

Proposition 4.4. Let G be locally compact group and X a proper G-space. Then Q+(X) is a proper G-AE
space.

Proof. Q+(X) is a proper G-space since it is a G-invariant subspace of the proper G-space Q0(X) (see
Proposition 4.2). In order to prove that Q+(X) ∈ G-AE, we aim at applying the following result of Abels
[2, Theorem 4.4]: a G-space T is a G-AE if T is a K-AE for each compact subgroup K ⊂ G.

In our case T = Q+(X). In order to show that for each compact subgroup K ⊂ G, Q+(X) is a K-AE,
we will apply the following generalization of the James–Segal theorem [25, Proposition 4.1]:
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Theorem. ([9]) Let K be a compact group and T a K-ANR. Then T is a K-AR if and only if for every
closed subgroup H ⊂ K, the set of H-fixed points TH = {t ∈ T | ht = t, ∀h ∈ H} is contractible.

We continue with the proof of Proposition 4.4. Denote

E(X) =
{
f ∈ Q(X)

∣∣ f(x) � 0, ∀x ∈ X
}
.

Clearly, E(X) is a closed convex G-invariant subset of the Banach G-space Q(X), and Q+(X) = E(X)\{0}.
Due to completeness of E(X), the equivariant Dugundji extension theorem as proved in [6], is applicable
here; according to this result E(X) is a K-AR. Hence, the K-invariant open set Q+(X) = E(X) \ {0} is a
K-ANR, and therefore, the above mentioned theorem from [9] is applicable to the K-space T = Q+(X).

Let H ⊂ K be any closed subgroup. Since Q+(X) is convex and the action of K is linear, we infer that the
H-fixed point set Q+(X)H is a convex subset of Q+(X), and hence, it is contractible, as required. Now the
above theorem implies that Q+(X) is a K-AR. Since the group K is compact, the property K-AR implies
the property K-AE (see [7, Theorem 14]), and hence, Q+(X) is a K-AE. This completes the proof. �
Remark 4.5. The same proof of Proposition 4.4 implies that Q+(X) is a G′-AE space for any closed
subgroup G′ of G.

5. Equivariant embeddings into convex proper G-spaces

In this section we shall establish two equivariant embedding results for metrizable proper G-spaces which
may be considered as equivariant versions of the well-known Kuratowski–Wojdyslawski and Arens–Eells
embedding theorems, respectively.

Theorem 5.1. Let G be an arbitrary group and X ∈ G-M. Then every G-invariant small metric ρ on X

defines a G-embedding i : X ↪→ P+(X) such that:

(1) ‖i(x)‖ = 1 for all x ∈ X,
(2) ‖i(x) − i(y)‖ � ρ(x, y) for all x, y ∈ X,
(3) ρ(x, y) = ‖i(x) − i(y)‖ whenever ρ(x, y) � 1,
(4) ‖i(x) − i(y)‖ � 1 whenever ρ(x, y) > 1,
(5) the image i(X) is closed in its convex hull.

Proof. For every x ∈ X, we define fx ∈ P0(X) as follows:

fx(y) =
{

1 − ρ(x, y), if ρ(x, y) � 1,
0, if ρ(x, y) � 1.

Now we define the map i : X → P0(X) by i(x) = fx, x ∈ X.
To see that i is the required map let us check first that fx ∈ P0(X) for every x ∈ X. Clearly, fx : X →

[0, 1] is a continuous function. Now, let ε > 0 be arbitrary. Choose a neighborhood W of the unity in G

such that

ρ(hx, x) < ε for all h ∈ W. (5.1)

We claim that (5.1) implies ∣∣fx(hy) − fx(y)
∣∣ < ε

for all h ∈ W and y ∈ X, which in turn yields that fx ∈ A(X).
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Consider all possible cases.
If ρ(x, hy) � 1 and ρ(x, y) � 1, then∣∣fx(hy) − fx(y)

∣∣ =
∣∣1 − ρ(x, hy) − 1 + ρ(x, y)

∣∣ =
∣∣ρ(x, y) − ρ

(
h−1x, y

)∣∣
� ρ

(
x, h−1x

)
= ρ(hx, x) < ε.

If ρ(x, hy) � 1 and ρ(x, y) � 1, then∣∣fx(hy) − fx(y)
∣∣ = 1 − ρ(x, hy) � ρ(x, y) − ρ(x, hy) = ρ(x, y) − ρ

(
h−1x, y

)
� ρ

(
x, h−1x

)
= ρ(hx, x) < ε.

The case ρ(x, hy) � 1 and ρ(x, y) � 1 reduces to the previous one.
Finally, if ρ(x, hy) � 1 and ρ(x, y) � 1, then |fx(hy) − fx(y)| = 0 < ε.
Thus, fx ∈ A(X). Since supp fx ⊂ Bρ(x, 1) and since ρ is a small metric we infer that Bρ(x, 1), and

hence, its subset supp fx, are small sets. Thus, fx belongs to P0(X) showing that the map i : X → P0(X)
is well-defined.

Further, the following inequality holds:∥∥fx1 − fx2
∥∥ � ρ(x1, x2) for all x1, x2 ∈ X. (5.2)

This implies that i is (uniformly) continuous. In order to prove (5.2), again we consider cases. Let y ∈ X

be arbitrary.
If ρ(x1, y) � 1 and ρ(x2, y) � 1, then∣∣fx1(y) − fx2(y)

∣∣ =
∣∣ρ(x1, y) − ρ(x2, y)

∣∣ � ρ(x1, x2).

If ρ(x1, y) � 1 and ρ(x2, y) � 1, then∣∣fx1(y) − fx2(y)
∣∣ =

∣∣1 − ρ(x1, y)
∣∣ � ρ(x2, y) − ρ(x1, y) � ρ(x2, x1).

The case ρ(x1, y) � 1 and ρ(x2, y) � 1 reduces to the previous one.
Finally, if ρ(x1, y) � 1 and ρ(x2, y) � 1, then∣∣fx1(y) − fx2(y)

∣∣ = 0 � ρ(x1, x2).

Thus (5.2) is proved.
Since fx(x) = 1, it then follows from (5.2) that ‖fx‖ = 1, so ‖i(x)‖ = 1.
In order to show that i is a topological embedding, we observe the following. If ρ(x1, x2) � 1, then

‖fx1 − fx2‖ � |fx1(x1) − fx2(x1)| = ρ(x1, x2), which implies together with (5.2), that∥∥fx1 − fx2
∥∥ = ρ(x1, x2).

Moreover, if ρ(x1, x2) > 1, then ∥∥fx1 − fx2
∥∥ �

∣∣fx1(x1) − fx2(x1)
∣∣ = 1.

It follows from these observations that i is injective and its inverse is continuous. The equivariance of i is
immediate from the G-invariance of the metric ρ.



Author's personal copy

20 N. Antonyan et al. / Topology and its Applications 163 (2014) 11–24

It remains only to show that i(X) is closed in its convex hull. Let (fxn) be a sequence in i(X) converging
to an f ∈ conv(i(X)). Then f has the form f =

∑m
i=1 tif

zi with
∑m

i=1 ti = 1, ti � 0 and zi ∈ X. Without
loss of generality, one can assume that t1 > 0. Next, we observe that:∥∥fxn − f

∥∥ �
∣∣fxn(xn) − f(xn)

∣∣ =
∣∣1 − f(xn)

∣∣
=
∣∣∣∣∣

m∑
i=1

ti −
m∑
i=1

tif
zi(xn)

∣∣∣∣∣ =
m∑
i=1

ti
(
1 − fzi(xn)

)
� t1

(
1 − fz1(xn)

)
.

Now, t1(1 − fz1(xn)) is either t1ρ(z1, xn) or t1. Since ‖fxn − f‖ � 0, the above inequality implies that
t1(1−fz1(xn)) = t1ρ(z1, xn) for all but finitely many indices n. We thus infer that ρ(z1, xn) � 0 as n � ∞,
i.e., xn � z1. Being i a continuous map, we get that f = lim i(xn) = i(z1), as required. �

Since by Theorem 3.2, every proper G-space from G-M admits a small G-invariant metric and P+(X) ⊂
Q+(X), Theorem 5.1 immediately yields the following result which can be viewed as the equivariant analog
of the classical Kuratowski–Wojdyslawski embedding theorem for proper G-spaces:

Corollary 5.2. Let G be a locally compact group and X ∈ G-M. Then X admits a G-embedding i : X ↪→
Q+(X) such that ‖i(x)‖ = 1 for all x ∈ X and the image i(X) is closed in its convex hull.

For a metric space (X, ρ) we shall denote by F(X) the metric space of all finite subsets of X endowed
with the Hausdorff metric ρH . Recall that for A,B ∈ F(X), the distance ρH(A,B) is defined to be the
number max{maxa∈A ρ(a,B),maxb∈B ρ(b, A)}.

If, in addition, X is a G-space then a natural action G × F(X) → F(X) is defined according to the
rule

(g,A) → gA = {ga | a ∈ A}.

The easy verification of the continuity of the action map G×F(X) → F(X) is left to the reader.

Lemma 5.3. Let G be an arbitrary group and X ∈ G-M. Then the space F(X) of all finite subsets of X is
a proper G-space. Moreover, if ρ is an invariant small metric for X, then the Hausdorff metric ρH is an
invariant small metric for F(X).

Proof. It is quite easy to check that ρH is an invariant metric. Let’s check that it is also small. To this
end, choose A = {a1, . . . , an} ∈ F(X) and Z = {z1, . . . , zp} ∈ F(X) arbitrary. Since the closed unit balls
Bρ(a1, 1), . . . , Bρ(an, 1) are small subsets of X, there must be a number r > 0 such that the transporter
〈
⋃n

i=1 Bρ(ai, 1), Oρ(zk, r)〉 has compact closure for every k = 1, . . . , p.
We claim that the transporter 〈BρH

(A, 1), OρH
(Z, r)〉 has compact closure. Indeed, let g ∈ 〈BρH

(A, 1),
OρH

(Z, r)〉. Then, there must be an element C ∈ BρH
(A, 1) such that gC ∈ OρH

(Z, r). Take a point c ∈ C.
Then there is an aj ∈ A such that c ∈ Bρ(aj , 1). Similarly, there must be a zk ∈ Z such that gc ∈
Oρ(zk, r). Consequently, g ∈ 〈Bρ(aj , 1), Oρ(zk, r)〉. Since 〈Bρ(aj , 1), Oρ(zk, r)〉 ⊂ 〈

⋃n
i=1 Bρ(ai, 1), Oρ(zk, r)〉,

we infer that g ∈ 〈
⋃n

i=1 Bρ(ai, 1), Oρ(zk, r)〉. Hence, the transporter 〈BρH
(A, 1), OρH

(Z, r)〉 is a subset of
the transporter 〈

⋃n
i=1 Bρ(ai, 1), Oρ(zk, r)〉 which has compact closure. Therefore 〈BρH

(A, 1), OρH
(Z, r)〉 has

compact closure, as required. Hence, each closed unit ball BρH
(A, 1) is a small subset of F(X), and the

proof is complete. �
Theorem 5.4. Let G be an arbitrary group, X ∈ G-M and let F(X) denote the proper G-space of all finite
subsets of X. Then every G-invariant small metric ρ on X defines a G-embedding i : X ↪→ P+(F(X)) such
that:
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(1) ‖i(x)‖ = 1 for all x ∈ X,
(2) ‖i(x) − i(y)‖ � ρ(x, y) for all x, y ∈ X,
(3) ρ(x, y) = ‖i(x) − i(y)‖ whenever ρ(x, y) � 1,
(4) ‖i(x) − i(y)‖ � 1 whenever ρ(x, y) > 1,
(5) i(X) is linearly independent in P(F(X)),
(6) i(X) is closed in its linear span.

Proof. By Lemma 5.3, F(X) ∈ G-M. Moreover, if ρ is an invariant small metric for X, then the Hausdorff
metric ρH is an invariant small metric for F(X). Hence, we can apply Theorem 5.1 to the G-space F(X).
Let j : F(X) ↪→ P+(F(X)) be the G-embedding defined by the metric ρH as in the proof of Theorem 5.1.
Then the restriction i = j|X : X ↪→ P+(F(X)) is the desired G-embedding. Indeed, only the properties (5)
and (6) require verification. Let us do this.

(5) Let x1, . . . , xn ∈ X and assume that there exist reals λ1, . . . , λn−1 ∈ R such that fxn =
∑n−1

i=1 λif
xi .

Denote A = {x1, . . . , xn} and B = {x1, . . . , xn−1}. Since fxi(A) = 1 for all 1 � i � n, then from the equality
fxn(A) =

∑n−1
i=1 λif

xi(A) we get that 1 =
∑n−1

i=1 λi. Similarly, since fxi(B) = 1 for all 1 � i � n− 1, from
the equality fxn(B) =

∑n−1
i=1 λif

xi(B) we get that fxn(B) =
∑n−1

i=1 λi. This yields that fxn(B) = 1 which,
however, is impossible because ρ(xn, xi) > 0 for every 1 � i � n− 1.

(6) Now, let L denote the linear span of i(X) in P(F(X)). We have to show that i(X) is closed in L.
Assume that the contrary is true, and let ϕ ∈ L \ i(X) be such that ϕ ∈ i(X). Then ϕ =

∑p
k=1 λkf

xk for
some xk ∈ X and λk ∈ R, and there exists a sequence (an) ⊂ X such that ϕ = lim fan .

Consider the following finite subsets of X: An = {an, x1, x2, . . . , xp}, n = 1, 2, . . . , and B = {x1, x2,

. . . , xp}. Since fan(An) = 1 and fxk(An) = fxk(B) = 1 for all n � 1 and 1 � k � p, we get

∥∥ϕ− fan
∥∥ �

∣∣ϕ(An) − fan(An)
∣∣ =

∣∣∣∣∣
p∑

k=1
λkf

xk(An) − fan(An)
∣∣∣∣∣ =

∣∣∣∣∣
p∑

k=1
λk − 1

∣∣∣∣∣.
Since lim ‖ϕ− fan‖ = 0, we further get that

∑p
k=1 λk = 1.

Since ϕ /∈ i(X), all the distances ‖ϕ − fxk‖, k = 1, . . . , p, are positive. Hence, one can choose a real r
such that

0 < r < min
{

1
2 ,

1
2 min

1�k�n

∥∥ϕ− fxk
∥∥}.

Since ϕ ∈ i(X), there must be an x ∈ X such that ‖ϕ− fx‖ < r.
This yields that ‖fx − fxk‖ � r for every 1 � k � p. But i : X → L is a non-expansive map, so

ρ(x, xk) �
∥∥fx − fxk

∥∥ � r for all 1 � k � p.

This implies that

ρ(x,B) = min
{
ρ(x, xk)

∣∣ 1 � k � p
}

� r. (5.3)

On the other hand, one also has

r >
∥∥ϕ− fx

∥∥ �
∣∣ϕ(B) − fx(B)

∣∣ =
∣∣∣∣∣

p∑
k=1

λkf
xk(B) − fx(B)

∣∣∣∣∣.
Since fxk(B) = 1 for k = 1, . . . , p, and

∑p
k=1 λk = 1, we further get

r >

∣∣∣∣∣
p∑

k=1
λkf

xk(B) − fx(B)
∣∣∣∣∣ =

∣∣∣∣∣
p∑

k=1
λk − fx(B)

∣∣∣∣∣ =
∣∣1 − fx(B)

∣∣. (5.4)
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Consequently, r > |1−fx(B)| yielding fx(B) > 1−r. Now, remember that r < 1/2, so 1−r > r, implying
that fx(B) > r. Thus fx(B) > 0, and therefore, fx(B) = 1 − ρ(x,B). Then |1 − fx(B)| = ρ(x,B), and
in combination with (5.4) we get the inequality ρ(x,B) < r, which contradicts to (5.3). This contradiction
shows that i(X) = i(X), and hence, i(X) is closed in L. �

Since by Theorem 3.2, every proper G-space from G-M admits a small invariant metric, Theorem 5.4
immediately yields the following result which can be viewed as the equivariant analog of the classical
Arens–Eells embedding theorem:

Corollary 5.5. Let G be a locally compact group and X ∈ G-M. Then X admits a closed G-embedding
i : X ↪→ L in a normed linear G-space L such that L \ {0} is a proper G-space, ‖i(x)‖ = 1 for all x ∈ X

and the image i(X) is a Hamel basis for L.

Since P+(F(X)) ⊂ Q+(F(X)), we further get the following

Corollary 5.6. Let G be a locally compact group and X ∈ G-M. Then X admits a G-embedding i : X ↪→
Q+(F(X)), where F(X) denotes the proper G-space of all finite subsets of X.

6. Closed equivariant embeddings into proper G-AE spaces

Recall that in this section the acting group G is always assumed to be locally compact.
For purposes of the equivariant theories of retracts, infinite-dimensional manifolds and equivariant shape

it is important to be able to embed every G-space X ∈ G-M as a closed G-invariant subset into some G-AE
space. This is achieved in the following

Theorem 6.1. For each G-space X ∈ G-M, there exist a Banach G-space L, a convex invariant subset
V ⊂ L, a normed linear space N and a closed G-embedding f : X ↪→ V ×N such that V × N is a proper
G-space and V ×N ∈ G′-AE for any closed subgroup G′ of G.

For the proof of Theorem 6.1 we shall need the following lemma proved in [5]:

Lemma 6.2. Let f : X → M be a G-map between two proper G-spaces and let p : X → X/G be the orbit
map. Then the image of the diagonal map ϕ : X → M × (X/G), ϕ(x) = (f(x), p(x)), is a closed invariant
subset of the product M×(X/G) endowed with the diagonal G-action, where X/G is equipped with the trivial
G-action.

Proof of Theorem 6.1. Take L = Q(X) and V = Q+(X). Let j : X ↪→ Q+(X) be the G-embedding from
Corollary 5.2 (or Corollary 5.6) and let p : X → X/G be the orbit map. Then the diagonal product of j
and p is a topological embedding

ϕ : X ↪→ Q+(X) × (X/G)

(see e.g., [19, Theorem 2.3.20]). Clearly ϕ is equivariant.
Next, it follows from Lemma 6.2 that ϕ is a closed embedding. Thus, one can think of X as a closed

invariant subset of the product Q+(X) × (X/G). But the orbit space X/G is metrizable (see Section 1),
and hence, according to the Arens–Eells embedding theorem (see [13]), one can embed X/G into a normed
linear space N as a closed subset.

This generates a closed equivariant embedding of Q+(X)×(X/G) into Q+(X)×N . As a result we get an
equivariant closed embedding of X into Q+(X)×N . Next, by Proposition 4.4, Q+(X) is a proper G-space.
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Since the product of a proper G-space with any G-space is again a proper G-space we see that Q+(X)×N

is a proper G-space.
By Proposition 4.4 and Remark 4.5, Q+(X) ∈ G′-AE for any closed subgroup G′ of G. By Dugundji

extension theorem [16], N ∈ AE, and hence, N endowed with the trivial G′-action is a G′-AE (see e.g., [5,
Lemma 3.12]). Since the product of two G′-AE spaces is again a G′-AE space (this is quite easy to check),
we conclude that Q+(X) ×N ∈ G′-AE. This completes the proof. �

The following result in different particular cases was proved in [8, Remark 5], [20] and [5]. The general
case was handled in [10], however, its proof relies on a complicated [10, Theorem 3.2]. Below we shall give
a very transparent prove of this result based on our Theorem 6.1.

Corollary 6.3. Let X ∈ G-M. Then X is a G-ANE (respectively, a G-AE) if and only if X is a G-ANR
(respectively, a G-AR).

Proof. We consider the “G-AR” case only; the “G-ANR” case is quite similar.
As we noticed in Section 4, if X ∈ G-M and X is a G-AE, then clearly X is a G-AR. Now suppose that

X is a G-AR. By Theorem 6.1, one can think of X as a closed invariant subset of a G-space E ∈ G-M
which is a G-AE. Since X is a G-AR, it is an equivariant retract of E, which yields immediately that X is
a G-AE. �
Corollary 6.4. Let X be a G-ANR (respectively, a G-AR) and G′ ⊂ G a closed subgroup. Then X is a
G′-ANR (respectively, a G′-AR).

Proof. We consider the “G-AR” case only; the “G-ANR” case is quite similar.
By Theorem 6.1, one can think of X as a closed invariant subset of a proper G-space V ×N with V and N

as in Theorem 6.1. Since X is a G-AR, it is a G-equivariant retract (and, in particular, a G′-equivariant
retract) of V ×N . Since, by Theorem 6.1, V ×N ∈ G′-AR we infer that X ∈ G′-AR, as required. �
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