
Math. Z. 215, 195 204 (1994) 
Mathematische 

Zeitschrift 
~j Springer-Verlag 1994 

Open subgroups and Pontryagin duality 
Wojciech Banaszczyk 1, Maria Jesfis Chasco 2, Elena Martin-Peinador 3, .  

Institute of Mathematics, L6d~ University, Banacha 22, PL-90-238 L6d~, Poland 
2 Departamento de Matem'atica Aplicada, Universidad de Vigo, E.T.S. Ingenieros lndustriales, 
Apartado, 62, Vigo, Spain 
3 Departamento de Geometrla y Topologia, Facultad de Matemfiticas, 
Universidad Complutense, E-28040 Madrid, Spain 

Received 21 February 1991; in final form 12 March 1992 

0 Introduction 

By a character of a group G we mean a h o m o m o r p h i s m  of G into the group 
R/Z. If G is an abelian topological  group, the set of all its cont inuous  characters, 
with addit ion defined pointwise and the compac t -open  topology,  is a Hausdorf f  
abelian group;  we call it the dual group or the character group of G and denote 
it by G . We say that G is reflexive if the evaluat ion map is a topological  
isomorphism of G onto  G A^ 

Let A be an open subgroup of an abelian topological group G. Venka ta raman  
[5] proved that  if G is reflexive, then so is A (see, however, Remark  2.4 below). 
Under certain addit ional assumptions,  this result had been obtained earlier by 
Noble [4, Corol lary  3.4]. In Sect. 2 of the present paper  we show that  the 
reflexivity of  G is, in fact, equivalent to the reflexivity of A. We also deal with 
the relationship between the reflexivity of  the groups G and G/K where K is 
a compact  subgroup of G. 

An abelian topological  group G is called strongly reflexive if all closed sub- 
groups and Hausdorf f  quotient  groups  of  G and G are reflexive. This not ion 
was introduced in [2] where countable  products  of  lines and circles were investi- 
gated (cf. Remark  3.2 below). The class of  strongly reflexive groups  comprises, 
among other  things, nuclear Fr6chet spaces and countable  products  of  locally 
compact  abelian groups [-1, (l 7.3)]. More  information on strong reflexivity can 
be found in [1, Sect. 17]. 

Let G be an abelian topological  group. Let A be an open and K a compact  
subgroup of  A. In Sect. 3 we prove that  if A is strongly reflexive, then so is 
G. Furthermore,  if G/K is strongly reflexive and G admits sufficiently many 
continuous characters (i.e. if cont inuous  characters separate points of  G), then 
G is strongly reflexive, too. The converse statements are also true" see (3.1.d). 

* Partially supported by D.G.I.C.Y.T. grant BE91-031 
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1 Preliminaries 

The group R /Z  will be denoted by T. It is convenient to identify T with the 
interval ( -  �89 �89 and, consequently, to treat characters as real-valued functions. 

Let S be a subset of an abelian topological group G. By gp S we denote 
the subgroup of G generated by S. Given a character X of G, we shall write 

[z(S)I = sup {[z(g)l" g~ S}. 

The set 

{zeG ̂  Iz(S)I =1} 

is called the polar of S; we shall denote it by S o . If S is a subgroup of G, 
then S o is a closed subgroup of G;  it consists of all characters of G which 
vanish on S. 

(1.1) Lemma.  The polars of compact subsets of an abelian topological group 
G form a basis of neighbourhoods of zero in G A. 

The easy proof  is left for the reader. 

(1.2) Lemma.  I f  U is a neighborhood of zero in an abelian topological group 
G, then U ~ is a compact subset of G ̂ . 

This is a standard fact; see e.g. [4, Lemma 2.2]. 
Let H be a closed subgroup of an abelian topological group G. We say 

that H is dually closed in G if to each g ~ G \ H  there corresponds a character 
z~G ~ with ZIn---0 and z(g)+0.  Next, H is said to be dually embedded in G 
if each continuous character of H can be extended to a continuous character 
of G. The canonical homomorphisms G ~ / H ~  A and (G/H)A~ H ~ defined 
in the obvious way, are denoted by q~/ and q~u, respectively. Notice that q~n 
is a continuous injection; it is surjective if and only if H is dually embedded 
in G. The mapping q~u is a continuous isomorphism. 

The evaluation map of G into G ̂ ^ is denoted by ~a. The verification of 
the following simple fact is left to the reader: 

(1.3) Lemma.  I f  H is a dually closed subgroup of G, then ~G(H)= H~176 ~ c~a(G ). 

Let G, H be abelian topological groups and ~, : G ~ H a continuous homomorph-  
ism. The dual homomorphism ~9A: HA--.G ̂  is defined by ~^(Z)=X~,  xeHA; 
it is clear that t)A is continuous. A direct verification shows that the diagram 

G ~ , H 

~^  r  

is commutative.  



Open subgroups and Pontryagin duality 197 

(1.4) Lemma .  Let F, G, H be abelian topological groups. Let  49: F ~ G and t~: 
G ~ H be continuous homomorphisms such that the sequence 

0 ) F  4, , G  q' ) H  )0  

is exact. I f  t~ is open, the sequence 

FA* 4,- G^ ,  ~ H ~  0 

is exact. If, in addition, 49 is open, then 0 ^ maps G ̂  onto F ^. 

Proof We have k e r O ^ = { 0 }  because O ( G ) = H .  We shall prove  that  ker49 A 
= i m  O A. Each character  Z belonging to ker49 A vanishes on 49(F), hence on 
ker ~. Since t9 (G) = H, it follows that  there is a unique h o m o m o r p h i s m  ~c: H --* T 
such that  Z=XO.  As Z is cont inuous  and ~ open, x is cont inuous.  We have 
O^(x)=~cO= Z. This proves  that  ker  4 9 - ~ i m  A .  The opposi te  inclusion follows 
from the equalities 49 ̂ ~  ^ = (~9 49) ̂ = 0 A= 0. 

The last assert ion of the l emma follows, for instance, from the fact that  
open subgroups  are dually embedded  (cf. (2.2.b)). [ ]  

(1.5) Lemma .  Suppose we are given a commutative diagram 

F 4, , G  q' ~ H  

F '  4,' , G' 0' ~ H '  

of abelian groups and their homomorphisms. Suppose further that c~ and 7 are 
isomorphisms. I f  im ~ = H and ker ~ '  = i m  49', then im fl = G'. / f  ker 49' = {0} and 
ker ~b = im 49, then ker fl = {0}. 

The p roof  consists in a direct verification. 

(1.6) Lemma .  Let G, H be Hausdorff  groups (abelian or not) and let ~: G--* H 
he a continuous homomorphism. Suppose that ~9 is open and its kernel is compact. 
Then the Jbllowing statements are true: 
(a) Let (gi) be a net in G; if the net ((J(gi)) has a cluster point in H, then (gi) 
has a cluster point in G. 
(b) ~ is a closed mapping. 
(c) The inverse images o f  compact subsets o f  H are compact subsets o f  G. 

Proof Statements  (b) and (c) are s tandard.  Besides, they follow easily f rom (a). 
We shall prove  (a). 

Let % and en denote the neutral  elements of  G and H, respectively. We 
may assume that  en is a cluster point  of  (O(g/)). We shall prove  that  (gl) has 
a cluster point  in K , = k e r  ~. Suppose  the contrary.  Then to each p e K  there 
correspond an index ip and  an open ne ighbourhood  Up of p in G, such that  
gi(~Up for i>=ip. As K is compact ,  the open covering {Up}pc K of K has a finite 
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subcovering {Up}p~s. Then U =  ~ Up is an open subset of G containing K, 
peS 

and giCU for all sufficiently large i, say, for i>io.  As K is compact, there 
is a neighbourhood V of ea with K V c U .  Then 0(V) is a neighbourhood of 
en, and 0(gi)r  for i>io ,  contrary to our assumption that et~ is a cluster 
point of (0(gi)). []  

2 Open subgroups and duality 

(2.1) Lemma. Let G, H be abelian topological groups and 0 : G --* H a continuous 
homomorphism. Suppose that 0 is open, maps G onto H, and that ker 0 is compact. 
Then the dual homomorphism 0^:  H^--* G ̂  is open. 

The assumption that 0 (G)= H may be dropped; cf. Lemma 2.5 below. 

Proof. Take an arbitrary compact subset X of H. In view of (1.1), it is enough 
to show that 0^ (X ~ is a neighbourhood of zero in G ̂ . Denote K = k e r  0. 
It follows from (1.6.c) that K u 0 -1 (X)  is compact. Now, it is not hard to see 
that ( K w O - ~ ( X ) ) ~  c O ^ ( X ~  [] 

(2.2) Lemma. Let  A be an open subgroup of  an abelian topological group G. 
Consider the canonical commutative diagram 

(*) 

0 , A u , G ~ , G/A , 0 

0 , A ^^ u , G ~ , (G/A) ,0 .  

Then the following assertions are true: 
(a) A is dually closed in G; 
(b) A is dually embedded in G; 
(c) A ~ is a compact subgroup of  G^; 
(d) p^ ' ,G  ^ ~  A iLs open and surjective; 
(e) # �9 A -~ G is open and injective; 
(f) (a A" G^/A ~ --* A A is a topological isomorphism; 
(g) ~bA: (G/A) ^-~ A ~ is a topological isomorphism; 
(h) both rows in diagram (*) are exact; 
(i) A ~ is dually embeded in G~; 
(j) A ~ is dually closed in G ̂ . 

Proof  The discrete group G/A admits sufficiently many continuous'characters, 
which proves (a). For  (b), see [4, Lemma 3.3]. Statement (c) follows from (1.2). 

Now, (b) says that # " G ---,A ̂  is surjective. To prove that #~ is open, 
take an arbitrary compact subset X of G. In view of (1.1), we only have to 
show that ~L"(X ~ is a neighbourhood of zero in A ."As v(X)  is finite, the group 
C = g p v ( X )  is a direct sum of some cyclic subgroups C1 . . . . .  C,. For  each k 
= l , . . . , n ,  choose a generator c k of Ck and then some gkev- l (ck) ;  let Sk bc 
the order of Ck. 
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Let us denote  D = gp {gk}~, =~, I = {k: Sk < O0 } and 

Q = {pl gl + . . .  + p .  gn: Pl . . . . .  pnffZ and O~=Pk<S k for ke I} .  

It is not  hard  to see that  we can find a compac t  subset Yof  A such that  

(1) X c  Y+Q.  

The set 

< 1 
U = t z c A ^ :  lz(YU {Sk gk}kel)l= Nn } 

is a ne ighbourhood  of zero in A^; we shall p rove  that  U c k t ^ ( X ~  
Let us take an arb i t ra ry  z e U .  We shall t reat  characters  as functions with 

values in the interval ( - � 8 9  �89 Given a real n u m b e r  x, by <x)  we shall denote  
the n u m b e r  y e (  k, �89 for which x - - y ~ Z .  For  each k e l ,  let us write rk= 
sk -~ Z(sk gk). Then the formula  

(2) ( ) (  ) ~c a+ ~ Pkgk = z(a)+ ~ pkrk ( a e A ; p l  . . . . .  p, eZ )  
k = 1 \ k ~ l  

defines a charac ter  tr of A + D ;  the verification of this simple fact is left to 
the reader. One has KIA= z. Since A is open, ~c is continuous.  Now,  by (b), 
we can extend ~c to some ~ G  ^ ( A + D  is an open subgroup  of G). Then /~ (~)  
=~IA----Z- Finally, it follows easily f rom (1), (2) and the definition of U that  
I~(X)] = J~c(X)I < �88 i.e. that  f lEX ~ This completes  the p roof  of  (d). 

Sta tement  (e) follows f rom (c), (d) and (2.1), because k e r / ~ = A  ~ Next,  (If) 
is a direct consequence of (d), while (g) follows from the compac tness  of  (G/A) . 

As the upper  row in ( . )  is exact, (1.4) implies that  the sequence 

O, A A ( " G , ~ (G/A) ( 0 

is exact, too. Applying  (1.4) once again and using (d), we see that  the lower 
row in ( . )  is exact ( v - - i s  surjective because such are v and  ~/A). This proves  
(h). 

To prove  (i), consider  the identi ty embedding  t: A ~ -~ G ~ and the c o m m u t a -  
tive d iagram 

^ A  
G 

^ 

(A o) 

, (G/A) 

I ( ~ A )  

id ~ ( A O )  ~. 

As v - - i s  surjective, and (g)^implies that  (~b A) ^ is a topological  i somorphism,  
it follows that  z maps  G onto  (A~ ", i.e. that  (i) is satisfied. Finally, (j) is 
a direct consequence of (f). [ ]  
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(2.3) Theorem. Let A be an open subgroup of an abelian topological group G. 
Then A if reflexive if and only if G is reflexive. 

(2.4) Remark. The "if" part was obtained by Venkataraman [-5, Corollary 6.3]. 
However, the proof presented in [5] includes serious inaccuracies and we give 
another proof below. 

Proof of (2.3) Consider the diagram ( , )  of (2.2). We may write 

(1) # ~ A  = O~G #" 

Suppose that A is reflexive. Then it follows from (1.5) and (2.2.h) that ~a is 
an algebraic isomorphism (eG/A is an isomorphism because G/A is discrete). 
Moreover, (1) and (2.2.e) imply that ~G# is continuous and open. As A is an 
open subgroup of G, it follows that s o is a topological isomorphism. 

Conversely, suppose that G is reflexive. A direct verification shows that 
~z~(A)~p^~(A^^)~A ~176 From (1.3) and (2.2.a) we get ~G(A)=A~176 thus ~G(A)= 
# (A ) = A ~176 This allows us to draw the commutative diagram 

A id ) A 

A ~ u' , A00 

where #'(~)=#-^(~) for ~eA ̂ ^, and c~(a)=c%(a) for aeA.  As G is reflexive, 
e~ is a topological isomorphism. Next, (2.2.e) implies that #' is a topological 
isomorphism, too. Then we may write ~a =(#')-1 ~ ,  which means that ~A is 
a topological isomorphism. [] 

(2.5) Lemma. Let G, H be Hausdorff abelian groups and ~9: G--* H a continuous 
homomorphism. Suppose that ~ is open and its kernel is compact. Then the dual 
homomorphism t~^: H A ~ G A is open, its kernel being compact, too. 

Proof. The compactness of ke rO^=O(G)  ~ follows from (1.2). To prove that 
0 ~ is open, consider the canonical factorization 

G q' ) H 

G/K ~'~ , O(G) 

where K =ke r  0, and 0a is the identity mapping. Naturally, ~2 is a topological 
isomorphism of G/K onto O(G), so that t)~ is a topological isomorphism of 
O(G) onto (G/K) ^ .  Now, (2.1) and (2.2.d) imply that ~ and 0~ are open, 
and therefore so is ~ - -  ~ ~ ~ ~ ~, 3' []  
(2.6) Theorem. Let K be a compact subgroup of a Hausdorff abelian group G. 
I f  G admits sufficiently many continuous characters and G/K is reflexive, then 
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G is reflexive. Conversely,  i f  G is reflexive and K dually closed in G, then G / K  
is reflexive. 

Proof. Suppose first that  G admits  sufficiently m a n y  characters  and G / K  is reflex- 
ive. Consider  the canonical  commuta t ive  d iagram 

0 , K u , G ~ , G / K  , 0 

g ~^  " , 6 " , (G /K)~ .  

Its upper  row is exact. Hence, by (1.4) the sequence 

K ^ ,  " 6 , ~ ( 6 / K )  , 0 

is exact, too. L e m m a  2.1 says that  v is open. Set F = k t  ( G )  and let a:  G ~ F  
be the h o m o m o r p h i s m  given by a (Z)=  tt^(Z) for ZE G ̂ . Then the sequence 

A 

O, F ,  ~ G ^ ,  ~ (G /K)  ~ 0 

is exact, and  a is open because F is discrete. So, by (1.4), the sequence 

0 , F  ~ ~ , G  ~ , ( G / K )  , 0  

is exact. As K ^ is discrete, F is dually embedded  in K A. Hence  im o-^= im tt A, 
so that  i m # A ~ = k e r v  - -  Now,  (1.5) shows that  cr maps  G onto  G ~ .  Tha t  c~a 
is injective follows from our  assumpt ion  that  cont inuous  characters  separate  
points of G. 

If cr 6 were not  open, there would exist a ne ighbourhood  U of zero in G 
and a net (gi) in G, such that  gi~ U and ~G(gi)~ 0. Hence  ctG/K v(gi)= v - -~c , (g i )~  0 
and, consequently,  v ( g i ) ~ 0  because c(c~/~r is a topological  i somorphism.  Then, 
by (1.6.a), we could find a finer net (g)) converging to some g ~ G . ^ A s  g)C-U, 

A 

we would have g + 0  and, therefore, z ( g ) + 0  for some z e G  because G separates 
points of G. On the other  hand,  we would have 

Z (g) = Z (lim g)) = lim Z (g~') = lim cr (g))(Z) = 0, 

which is a contradict ion.  Thus  c~ G is open. 
The p roof  of cont inui ty is similar. Let (gi) be a net converging to zero in 

G and V a ne ighbourhood  of zero in G ̂ .  such that  ~G(gi)r V for every i. Then  
v ~ ' ~ ( g i ) = 7 G / K v ( g i ) ~ O .  Apply ing  (2.5) twice, we see that  v ~ i s  open, and its 
kernel is compact .  So, according to (1.6.a), we can find a finer net (g)) such 
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, ^ r V. that ~o(gj) converges to some (~G ^~. As c%(gj)q~ , we have (4:0 and hence 
((;04:0 for some x~G �9 On the other hand, 

((X) = lim c%(g~)(Z ) = lim ~((g]) = 0, 

which is impossible. This proves that ~G is continuous. 
Conversely, let G be reflexive and K dually closed in G. According to (1.3), 

we have ~6(K)=K ~176 and we may identify G/K with G~"/K ~176 But H,=K ~ is 
an open subgroup of the reflexive group G ̂  and (2.2.t) says that ~bn: G^"/K ~176 

H is a topological isomorphism. Furthermore, (2.3) implies that H is reflexive. 
Thus, G/K is topologically isomorphic to the reflexive group H ~. [] 

3 Strong reflexivity 

(3.1) Proposition. Let H be a closed subgroup of a strongly reflexive group G. 
Then 

(a) H is dually closed in G; 
(b) H is dually embedded in G; 
(c) qSn: G~/H~ ~ H ̂  and (gn: (G/H) ^ ~  H ~ are topological isomorphisms; 
(d) H and G/H are strongly reflexive. 

Proof (a) As G is strongly reflexive, G/H is reflexive. In particular, G/H admits 
sufficiently many continuous characters, which means that H is dually closed 
in G. 

(b) Since G is reflexive, it follows from (a) and (1.3) that ~Gm is a topological 
isomorphism of H onto H~176 let 7: H ~ 1 7 6  be the inverse isomorphism. Let 
us write P - - G  ^ and Q = H ~ 

Choose any z ~ H  . Then the sequence 

(p/Q) A ~Q QO=HOO ~ z , H -~T 

shows that z7c~oe(P/Q)~. By assumption, P/Q is reflexive, so that we may 
write XTqSQ=ap/Q(r for some r Let 0: P ~ P / Q  be the canonical projec- 
tion. Then ~=0(~c) for a certain neG ^ and a direct verification shows that 

K I H = Z .  
Having proved (a) and (b), we can derive (c) and (d) from Propositions 12 

and 13 of [2] (cf. Remark 3.2 below). []  

(3.2) Remark. Strong reflexivity is closely connected with the notion of strong 
duality, introduced in [2]. Statements (a) and (b) of (3.1) show that assumption 
(i) in Proposition 12 from [2] is dispensable. This means that a duality between 
abelian topological groups G and H is strong if and only if both G and / /  
are strongly reflexive. Thus, an abelian top~ogical  group G is strongly reflexive 
if and only if the natural homomorphism G x G ~ T is a strong duality. 

(3.3) Theorem. Let A be an open subgroup of an abelian topological group G. 
Then A is strongly reflexive if and only if G is strongly reflexive. 
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Proof The "if" part is a consequence of (3.1.d). So, suppose that A is strongly 
reflexive. Let H be a closed subgroup of G and F a closed subgroup of E:=G A. 
We have to show that the groups H, G/H, F and ElF are reflexive. 

The group H ca A is reflexive, being a closed subgroup of the strongly reflexive 
group A. On the other hand, H ca A is an open subgroup of H, and (2.3) implies 
that H is reflexive. 

Next, consider the canonical commutative diagram 

A 

A/(H ~ A) 

, G 

l 
, G/H. 

It is clear that fi is open; then it is a topological isomorphism of A/(HCaA) 
onto its image in G/H. Now, A/(H ca A) is reflexive, being a Hausdorff quotient 
of the strongly reflexive group A. Consequently, im fi is a reflexive open subgroup 
of G/H, and (2.3) implies that G/H is reflexive. 

It follows from (2.2.c) that K :=A ~ is a compact subgroup of E. Next, (2.2.fl 
implies that 

(*) E/K is strongly reflexive. 

Consider the canonical commutative diagram 

F ) E 

F/(F ca K) ~ , E/K. 

' ) F + K  

1~ 
, ( f  + K ) / K  

It is clear that p is a continuous isomorphism. Naturally, I is closed, and ~b 
is closed due to (1.6.b). Therefore p is closed, which means that p is a topological 
isomorphism of ( F +  K)/K onto its image in E/K. Consequently, F/(Fca K) is 
topologically isomorphic to a closed subgroup of E/K. Now ( . )  implies that 
F/(F ca K) is reflexive and then F is reflexive owing to (2.6) (being a dual group, 
E admits sufficiently many continuous characters and, therefore, so does F). 

Next, consider the canonical commutative diagram 

E/K ( 

l 
( E / K ) / ~ , ( V )  , 

E 

"' E/(K + F) 

, E/F 

l 
~' , ( e / f ) / v ( K ) .  

It is clear that /~' and v' are topological isomorphisms (all mappings in the 
diagram are continuous and open). It follows from ( . )  that (E/K)/#(F) is reflexive. 
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Consequently,  so is (E/F)/v(K) and, in view of (2.6), to prove that E/F is reflexive 
we only need to verify that F is dually closed in E. 

Take any e~E\F.  If e e F + K ,  then #(e)r By (*) and (1.6.b), there is 
some Z ~(E/K) ^ with Zlu~F)= 0 and Z (#(e))4: 0; then Z# is a cont inuous  character 
of E which takes F, but not  e, to zero. 

So, suppose that e e F + K ;  then e = f + k  for some f e F  and k ~ K \ F .  Consider 
the canonical  sequence 

K ~ , F + K  ~ ,(F+K)/F.  

It is clear that  6 7 maps  K onto  (F + K)/F, and 6 7 (k) + 0. So, (F + K)/F is compact  
and there is a character  Z' of (F+K)/F with Z'(67(k))+O. Then Z:=Z'6 is a 
cont inuous  character  of F + K  with Ziv=O, and z ( e ) = z ( f + k ) = z ( f ) + z ( k )  
= Z (k) = Z' 6 (k) = Z' (6 7 (k)) + 0. 

Now,  (2.2.i) says that K is dually embedded in E. Therefore we can find 
some ~c~E with •rK=ZIK. Let ~C'=KIV+K. Then Z--~r is a cont inuous  character 
of  F + K  vanishing on K, so there is a cont inuous  character  ~ of  ( F +  K)/K 
with ~ q~ = Z-~c'. Since a is a topological  embedding,  ( , )  implies that there is 
some t/~ (ELK)^with t/a = ~. A direct verification shows that the character  t//2 + ~c 
of E is equal to Z on F + K ;  thus ( t /H+K)lv=0 and (t/ # + K) (e) ~: 0, which proves 
that  F is dually closed in E. [ ]  
(3.4) Corollary. Let K be a compact subgroup of a Hausdorff abelian group G. 
I f  G admits sufficiently many continuous characters and G/K is strongly reflexive, 
then G is strongly reflexive. 

A 

Proof Le t  ~: G ~ G / K  be the canon ica l  projection. Then (2.1)says that  ~J �9 
(G/K) --*G is open. Hence qSK: (G/K) --*K ~ is a topological  isomorphism. 
Now, K ~ is an open subgroup of  G ̂ , and (3.3) implies that G ̂  is strongly^ 
reflexive. Then G is strongly reflexive, too, but, by (2.6), we may  identify G 
with G. [ ]  
(3.5) Remark. Kaplan  [3] proved that  the produc t  of an arbitrary family of 
reflexive groups is reflexive. It follows from (3.3) and (3.4) that the product  
of a strongly reflexive group and a discrete or compact  one is strongly reflexive. 
It is not  known  whether the produc t  of a strongly reflexive group and the 
real line (or an arbi t rary locally compact  abelian group, which is the same 
in the given case) has to be strongly reflexive. The product  R~ of countably  
m a n y  real lines is strongly reflexive, but  Ro, x R ~  is not [1, (17.7)]. 
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