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A REFLEXIVE ADMISSIBLE TOPOLOGICAL GROUP 
MUST BE LOCALLY COMPACT 

ELENA MARTIN-PEINADOR 

(Communicated by Franklin D. Tall) 

ABSTRACT. Let G be a reflexive topological group, and G- its group of char- 
acters, endowed with the compact open topology. We prove that the evaluation 
mapping from G- x G into the torus T is continuous if and only if G is 
locally compact. This is an analogue of a well-known theorem of Arens on 
admissible topologies on C(X) . 

DEFINITIONS AND REMARKS 

Let X, Y be topological spaces, and let Z be a subset of yX . A topology on 
Z is said to be admissible if the evaluation mapping from the product Z x X 
into Y, defined by w(f, x) = f(x), is continuous. 

Let (S, V) = {f E Z; f(S) C V}. The family {(S, V)}, where S runs 
over the collection of all compact subsets of X and V runs over a basis of open 
sets in Y, is a subbase for the compact open topology on Z. An admissible 
topology on Z must be finer than the compact open topology [8]. A result of 
Arens states that the existence of a coarsest admissible topology for the class of 
real continuous functions on a completely regular space X is equivalent to X 
being locally compact [1]. 

In this paper we are interested in reflexive topological groups. Answering in 
the negative a question of Megrelishvili [7], we will see that the evaluation map 
for those groups need not be continuous. In fact, as specified in the theorem, 
the continuity of the evaluation characterizes locally compact Hausdorff abelian 
groups among reflexive groups. We prove this result by means of convergence 
spaces. For an account of theory of convergence spaces the reader is referred 
to [3, 4]. We only give here needed definitions. 

Let G be a Hausdorff topological abelian group, and let FG be the set of all 
continuous homomorphisms from G into the unidimensional torus T. If ad- 
dition is defined pointwise in FG, it becomes an abelian group. The continuous 
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3564 ELENA MARTIN-PEINADOR 

convergence structure A on PG is defined as follows: 
A filter S in PG is said to converge to f E PG in A if for every filter v( 

in G, which converges to an element x E G, the filter of basis w(Y x W) 
{w(F x U); F eS and U E } converges to f(x) in T. 

The continuous convergence structure is compatible with the addition in EG, 
so that the group PG endowed with A is a convergence group, in the sequel 
denoted by Pc G. 

We shall denote by G- the set PG endowed with the compact open topology, 
Tc. The group G is said to be reflexive if the canonical embedding aG: G 
G--, where G-- = (G-)-, is a topological isomorphism. 

A THEOREM OF ARENS TYPE 

The purpose of this article is to prove the following. 

Theorem. If G is a reflexive topological abelian group, then the evaluation map- 
ping w: G- x G -- T is continuous if and only if G is locally compact. 

Before the proof, we state two auxiliary propositions. 

Proposition 1. Let G be a topological abelian group. If aG: G -- G^ is 
continuous, then PcG is locally compact in the sense of convergence, i.e. every 
A-convergentfilter in PG has a compact member. 

Proof. Let S be a A-convergent filter in PG. Without loss of generality, 
A suppose S - 0. If X denotes the zero neighborhood system in G, then 

w(,F x X) 0 in T; thus we can find F E 9 and N E X such that 
w (F x N) C [-1/4, 1/4] (here we identify the points of T with elements of 
(-1/2, 1/2]). 

Let N? := {q E PG; q(N) C [-1/4, 1/4]}. This set, being the polar of a 
neighborhood of zero, is Tc-compact ([2], (1.5)). It is also equicontinuous. In 
fact, if V denotes a zero neighborhood in T, by the continuity of aG, a zero 
neighborhood M in X can be determined so that aG(M) C (N?, V). Thus, 
Vg(x) E V, for every i E No and every x E M. 

We claim that No is A-compact. In order to prove this, take an ultrafilter Z( 
in No and suppose v( tp. By the last assumption and the equicontinuity of 
N?, w(9 x (x +X)) - 9(x) for every x in G, which implies that W i (P. 

Finally, since No D F it belongs to 9; therefore PcG is locally compact. 

Proposition 2. If G is a topological Hausdorff abelian group, the following state- 
ments are equivalent: 

(i) The evaluation w: G^ x G -- T is continuous. 
(ii) The continuous convergence structure A defined in PG coincides with 

the convergence structure of the compact open topology TC . 

Proof. (i) =: (ii) Clearly if w: G- x G -- T is continuous, every Tc-convergent 
filter in PG is A-convergent. The converse holds without the assumption (i). 
In fact, take a filter 7 in PG which is not Tc-convergent to the null character. 
Let S C G be a compact subset of G and V a neighborhood of zero in T, 
such that (S, V) 0 9. For every F E , we can find VIF in F and XF in 
S such that /F(XF) 0 V. 
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The net 95? = {xF, F E F}, where Y is directed by D, has a convergent 
subnet, say 3 x E S. The filter associated to A, SW, also converges to x 
[6]. It can be easily seen that w(F x A) + 0, thus F does not converge in 
A to the null character. 

(ii) A (i) is obvious. 

Proof of the theorem. If the evaluation is continuous, G- may be identified 
with 17G by Proposition 2 and it is locally compact by Proposition 1. Its dual 
G-- is locally compact [8], and so is G, which is topologically isomorphic to 

Conversely, let V be a neighborhood of zero in T. If K denotes a compact 
neighborhood of zero in G, the inclusion w((K, V) x K) c V proves the 
continuity of w . 

Remark 1. The assumption of reflexivity cannot be dropped in the theorem, 
as the following examples show. The spaces Lp, for 0 < p < 1, considered 
in their additive structure, are topological groups without non-trivial characters 
[5]. Thus, for any such group G- = {O} and the evaluation is a constant map, 
thereby continuous. The same happens with the so-called exotic groups. (For 
an account on those, see [2].) 

Remark 2. The existence of many classes of reflexive, non-locally compact 
groups is a well-known fact [2]. This theorem could perhaps explain why the 
class of locally compact Hausdorff abelian groups fits best the Pontryagin-van 
Kampen duality theorem. 

Corollary. If aG is a topological embedding from G into G--, the following 
facts are equivalent: 

(i) w: G- x G -- T is continuous, 
(ii) G- is locally compact. 
If (i) and (ii) hold, then aG(G) is dense in the locally compact group G--. 

Proof. The equivalence follows easily from Propositions 1 and 2. The fact 
that aG(G) is a subgroup of G-- that separates points of G-, together with 
Proposition 31 of [8], proves the last part. 
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