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Abstract

This article includes an almost self-contained exposition on the discrete Conley index and its
duality. We work with a locally defined homeomorphism f in Rd and an acyclic continuum X ,
such as a cellular set or a fixed point, invariant under f and isolated. We prove that the trace of
the first discrete homological Conley index of f and X is greater than or equal to -1 and describe
its periodical behavior. If equality holds then the traces of the higher homological indices are 0.
In the case of orientation-reversing homeomorphisms of R3, we obtain a characterization of the
fixed point index sequence {i(fn, p)}n≥1 for a fixed point p which is isolated as an invariant set.
In particular, we obtain that i(f, p) ≤ 1. As a corollary, we prove that there are no minimal
orientation-reversing homeomorphisms in R3.

1 Introduction

Our work deals with a local study of isolated invariant sets of maps defined in a Euclidean space.
An invariant set X is isolated if it is the maximal invariant subset contained in a neighborhood of
X. In our setting, all isolated invariant sets are compact. In addition, we restrict our considerations
to homeomorphisms, which will be defined in an open subset of Rd. These maps will be called local
homeomorphisms. The local nature of our work makes all the results presented in the article equally
valid if we replace Rd by an arbitrary manifold. Despite a study of the dynamics of a map around a
fixed point was at first the objective of this work, for most of our results we simply assume that the
compact isolated invariant set is connected and acyclic, i.e., all its Čech rational homology groups
are trivial for r ≥ 1. Of course, fixed points and cellular compacta, that is, compact sets having
a basis of neighborhoods composed of closed balls, or more generally trivial shape continua (see
[MS82] for information about shape theory) are particular cases of acyclic continua. A remarkable
fact, see [Ga08], is that a trivial shape continuum of a closed 3-manifold is an isolated invariant set
for a flow if and only if it is cellular. This question is open in the discrete case.

An important and successful topological invariant used in dynamical systems is the Conley in-
dex. For a complete introduction to the theory we refer to [MM02]. In this work, the dynamics is
generated by the iteration of a map, it is discrete. Our considerations mainly focus in the homolog-
ical discrete Conley index, which will be here provided with rational coefficients. It associates to an
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isolated invariant set X and a map f an equivalence class, h(f,X), of graded linear endomorphisms
of vector graded spaces over Q which contains, up to conjugation, exactly one automorphism. If we
restrict our considerations to grade r, we obtain the r-homological discrete Conley index, hr(f,X).
As will be shown later, all the maps contained in the equivalence class hr(f,X) have equal traces,
so the obvious definition trace(hr(f,X)) makes sense and, as a matter of fact, a great part of the
contents of this article deals with this invariant.

Another very important invariant with which this work is concerned is fixed point index, which
associates to a map f and a point or, more generally, a set X an integer i(f,X). It illustrates the
aim of many topological invariants appearing in dynamical systems, if the fixed point index of a set
is non-zero then it contains fixed points. The fixed point index i(f,X) is an algebraic measure of the
set of fixed points of a map f in X. The definition requires the set X to have a small neighborhood
U such that Fix(f) ∩ (U \X) = ∅, which will be always the case if X is an isolated invariant set.
Then, the fixed point index is defined as the Brouwer degree of the map id− f restricted to U . We
will approach this invariant through the more powerful tools of Conley index. Fixed point index is
coarser than discrete homological Conley index, as the following formula shows:

i(f,X) =
∑

r≥0

(−1)rtrace(hr(f,X)). (1)

This Lefschetz-like formula provides information about the fixed point index of a compact isolated
invariant set once we estimate the traces of its discrete homological Conley indices.

An isolated invariant set X of a local homeomorphism f is also invariant under fn, for any
positive integer n. It is immediate to prove that X is isolated for fn as well. One may wonder about
the relationship between the homological Conley indices h(f,X) and h(fn,X). Not surprisingly,
the n-th power of an endomorphism contained in the class h(f,X) belongs to the equivalence class
h(fn,X). Therefore, once we obtain an element of h(f,X), hence of every hr(f,X) for r ≥ 0, we
can use equation (1) to compute, not only the fixed point index i(f,X), but the fixed point index of
any positive iterate of f at X, i(fn,X). This generalization of equation (1) is proved in Subsection
3.1 and reads as follows,

i(fn,X) =
∑

r≥0

(−1)rtrace(hr(f
n,X)). (2)

An invariant set X of a local homeomorphism f of Rd is an attractor (resp. a repeller) if
it is the maximal backward (forward) invariant subset contained in a neighborhood of X. The
discrete homological Conley indices are very easy to describe in these cases, provided that X is an
acyclic continuum. If X is an attractor, for any positive integer n, h0(f

n,X) is represented by the
identity map over Q and all higher homological indices hr(f

n,X) are trivial, they contain the zero
automorphism. In the repeller case, the only non-trivial index is hd(f

n,X) and it is represented
by the map s : Q → Q defined by s(x) = d(f)nx, where d(f) equals 1 if f preserves orientation
and −1 if f reverses orientation. The details of this description can be found in Subsection 3.2.
Equation (2) then shows that the fixed point index, i(fn,X), of an attractor and a repeller are 1
and (−1)dd(f)n, respectively, as is well-known.

The first result presented in the article deals with the 1-homological index.

Theorem A. Let f be a local homeomorphism of Rd and X an isolated invariant acyclic continuum.
The trace of the first homological discrete Conley index satisfies

trace(h1(f,X)) ≥ −1.
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Furthermore, there exists a finite set J and a map ϕ : J → J such that, for n ≥ 1,

trace(h1(f
n,X)) = −1 + #Fix(ϕn).

The proof of this theorem follows from a combinatorial description of the first homological
discrete Conley index, which will be expressed in terms of a map ϕ defined over the finite set of
connected components of a neighborhood of the exit set of an isolating neighborhood of X. The
precise statement is the first part of Theorem 3.10 of Subsection 3.5, some combinatorial ideas are
essential part of its proof, which is the content of Section 5. For higher dimensional homological
indices the intuition would be to think that homology classes are permuted when ϕ does not fix
any element. This idea will be formalized as follows: there exists, for every r > 1, a decomposition
in direct summands of a vector space which can be used to compute the r-homological discrete
Conley index such that the index map permutes the summands in an equivalent way as ϕ does.
Then, we obtain the following theorem:

Theorem B. Let f be a local homeomorphism of Rd and X an isolated invariant acyclic continuum.
If trace(h1(f,X)) = −1 then trace(hr(f,X)) = 0 for any r > 1.

The previous two theorems focus in the behavior of the first homological index. One deduces
from Theorem A and equation (2) that i(fn,X) = 1 − #Fix(ϕn) in dimension d = 2, which was
already known, see [LY] or [RS02]. In principle, no further applications can be carried into higher
dimensions. A bit of help in this direction is provided by a duality result between Conley indices.
It says that, given an isolated invariant set X of a local homeomorphism f of Rd, certainly also
isolated as an invariant set for f−1, for any 0 ≤ r ≤ d, the (d− r)-index of X and f is dual, up to
sign, to the r-index of X and f−1:

hd−r(f,X) ∼= d(f) · (hr(f
−1,X))∗. (Szymczak’s duality)

The sign d(f) is −1 or 1 depending on whether f reverses or preserves orientation. This duality
was first stated by Szymczak in [Sz98] for the discrete Conley index. For the sake of completeness,
we include in the article a short proof of this duality together with a new point of view which makes
it closer to the original Conley index, which was defined for flows. The reader may check that the
homological indices of attractors and repellers, which have been previously described, agree with
Szymczak’s duality. Note that a repeller is an attractor for the map f−1.

As a corollary of this duality and Theorems A and B, we obtain the following inequality in
dimension 3.

Corollary 1.1. Suppose that f is a local orientation-reversing homeomorphism of R3 and X is an
isolated invariant acyclic continuum. Then,

i(f,X) ≤ 1.

Proof. In the case X is either an attractor or a repeller, the fixed point index is equal to 1 or
−d(f), respectively, and the inequality holds. Otherwise, in Subsection 3.2 we will show that all
r-indices are trivial for r = 0 and r ≥ 3. Furthermore, Szymczak’s duality and Theorem A yield
that trace(h2(f,X)) = −trace(h1(f

−1,X)) ≤ 1. It follows from (1) that

i(f,X) = −trace(h1(f,X)) + trace(h2(f,X)) ≤ 2.

Theorem B shows that this bound is never attained, if the first term is 1 then the second vanishes.
Therefore, we conclude that i(f,X) ≤ 1.
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Another easy corollary of Theorems A and B gives a sufficiency condition for existence of fixed
points in terms of the trace of the homological discrete Conley index.

Corollary 1.2. Let f be a local homeomorphism of Rd and X an isolated invariant acyclic con-
tinuum. If (at least) one of the following alternatives hold:

• trace(h1(f,X)) = −1,

• f preserves orientation and trace(hd−1(f,X)) = −1

• or f reverses orientation and trace(hd−1(f,X)) = 1,

then i(f,X) = 1 and, in particular, X contains a fixed point.

Proof. Theorem B shows that only one possibility may hold at the same time. By Szymczak’s
duality, the second and third alternatives are equivalent to trace(h1(f

−1,X)) = −1, hence we only
need to prove the statement for the first hypothesis.

In the case X is an attractor, the conclusion is well-known. Otherwise, in Subsection 3.2 we
will see that h0(f,X) is trivial and, by Theorem B, trace(hr(f,X)) = 0 for all r > 1. Equation (1)
then leads to

i(f,X) = −trace(h1(f,X)) = 1.

The restriction expressed by Corollary 1.1 is reflected in the possible sequences of integers that
can be realized as the sequence of fixed point indices {i(fn, p)}n≥1 of a fixed point p, isolated as
an invariant set, of a local orientation-reversing homeomorphism of R3. Any such sequence must
satisfy some general relations, called Dold’s congruences, see [Do83], which will be briefly explained
in Subsection 2.2, where we will also introduce the normalized sequences σk. As a hint, let us
say that every sequence I = {In}n≥1 can be expressed uniquely as a formal linear combination
of the normalized sequences, I =

∑
k≥0 akσ

k, and it satisfies Dold’s congruences if and only if all
the coefficients ak are integers. In dimension 3, it is known that the sequence {i(fn, p)}n≥1 must
be periodic, no matter whether the orientation is reversed or not, see [LRS10]. We include an
alternative proof of this result which follows from Theorem A and Szymczak’s duality.

Corollary 1.3. Let f be a local homeomorphism of R3 and X an isolated invariant acyclic con-
tinuum. Then, the sequence {i(fn,X)}n≥1 is periodic.

Proof. If X is an attractor, the sequence {i(fn,X)}n≥1, is constant equal to 1; if X is a repeller
and f preserves orientation, it is constant equal to −1; if X is a repeller and f reverses orientation,
one has i(fn,X) = (−1)n+1. Assume now that X is neither an attractor, nor a repeller and that f
preserves orientation. Using Szymczak’s duality we obtain trace(h2(f

n,X)) = trace(h1(f
−n,X)).

By Theorem A, there exist two maps ϕ : J → J and ϕ′ : J ′ → J ′, with J and J ′ being finite sets,
such that trace(h1(f

n,X)) = −1+#Fix(ϕn) and trace(h1(f
−n,X) = −1+#Fix((ϕ′)n). Note that

the sequences {#Fix(ϕn)}n≥1 and {#Fix((ϕ′)n)}n≥1 are periodic. Substituting in equation (2) we
get that

i(fn,X) = −trace(h1(f
n,X)) + trace(h2(f

n,X)) = −#Fix(ϕn) + #Fix((ϕ′)n),
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and the conclusion follows. The same formula holds for even iterates in the orientation-reversing
case, whereas if n is odd one has

i(fn,X) = 2−#Fix(ϕn)−#Fix((ϕ′)n).

This computation is also straightforward.

The additional restrictions expressed by Corollary 1.1 and, more subtlety, by Theorems A and
B on the fixed point index sequence {i(fn, p)}n≥1 is the content of the following theorem.

Theorem C. Given a sequence I = {In}n≥1 =
∑

k≥1 akσ
k, there exists an orientation-reversing

local homeomorphism f of R3 with a fixed point p isolated as an invariant set and such that I =
{i(fn, p)}n≥1 if and only if

• the coefficients ak are integers,

• there are finitely many non-zero ak,

• a1 ≤ 1 and ak ≤ 0 for all odd k > 1.

In Section 3 we will prove the necessity condition, which holds for any isolated invariant acyclic
continuum X. However, the example constructed in Section 4 to prove sufficiency can not be
easily extended to acyclic continua which do not admit any neighborhood U such that U \ X is
homeomorphic to S2 ×R.

Corollary 1.1 has a nice dynamical application to minimal homeomorphisms. A map is minimal
if there are no proper invariant sets. The question of existence of minimal homeomorphisms was
raised by Ulam and is one of the problems contained in the “Scottish Book”, see [Ma81]. It
is known that every manifold over which S1 acts freely, for example any odd-dimensional sphere,
admits minimal homeomorphisms, due to a work of Fathi and Herman, see [FH77]. On the contrary,
the description of the sequences of fixed point indices of the iterates of a map led Le Calvez and
Yoccoz to proof the non-existence of minimal homeomorphisms in the finitely-punctured 2-sphere,
see [LY97]. Despite Theorem C does not apparently provide enough insight in the question for
orientation-reversing homeomorphism in the finitely-punctured 3-sphere, Corollary 1.1 allows us to
address this question for the case of orientation-reversing homeomorphisms in R3.

Corollary 1.4. If f is a fixed point free orientation-reversing homeomorphism of R3, then for
every compact set K ⊂ R3 there exists an orbit of f disjoint from K. In particular, there are no
minimal orientation-reversing homeomorphisms of R3.

Proof. Denote f̄ the extension of f to S3, leaving the point at∞ fixed. Since∞ is the unique fixed
point of f̄ , we deduce from Lefschetz-Dold Theorem that i(f̄ ,∞) = 2, the Lefschetz number of f̄ .
Corollary 1.1 then implies that ∞ is not isolated as an invariant set and the conclusion follows.

The remainder of the paper is organized as follows. Some preliminary algebraic and topological
concepts are introduced in Section 2. In the next section, discrete Conley index is defined and a
new approach to the index and its duality is included. The last subsection of Section 3 is devoted
to state Theorem 3.10, which allows to prove Theorems A, B and the first part of Theorem C. The
proof of our results for a particular radial case is the content of Section 4, where the second half of
Theorem C is proved. Section 5 includes the proof of Theorem 3.10 and the final section is devoted
to give a brief overview of some results about fixed point index of homeomorphisms.
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2 Preliminaries

2.1 Shift equivalence

In this article, we present the approach taken by Franks and Richeson in [FR00] to introduce
the discrete Conley index. The key concept to understand their work is shift equivalence.

Definition 2.1. Let K be a category and Y, Y ′ two objects of K. Consider the endomorphisms
g : Y → Y and g′ : Y ′ → Y ′. Then, g and g′ are said to be shift equivalent provided that there exist
morphisms a : Y → Y ′ and b : Y ′ → Y and an integer m ≥ 0 such that

• a ◦ g = g′ ◦ a, b ◦ g′ = g ◦ b,

• b ◦ a = gm and a ◦ b = (g′)m.

It is not difficult to check that the notion of shift equivalence is an equivalence relation. The idea
behind this definition is to put in the same class all endomorphisms whose “cores” are conjugate,
where “core” means the largest automorphism obtained as a restriction of an endomorphism. As
a motivation, assume g and g′ are bijective and shift equivalent. Then, if we define h = a ◦ g−m =
(g′)m◦a we obtain that h−1 = b and h is a conjugation between g and g′, as it satisfies h−1◦g′◦h = g.
Conversely, if h is a conjugation then a = h and b = h−1 provide a shift equivalence between g and
g′. The previous intuition will be formalized once we move onto the following particular cases.

Firstly, consider a very simple setting, the category formed by finite sets and maps between
them.

Definition 2.2. Given a finite set J and a map ϕ : J → J , denote gim(ϕ) the largest invariant
subset of J under ϕ. Then, we define the permutation induced by ϕ as the restriction of ϕ to the
subset gim(ϕ), and denote it by L(ϕ).

Shift equivalence here only makes differences within the induced permutations, as the following
proposition shows.

Proposition 2.3. Two finite maps ϕ : J → J and ϕ′ : J ′ → J ′ are shift equivalent if and only if
their induced permutations are conjugate.

Proof. After the definition of shift equivalence we proved that this notion is equivalent to conjuga-
tion provided that the endomorphisms are bijective. Therefore, we just need to show that a finite
map is shift equivalent to its induced permutation.

The set J being finite, there exists n0 such that ϕn0(J) = gim(ϕ). Define a = ϕn0 : J → gim(ϕ)
and let b : gim(ϕ) → J be the inclusion map. It is easy to check that a and b provide a shift
equivalence between ϕ and L(ϕ).

The category of finite-dimensional vector spaces and linear endomorphisms has a richer structure
in which shift equivalence will be completely described as well. As shown previously, for linear
automorphisms it is equivalent to conjugation. Before we prove the characterization, we need
to introduce several definitions concerning linear endomorphisms. We stick our considerations to
vector spaces over Q. Let H be a finite-dimensional vector space and u : H → H an endomorphism.
The generalized kernel of u, gker(u), is the set of vectors which are eventually mapped onto 0, that
means

gker(u) =
⋃

n≥0

ker(un).
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The generalized image of u, gim(u), is the largest invariant subspace of H under u,

gim(u) =
⋂

n≥0

im(un).

It is well known (and easy to check) that there exists an integer n0 such that

ker(u) ( ker(u2) ( · · · ( ker(un0) = ker(un0+1)

and
im(un0+1) = im(un0) ( · · · ( im(u2) ( im(u)

and that one has
gker(u) = ker(un), gim(u) = gim(un)

for every n ≥ n0. The subspaces gker(u) and gim(u) are obviously positively invariant. The
restriction of u to the subspace gim(u) is called in the literature Leray reduction and will be
denoted L(u). It is easy to prove that

H = gker(u)⊕ gim(u).

This decomposition gives a synthetic description of u: on one hand, the restriction of u to
gker(u) is nilpotent, and on the other hand, the restriction of u to gim(u), that is, its Leray
reduction L(u) is an automorphism. Observe that u|gker(u) being nilpotent, its trace is 0 and

trace(u) = trace(L(u)).

Observe also that for any n ≥ 1 one has

gker(un) = gker(u), gim(un) = gim(u), L(un) = L(u)n,

hence
trace(un) = trace(L(u)n).

This remark shows that the Leray reduction of a linear endomorphism determines its trace and
the trace of its iterates. More importantly, Leray reduction characterizes the shift equivalence class
of a linear endomorphism.

Note that for linear endomorphisms in finite-dimensional vector spaces we have that gim(u) =
im(un0) for some positive integer n0, as happened for finite maps. The argument presented in
Proposition 2.3 can also be applied to prove that a linear endomorphism is shift equivalent to its
Leray reduction. Since Leray reductions are automorphisms, hence bijective, the next proposition
follows.

Proposition 2.4. Two endomorphisms u : G → G, v : H → H are shift equivalent if and only if
their Leray reductions are conjugate.

As a consequence, linear shift equivalent endomorphisms have equal traces. This trivial obser-
vation together with the following proposition show how some trace computations will be done in
this article.
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Lemma 2.5. Let H be a finite-dimensional vector space and u : H → H an endomorphism. We
suppose that:

• F is a subspace that is invariant under u and included in its generalized kernel.

• G is a subspace that is invariant under u and that contains both F and gim(u).

Then, the naturally induced endomorphism û : G/F → G/F is shift equivalent to u. In particular,
their traces are equal.

Proof. Since F and G are invariant under u, the map û is well-defined and û(x + F ) = u(x) + F
for any x ∈ G. It follows that, for any n ≥ 0, ûn(x+ F ) = un(x) + F , hence gim(û) = gim(u) + F .
The projection map π : G → G/F induces an isomorphism between gim(u) and gim(û) because
gim(u)∩F ⊂ gim(u)∩gker(u) = {0}. Since π ◦u|G = ĥ◦π, we deduce that π|gim(u) is a conjugation
between L(u) and L(û).

Clearly, any linear endomorphism and its Leray reduction have the same non-zero complex
eigenvalues, counted with multiplicity. Therefore, the spectra, except for the eigenvalue 0, of linear
endomorphisms is invariant under shift equivalence. However, two linear automorphisms having
equal spectra are not always conjugate because their Jordan canonical forms may differ. Thus, the
following definition is slightly weaker than shift equivalence.

Definition 2.6. Two endomorphisms u : G → G and v : H → H are spectrum equivalent if they
have the same non-zero complex eigenvalues, counted with multiplicity, or, equivalently,

trace(un) = trace(vn)

for every positive integer n.

2.2 Permutation endomorphisms

We now introduce a class of maps which will help us to describe the first homological discrete
Conley index. The definition has a truly combinatorial taste, as the idea behind it will be to
describe combinatorially the dynamics around an isolated invariant acyclic continuum.

Definition 2.7. A permutation endomorphism u : H → H is an endomorphism for which there
exists a map ϕ : J → J over a finite set J , where #J = dim(H), and a basis {ej}j∈J of H such
that u(ej) = eϕ(j). If the map ϕ is bijective we say u is a permutation automorphism.

Once we move onto higher homological indices the notion of permutation endomorphism is too
rigid, but a generalization of it will serve us to describe them.

Definition 2.8. An endomorphism u : H → H is dominated by a finite map ϕ : J → J if there
exists a decomposition H =

⊕
j∈J Hj such that u(Hj) ⊂ Hϕ(j) for every j ∈ J .

Observe that if u is dominated by a fixed-point free finite map ϕ, then trace(u) = 0. This trivial
remark indicates the way we will prove Theorem B.

In the computations, reduced homology groups will naturally appear. As a consequence, per-
mutation endomorphisms do not exactly provide the required description of the first homological
index and we need to include the following definition.
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Definition 2.9. A reduced permutation endomorphism (automorphism) is obtained from a per-
mutation endomorphism (automorphism) u : H → H associated to a basis {ej}j∈J and a map
ϕ : J → J by taking the restriction v of u to ker(δ) where δ : H → Q is the linear form that sends
each vj to 1.

As u and v are completely determined by ϕ, up to conjugacy, we will sometimes say that ϕ
defines the permutation endomorphism u and the reduced permutation endomorphism v.

Proposition 2.10. The reduction v of a permutation endomorphism u satisfies

trace(vn) = trace(un)− 1,

for every n ≥ 1.

Proof. Consider a basis of ker(δ) and a vector ej which extends it to a basis of H. Then, for every
n ≥ 1, δ(un(ej)) = 1, hence un(ej)− ej ∈ ker(δ) and the formula for the traces follows.

The final part of this section is devoted to show how the traces of permutation endomorphisms
and its iterates can be computed. We will deduce that this sequence of traces satisfies the so-called
Dold’s congruences, which were first introduced in [Do83].

Definition 2.11. A sequence of integers I = {In}n≥1 is said to satisfy Dold’s congruences if, for
every n ≥ 1, ∑

k|n

µ(n/k)Ik ≡ 0 (mod n).

The Möbius function µ assigns to each natural number n a value −1, 0 or 1, depending on its
prime decomposition. If a factor appears at least twice in the prime decomposition then µ(n) = 0,
otherwise µ(n) = (−1)s, where s is the number of prime factors of n. Dold’s congruences can be
described in a more elementary way. Consider the following normalized sequences σk = {σkn}n≥1,
where

σkn =

{
k if n ∈ kN

0 otherwise.

Every sequence I = {In}n≥1 can be written as a formal combination of normalized sequences,
I =

∑
k≥1 akσ

k. A sequence I satisfies Dold’s congruences if and only if all coefficients ak are
integers. As observed by Babenko and Bogatyi, see [BB92], a sequence satisfying Dold’s congruences
is periodic if and only if it can be written as a finite combination of normalized sequences.

Let us conclude this section with the following result:

Proposition 2.12. Let u be a permutation endomorphism defined by a finite map ϕ. Then, the
sequence {trace(un)}n≥1 is equal to the sequence {#Fix(ϕn)}n≥1, where #Fix(ϕn) denotes the
number of fixed points of ϕn. In addition, it satisfies Dold’s congruences.

Proof. The first statement of the proposition is obvious and we only need to prove the last state-
ment. If ak denotes the number of k-periodic orbits of the map ϕ it is clear that

#Fix(ϕn) =
∑

k|n

k · ak

and it follows that
{#Fix(ϕn)}n≥1 =

∑

k≥1

akσ
k.
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2.3 Acyclic continua

The class of compact subsets of Rd to which our results apply is that of acyclic continua. In
the literature, the term acyclic is often used to call sets such that all its reduced homology groups
vanish. Since we deal with compact sets, the more appropriate homology theory for our setting is
Čech homology and we will say that a set K is acyclic if Ȟr(K) = 0 for all r ≥ 1. All the homology
groups appearing in this article are equipped with rational coefficients.

The following proposition gives an alternative definition of acyclic continuum, which is the one
we will use later.

Proposition 2.13. A continuum K ⊂ Rd is acyclic if and only if for every neighborhood U of
K, there exists another neighborhood V ⊂ U of K such that the inclusion-induced maps Hr(V )→
Hr(U) are trivial for every r ≥ 1.

Proof. Let us prove sufficiency first. Inductively, construct a basis of neighborhoods {Un}n≥1 of K
such that the inclusion-induced mapsHr(Un+1)→ Hr(Un) are trivial for all n, r ≥ 1. The continuity
property of Čech homology implies that Ȟr(K) is isomorphic to the inverse limit of the inverse
system formed by the groups {Hr(Un)}n≥1 together with the linear maps pm,n : Hr(Um)→ Hr(Un),
for m ≥ n, induced by inclusion. Since all these maps are trivial by assumption, the inverse limit
is zero and all Čech homology groups are trivial for r ≥ 1, hence K is acyclic.

Conversely, take a basis of neighborhoods {Un}n≥1 of K composed of compact polyhedra. Since
K is acyclic, lim←−Hr(Un) = 0. Given any n ≥ 1, consider the nested sequence {im(pm,n)}m≥n of
vector subspaces of Hr(Un) and denote their intersection An. Since Hr(Un) is finite dimensional,
there exists n0 ≥ n such that im(pn0,n) = An. For every k ≥ m ≥ n we have that pk,n = pk,m◦pm,n,
hence the subspaces An are mapped onto each other, that is, pm,n(Am) = An for every m ≥ n.
Thus, for a given x ∈ An it is possible to construct a sequence {xm}m≥n such that xn = x
and pm+1,m(xm+1) = xm for any m ≥ n. As a consequence, if any An 6= {0} the inverse limit
of the sequence {Hr(Un)}n≥1 can not be trivial. Therefore, for any n one can find n0 so that
im(pn0,n) = {0}, that is, the map pn0,n : Hr(Un0

) → Hr(Un) is the zero map. After taking the
maximum of a finite set of bounds, we can assume the latter holds for every r ≥ 1. For every
element U of {Un}n≥1 we have proved that there is another element of the sequence, V , such that
Hr(V ) → Hr(U) is trivial for every r ≥ 0. Since {Un}n≥1 is a basis of neighborhoods of K, the
proof is finished.

The previous proposition shows that the isomorphism between Ȟr(K) and the trivial group
extends to an isomorphism between the pro-group formed by the groups Hr(Un) and the inclusion-
induced maps and the zero pro-group, for any basis of open neighborhoods {Un}n≥1 of K. This
ultimately comes from the fact that, since we use rational coefficients, the sequence {Hr(Un)}n≥1

satisfies the Mittag-Leffler condition. This result was first proved, in a more general setting, in
[Ke76] (see also [MS82]).

2.4 Isolating blocks and filtration pairs

Our aim in this subsection is to introduce some topological notions that are necessary to describe
discrete Conley index theory. Throughout the article we will often work with the relative topology
of closed subsets of Rd or, more generally, manifolds with boundary N . Given two subsets A ⊂ B
of N such that B is closed, A will denote the closure of A, int(A) and intB(A) the interior of A and

10



its interior relative to B and ∂A = A \ int(A) and ∂BA = A∩ (B \A) = A \ intB(A), the boundary
and relative boundary of A, respectively.

Let M be a d-manifold without boundary. A regular decomposition (M1,M2) of M is a pair
of d-submanifolds with boundary such that M1 ∪M2 = M and ∂M1 = ∂M2. Similarly, a regular
2-decomposition (N1, N2) of a d-manifold with boundary N is a pair of d-manifolds with boundary
such that there exist regular decompositions (M1,1,M1,2) of ∂N1 and (M2,1,M2,2) of ∂N2 satisfying

N1 ∪N2 = N, N1 ∩N2 =M1,2 =M2,1.

In that case ∂N = M1,1 ∪M2,2 and every connected component of N1 ∩N2 defines an element of
the group Hd−1(N, ∂N). We will need also the notion of regular 3-decomposition (N1, N2, N3) of
N . It consists of a triple of d-manifolds with boundary such that there exists a regular decompo-
sition (M1,1,M1,2) of ∂N1, a regular decomposition (M3,2,M3,3) of ∂N3, a regular decomposition
(M1,3,M2,2) of ∂N2 and a partition M1,3 =M1,2 ⊔M2,3 in open and closed submanifolds such that

N1 ∪N2 ∪N3 = N, N1 ∩N2 =M1,2 =M2,1, N2 ∩N3 =M2,3 =M3,2, N1 ∩N3 = ∅.

In that case ∂N = M1,1 ∪M2,2 ∪M3,3 and every connected component of M1,3 defines an element
of Hd−1(N, ∂N).

A pair (N,L) of subsets of Rd is said to be regular if N is a d-manifold with bicollared boundary
and (N \ L,L) is a regular 2-decomposition of N . Similarly, a triple (N,L,L′) is regular provided
that (L′, L \ L′, N \ L) is a regular 3-decomposition of N . Note that for a regular pair (N,L), the
quotient space N/L is guaranteed to be an ANR. Consequently, there is a natural isomorphism
H̃∗(N/L) ∼ H∗(N,L) between reduced and relative homology groups.

Next, we define some dynamical concepts. Consider a local homeomorphism f of Rd. Given
a compact set N included in its domain, the stable set of f in N , Λ+(f,N), consists of the set of
points of N whose forward orbit remains in N ,

Λ+(f,N) =
⋂

n≥0

f−n(N).

Similarly, the unstable set Λ−(f,N) of f in N consists of the set of points of N whose backward
orbit remains in N ,

Λ−(f,N) =
⋂

n≥0

fn(N).

Of course, the largest subset of N invariant under f is exactly Λ+(f,N)∩Λ−(f,N). Additionally,
if N is compact so are the stable and unstable sets.

Denote Inv(N) the maximal invariant subset of a compact set N ⊂ Rd. In the case Inv(N) ⊂
int(N), we say that N is an isolating neighborhood. A compact invariant set X for which there
exists an isolating neighborhood N such that Inv(N) = X is called an isolated invariant set. Note
that for any isolating neighborhood N of X we have X = Λ+(f,N) ∩ Λ−(f,N). Recall that if
X has a compact neighborhood N such that

⋂
n∈N f

n(N) = X or
⋂
n∈N f

−n(N) = X then X is
called an attractor or a repeller, respectively. Finally, a compact set N which presents no interior
“discrete tangencies”, i.e.

f−1(N) ∩N ∩ f(N) ⊂ int(N)

is called an isolating block. Notice that every isolating block is also an isolating neighborhood. It
is known that every isolated invariant set admits a fundamental system of neighborhoods which
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are isolating blocks, see for example [Ea89]. From the definition, we see that if N ′ is close enough
to N then N ′ is also an isolating block. Thus, isolating blocks can be chosen to be d-manifolds
with bicollared boundary. Now, we introduce a concept which is due to Franks and Richeson, see
[FR00].

Definition 2.14. A pair of compact sets (N,L) is a filtration pair for the invariant set X provided
N and L are the closure of their interiors and the following properties are satisfied:

• N \ L is an isolating neighborhood of X = Inv(N \ L).

• L is a neighborhood of the exit set of N , N− = {x ∈ N : f(x) /∈ int(N)}.

• f(L) ∩ (N \ L) = ∅.

This is the object which will be most used throughout the article. The following proposition,
based in the robustness of the definition of filtration pair, shows that it can always be assumed to
satisfy nice local properties.

Proposition 2.15. Regular filtration pairs (N,L) exist for any isolated invariant set X.

Proof. Let N be an isolating block for X which is also a d-manifold with bicollared boundary.
Define N− = {x ∈ N : f(x) /∈ int(N)}. Clearly, f(N−) ∩N ⊂ ∂N and that implies, since N is an
isolating block, that for every x ∈ f(N−) ∩ N its image is f(x) /∈ N . Consequently, the compact
sets f(N−) and N \N− are disjoint.

Therefore, if we consider a small neighborhood L of N− in N , we have that f(L)∩ (N \ L) = ∅
and also that N \ L is an isolating neighborhood of X. Choosing L to fit in a regular pair (N,L),
we obtain the desired regular filtration pair for X.

Additionally, this proof shows that it is possible to find regular filtration pairs as close to X as
required.

3 Discrete Conley index theory

3.1 Conley index and Lefschetz-Dold Theorem

Let f be a local homeomorphism of Rd and X an isolated invariant set. Consider a regular
filtration pair (N,L) for X. Denote πL : N → N/L the projection onto the quotient space N/L
that sends every point z ∈ N \L onto itself and every point z ∈ L onto the point [L]. The definition
of filtration pair permits us to define a continuous map f̄ : N/L → N/L that fixes [L] and sends
every point z ∈ N \ L onto πL(f(z)). This induced map, which appears to depend strongly in
the filtration pair chosen turns out to ultimately depend only on the invariant set X, up to shift
equivalence. This notion was defined in Subsection 2.1 and applies to the category Top∗, whose
objects are pointed topological spaces and the morphisms are continuous base-preserving maps.
The importance of shift equivalence is highlighted by the following theorem.

Theorem 3.1. All maps f̄ arising from filtration pairs (N,L) of X are shift equivalent.

The discrete Conley index of X is defined as the shift equivalence class of the map f̄ . For a
complete proof of this theorem we refer the reader to [FR00].
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We could have also considered the induced maps f̄∗,r : H̃r(N/L) → H̃r(N/L) in the reduced
homology groups with rational coefficients. Then, all possible endomorphisms f̄∗,r are shift equiv-
alent, in other words, their Leray reductions L(f̄∗,r) are conjugate. The shift equivalence class of
f̄∗,r is called r-homological discrete Conley index of X and denoted hr(f,X).

Lefschetz-Dold Theorem can be applied to the map f̄ : N/L → N/L. From the definition of
filtration pair we get that f̄ is locally constant at [L], hence i(f̄ , [L]) = 1, and f and f̄ are locally
conjugate around X = Inv(N \ L). Lefschetz-Dold Theorem yields

Λ(f̄) = i(f̄ , N/L) = 1 + i(f,X),

where Λ(f̄) denotes the Lefschetz number of f̄ , defined as the alternate sum of the traces of the
maps induced by f̄ in the singular homology groups Hr(N/L), r ≥ 0. A similar equation can be
deduced for any iterate of f . For n ≥ 1,

Λ((f̄)n) = 1 + i(fn,X). (3)

This last equation requires some clarification. Despite the pair (N,L) is not a filtration pair, in
general, for X and the map fn, we can define a map fn : N/L→ N/L by fixing the basepoint [L]
and sending x ∈ N \ L to [L] if any of its first n forward images lies in L and to fn(x) otherwise.
It is not difficult to see that fn = (f̄)n, hence equation (3) results from applying Lefschetz-Dold
Theorem to the map fn.

We will estimate the fixed point indices i(fn,X) by examining the Lefschetz numbers, Λ((f̄)n).
More concretely, we would like to compute the traces of the finite-dimensional linear maps

(f̄∗,r)
n : H̃r(N/L)→ H̃r(N/L), 0 ≤ r ≤ d.

Expanding the definition of Λ((f̄ )n) we obtain

Λ((f̄ )n) = 1 +

d∑

r=0

(−1)rtrace((f̄∗,r)
n) = 1 +

d∑

r=0

(−1)rtrace(hr(f
n,X)), (4)

where the extra 1 makes up for the small gap between the reduced and singular homology groups at
grade 0. Note that all higher homology groups of N/L are trivial because N and L are d-manifolds
with boundary. The notion of trace of hr(f,X) is well-defined because traces are invariant under
shift equivalence. Substituting equation (4) into (3), we obtain equation (2),

i(fn,X) =

d∑

r=0

(−1)rtrace(hr(f
n,X)).

3.2 Attractors and repellers

The computation of the fixed point index i(fn,X) and the traces of the homological Conley
indices are particularly easy when X is an acyclic continuum and either an attractor or a repeller.
In such situations, the work done in Proposition 3 of [LRS10] guarantees the existence of suitable
filtration pairs to work with. If X is an attractor then we can assume that N is connected and L
is empty, hence

trace(h0(f
n,X)) = 1,
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and a nilpotence argument, which is described in [RW02] and is a particular case of the one we
present in Subsection 5.2, shows that the maps f̄∗,r are nilpotent, hence the traces of hr(f

n,X) are
0 for r ≥ 1. Substituting in equation (2) we get that i(fn,X) = 1, as expected.

In the case X is a repeller, N is connected, L is not empty and we can assume that there is a
unique connected component of Rd \ L contained in N . Therefore, Hd(N/L) ∼ Q and

trace(hd(f
n,X)) = d(f)n.

By connectedness of N/L, we obtain that trace(h0(f
n,X)) = 0. This result agrees with Szymczak’s

duality, which will be described in Subsection 3.3. Applying this duality we obtain trace(hr(f
n,X)) =

trace(hd−r(f
−n,X)) and, since a repeller for f is an attractor for f−1, the previous computations

show that trace(hr(f
n,X)) = 0 for any 0 < r < d. Finally, we obtain that i(fn,X) = (−1)dd(f)n,

which agrees with the well-known formula for repelling fixed points.
These computations prove Theorem A for attractors and repellers. Simply set, for repellers in

d > 1 and attractors, ϕ to be the identity map in a set consisting of one or two points, respectively.
In the remaining case, a repeller in dimension d = 1, define ϕ as the identity in a two-element set
if f preserves orientation and as the permutation that swaps the elements if f reverses orientation.
The hypothesis of Theorem B are never satisfied for these particular invariant sets. Theorem C
also follows easily, as we have shown that the sequence {i(fn, p)}n≥1 is equal to σ1 for attractors
and to σ1 − σ2 for repellers when f is a local orientation-reversing homeomorphism of R3.

In the case X is neither an attractor nor a repeller, we can assume also that N is connected, L is
not empty andHd(N/L) is trivial. This implies that trace(h0(f

n,X)) = 0 and trace(hd(f
n,X)) = 0.

However, no further assumptions on the filtration pair (N,L) can be made. Equation (2) simplifies
into

i(fn,X) =
d−1∑

r=1

trace(hr(f
n,X)). (5)

In particular, for local homeomorphisms of R3 we will need just to examine the maps f̄∗,1 and f̄∗,2
in order to compute i(fn,X).

3.3 Another approach to the discrete Conley index and its duality

In this subsection, we present another possible approach to discrete Conley index which makes a
closer geometrical connection with the continuous-time case. Charles Conley originally introduced
the index as a topological invariant valid for flows, see [Co78]. One can define the notions of
isolated compact invariant set X and isolating block N of a flow in a similar way it was defined
in the discrete case. The exit set l− of a given isolating block N for X is a closed subset of the
boundary of N . The (continuous) Conley index of X is the homotopy class of the pointed space
(N/l−, [l−]), which does not depend on the choice of N and l− but only in the local dynamics of the
flow around X. Usually, the Conley index is defined using index pairs, which are more general than
the pairs (N, l−) we introduced as, for instance, they do not require the second set to be contained
in the boundary of the first one.

The discrete Conley index has been introduced in this article using filtration pairs (N,L), a
notion slightly less general than that of index pairs, for the discrete case, which is widespread in
the literature. However, in any case, the exit set of the isolating neighborhood N is contained in L
and, consequently, L is not contained in ∂N except for highly degenerate cases. We present below
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a way of computing discrete Conley index using pairs (N, l) satisfying l ⊂ ∂N . Additionally, the
use of isolating blocks will allow us to compute the indices of a map and its inverse at once.

Let X be an isolated invariant set of a local homeomorphism f . Take an isolating block N for
X which is a manifold with bicollared boundary. The two sets

U− = {x ∈ N | f(x) 6∈ N}, U+ = {x ∈ N | f−1(x) 6∈ N}

are open sets of N whose union covers ∂N . Thus, there exists a regular decomposition (l−, l+) of
∂N such that l− ⊂ U− and l+ ⊂ U+.

As we did with filtration pairs, it is possible to define a map f− : N/l− → N/l− which fixes
[l−] and sends any x ∈ N \ l− to either f(x) if f(x) ∈ N \ l− or the basepoint [l−] in other case.
Similarly, we can define a map f+ : N/l+ → N/l+ using f−1 instead of f .

Lemma 3.2. The maps f− and f+ are continuous.

Proof. We only sketch a proof for f−, the other case being completely analogous. Observe that if
x ∈ N and f(x) ∈ ∂N then we must have that f(x) ∈ l−, because f(x) 6∈ U+. This yields that
(f−)−1([l−]) is a compact neighborhood of [l−] and continuity follows easily.

A triple (N, l−, l+) as defined will be called filtration triple. Our task is now to show that the
discrete Conley index can be extracted from this framework, and that the symmetry between f
and f−1 permit us to give a proof of a duality theorem originally due to Szymczak (see [Sz98]).
Consider a compact set L such that (N,L) is a filtration pair, and let f̄ be the induced map in
N/L.

Proposition 3.3. The maps f̄ and f− are shift equivalent.

Proof. There exists an integer n ≥ 1 so that, for every x ∈ L, one of the first n forward images of x
by f does not lie in N . The complementary U of

⋂n
k=0 f

−k(N) in N is composed of the points x ∈ N
such that fk(x) /∈ N for some 1 ≤ k ≤ n and so contains L. Denote πl− and πL the projections of
N onto N/l− and N/L respectively. The map, from N to N/l−, that sends every point of U to [l−]
and every point of x ∈

⋂n
k=0 f

−k(N) to πl−(f
n(x)) induces a map b : N/L→ N/l− because L ⊂ U .

The map b is constant on the open set U of N and continuous when restricted to
⋂n
k=0 f

−k(N).
Like in Lemma 3.2, to check the continuity of b on N/L we just need to observe that fn(x) ∈ l−

for any x ∈ ∂NU , hence b(x) = [l−] as desired. To prove that b ◦ f̄ = f− ◦ b, one must prove that

b(f̄(πL(x))) = f−(b(πL(x)))

for every x ∈ N . Observe that this equation is satisfied in the cases

x ∈ L, x ∈ U \ L, x ∈
n+1⋂

k=0

f−k(N), x ∈
n⋂

k=0

f−k(N) \
n+1⋂

k=0

f−k(N).

The projection πL sends every point of l− to [L] because l− ⊂ L and so induces a continuous map
a : N/l− → N/L which sends [l−] to [L]. To prove that a ◦ f− = f̄ ◦ a, one must prove that

a(f−(πl−(x))) = f̄(a(πl−(x)))
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for every x ∈ N . Here again, using the fact that U− ⊂ L and f(L) ∩N ⊂ L, one can observe that
the previous equality is satisfied in the following cases

x ∈ l−, x ∈ U− \ l−, x ∈ L \ U−, x ∈ N \ L.

It remains to prove that b ◦ a = (f−)n and a ◦ b = (f̄)n, which means

b(a(πl−(x))) = (f−)n(πl−(x)), a(b(πL(x))) = (f̄)n(πL(x))

for every x ∈ N . It is satisfied in the following cases

x ∈ U, x ∈ ∂NU, x ∈ N \ U.

There is a natural isomorphism H̃r(N/l
−) ∼ Hr(N, l

−) and so the map f− induces an endomor-
phism f−∗,r : Hr(N, l

−) → Hr(N, l
−). The previous proposition shows that f−∗,r is a representative

of the shift equivalence class hr(f,X). Let us explain more precisely the meaning of f−∗,r. Consider
a one-to-one continuous map

H : [0, 1) × ∂N → Rd \ int(N),

such that H(0, z) = z for every z ∈ ∂N and such that N ∪H([0, 1) × ∂N) is a neighborhood of N
and denote ρ : N ∪H([0, 1)× ∂N)→ N the retraction that fixes every point of N and sends every
point H(t, z) to z.

Write
W−
ε = H([0, ε) × l−), W+

ε = H([0, ε) × (∂N \ l−)).

Observe that if ε is small enough, then f(N)∩W+
ε = ∅, and fix such an ε. The morphism f−∗,r can

be written as the composition of the morphism

f∗ : Hr(N, l
−)→ Hr(R

d \ int(W+
ε ),Rd \ (W+

ε ∪ int(N)))

induced by f , the excision morphism

e : Hr(R
d \ int(W+

ε ),Rd \ (W+
ε ∪ int(N)))→ Hr(N ∪W

−
ε ,W

−
ε )

and the map
ρ∗ : Hr(N ∪W

−
ε ,W

−
ε )→ Hr(N, l

−)

induced by ρ. In others words, let σ be a relative r-cycle of (N, l−). The decomposition principle
tells us that the chain f(σ) is homologous as a chain of Rd \W+

ε to σ1 + σ2 where σ1 is a chain in
N ∪W−

ε and σ2 a chain in Rd \ (N ∪W+
ε ). If σ represents κ ∈ Hr(N, l

−), then ρ(σ1) represents
f−∗,r(κ). An analogous result shows that the map f+∗,r : Hr(N, l

+)→ Hr(N, l
+) induced by f+ also

represents the r-homological discrete Conley index hr(f
−1,X).

Let us explain now the duality. There is a non degenerated bilinear form

(κ−, κ+) 7→ κ− · κ+

on Hr(N, l
−)×Hd−r(N, l

+) that induces an isomorphism

Hd−r(N, l
+)→ Hr(N, l−)

defined as follows:
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• every class κ− ∈ Hr(N, l
−) may be represented by a r-chain σ− of N such that ∂σ− ⊂ l−\∂l−

and every class κ+ ∈ Hd−r(N, l
+) by a (d− r)-chain σ+ of N such that ∂σ+ ⊂ l+ \ ∂l+;

• the algebraic intersection number σ− · σ+ is well defined because ∂σ− ∩ σ+ = ∂σ+ ∩ σ− = ∅;

• σ− · σ+ depends only on κ− and κ+ and therefore can be written κ− · κ+.

Observe also the following:

• ∂f(σ−) ∩ σ+ = ∂σ+ ∩ f(σ−) = ∅ and so one can define f(σ−) · σ+;

• σ− · f−1(σ)+ can also be defined and one has

f(σ−) · σ+ = d(f)σ−1 · f−1(σ+).

In order to get the duality result, it remains to prove that

f(σ−) · σ+ = f−∗,r(κ
−) · κ+

and
σ− · f−1(σ+) = κ− · f+∗,d−r(κ

+).

One knows that f(σ−) is homologous as a chain in Rd \W+
ε to σ−1 + σ−2 , where σ

−
1 is a chain in

N ∪W−
ε and σ−2 a chain in Rd \ (N ∪W+

ε ) , and we can deduce that

f(σ−) · σ+ = σ−1 · σ
+ = ρ(σ−1 ) · σ

+ = f−∗,r(κ
−) · κ+,

because ρ−(σ−1 ) represents f
−
∗,r(κ

−). The second equality can be proven similarly.

This duality result was originally proved by Szymczak in [Sz98]. It can be stated as follows:

Theorem 3.4 (Szymczak). Let f be a local homeomorphism of a manifold of dimension d and X
a compact isolated invariant set. Then, for any 0 ≤ r ≤ d

hd−r(f,X) ∼= d(f) · (hr(f
−1,X))∗.

3.4 On the connectedness of N \ L

The notion of filtration pair provides a useful tool to study isolated invariant sets. Despite
we know already that these pairs can always be chosen to be regular, it may happen that the
isolating neighborhood N \ L fails to be connected even though X is connected. The purpose of
this section is to solve this issue by showing that, if X is connected, we can stick our considerations
to the connected component of N \ L without losing any dynamical information represented by the
spectrum of the discrete homological Conley index of X and f . The 2-dimensional version of what
is done here can be found in [LY].

Assume that (N,L) is a regular filtration pair for X and f and denote S = π0(N \ L) the
set of connected components of N \ L. Recall that, for every r ≥ 0, H̃r(N/L) ∼ Hr(N,L) and
H̃r(N/(N \ S)) ∼ Hr(N,N \ S) because the pairs (N,L) and (N,N \ S) are regular for any S ∈ S.
The quotient N/L is the wedge sum of the pointed spaces N/(N \ S) for S ∈ S and we may write

Hr(N,L) =
⊕

S∈S

Hr(N,N \ S).
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This decomposition provides a way to split the action of the map f̄∗,r in the group Hr(N,L). Given
S0, S1 ∈ S, define

f̄S1,S0

∗,r = πS1

r ◦ f̄∗,r |Hr(N,N\S0)
,

where πS1
r : Hr(N,L) → Hr(N,N \ S1) is the projection parallel to

⊕
S 6=S1

Hr(N,N \ S). There-
fore, it is possible to write

f̄∗,r |Hr(N,N\S0)
=

∑

S∈S

f̄S,S0

∗,r

for any connected component S0 of N \ L. As a consequence, we get

trace(hr(f,X)) = trace(f̄∗,r) =
∑

S∈S

trace(f̄S,S∗,r ).

Let us give another interpretation of the maps f̄S1,S0
∗,r . Write Ri = N \ Si, for i = 0, 1, and denote

πRi
: N → N/Ri the projection onto the quotient space N/Ri that sends every point z ∈ N \Ri to

itself and every point z ∈ Ri to the point [Ri]. One gets a continuous map f̄S1,S0 : N/R0 → N/R1

that sends [R0] to [R1] and every point z ∈ N \ R0 to πR1
(f(z)). The action of f̄S1,S0 on the

reduced homology groups H̃r(N/Ri) ∼ Hr(N,Ri) is nothing but f̄S1,S0
∗,r .

We will often use the following fact:

Lemma 3.5. Let S0 and S1 be connected components of N \ L and κ ∈ Hr(N,N \ S0). If κ is
represented by a relative r-cycle σ of (N,N \ S0), then the class f̄S1,S0

∗,r (κ) is represented by a relative

r-cycle σ′ of (N,N \ S1) such that σ′ ⊂ f(σ ∩ S0).

Proof. Since f(N \ L) ⊂ int(N) and f(L) ∩ (N \ L) = ∅, there exists a compact neighborhood U
of N \ L in N such that f(U) ⊂ N and f(U ∩ L) ∩ U = ∅. One can suppose additionally that the
connected component U0 of U that contains S0 is included in L ∪ S0. Let σ be a relative r-cycle
of (N,N \ S0) that represents a class κ ∈ Hr(N,N \ S0). By excision, one can find a r-cycle σ0 of
(U0, U0 \ S0), such that σ0 ⊂ σ, which represents the class κ, as a cycle of Hr(N,N \ S0). Recall
that Hr(N,N \ S0) is a subspace of Hr(N,L) and that the class f̄∗,r(κ) ∈ Hr(N,L) is represented

by the relative r-cycle f(σ0) of (N,L). The class f̄
S1,S0
∗,r (κ) is nothing but the projection of f̄∗,r(κ) in

Hr(N,N \ S1). It is the homology class of f(σ0), seen as relative cycle of (N,N \ S1). By excision
again, it is represented by a r-cycle σ′ of (U,U \ S1) such that σ′ ⊂ f(σ0) ∩ U . Observe now that

σ′ ⊂ f(σ ∩ U0) ∩ U ⊂ f(σ ∩ S0),

because U0 ⊂ L ∪ S0 and f(U ∩ L) ∩ U = ∅.

For every word I = {Sk}0≤k<m ∈ S
m, we define the itinerary map

f̄ I∗,r = f̄
S0,Sm−1

∗,r ◦ f̄
Sm−1,Sm−2

∗,r ◦ . . . ◦ f̄S2,S1

∗,r ◦ f̄S1,S0

∗,r .

The maximal compact invariant set which follows the itinerary defined by I will be denoted Inv(I) =⋂
k∈Z f

−k(Sk), where {Sk}k∈Z is the m-periodic extension of I.

Proposition 3.6. For any word I, if Inv(I) = ∅ then the map f̄ I∗,r is nilpotent, hence, in particular,

trace(f̄ I∗,r) = 0.
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Proof. Suppose I = {Sk}0≤k<m and write {Sk}k∈Z for the m-periodic extension of I. The stable
set Λ− =

⋂
k≥0 f

−k(Sk), must be empty. Otherwise, Λ− would be a non-empty compact set such

that fm(Λ−) ⊂ Λ−, hence Inv(I) =
⋂
k≥0 f

km(Λ−) 6= ∅. Thus, there exists n0 ≥ 1 such that⋂
0≤k≤mn0

f−k(Sk) = ∅.

Fix a class κ ∈ Hr(N,N \ S0) represented by a relative cycle σ0 in (N,N \ S0). By Lemma 3.5,
we can construct inductively a sequence of relative cycles {σk}0≤k≤mn0

such that

• σk represents f̄
Sk,Sk−1

∗,r ◦ . . . ◦ f̄S1,S0
∗,r (κ) and

• σk+1 ⊂ f(σk ∩ Sk).

Then, one deduces that f−mn0(σmn0
) ⊂

⋂
0≤k≤mn0

f−k(Sk) = ∅. Therefore, one has (f̄ I∗,r)
n0(κ) =

0.

An itinerary which defines a non-nilpotent map must necessarily contain a non-trivial invariant
set. Thus, if we assume that X is connected and S denotes the unique connected component of
N \ L which contains X, we obtain that the only itinerary followed by points of X must be constant
equal to S, hence

trace(hr(f
n,X)) = trace((hr(f,X))n) = trace((f̄∗,r)

n) =
∑

I∈Sn

trace(f̄ I∗,r) = trace((f̄S,S∗,r )
n).

We have proved the following:

Proposition 3.7. If X is connected, the endomorphisms f̄∗,r and f̄S,S∗,r are spectrum equivalent.

We will conclude this subsection by looking at a particular situation. Assume that there is a
compact set L′ ⊂ intN (L) such that f(N \ L′) ⊂ N . If S′ is the connected component of N \ L′

which contains S, denote
er : Hr(N,N \ S)→ Hr(S

′, S′ \ S)

the excision isomorphism and

f∗,r : Hr(S
′, S′ \ S)→ Hr(N,N \ S)

the map induced by f . One can write f̄S,S∗,r = f∗,r ◦ er. It will be more convenient to deal with

f̃∗,r := er ◦ f∗,r. This map being conjugate to f̄S,S∗,r , one can state:

Proposition 3.8. If X is connected, the endomorphism f̃∗,r belongs to the spectrum equivalence
class of the r-homological Conley index.

To sum up, if X is connected the trace computations can be done with the map f̃∗,r, which is
not directly induced in general by a filtration pair but arises as the result of considering just the
connected component containing X. A complete description of this map for r = 1 will allow us to
prove a closed formula for the traces of the iterates of the 1-homological discrete Conley index.

Finally, we state the particular case S0 = S1 = S of Lemma 3.5, with f̃∗,r instead of f̄S,S∗,r , which
will be used in the proofs as a way to keep control of the successive images of an homology class
under the map f̃∗,r.

Lemma 3.9. If κ ∈ Hr(S
′, S′ \ S) is represented by a relative r-cycle σ, the homology class f̃∗,r is

represented by a relative cycle σ′ such that σ′ ⊂ f(σ ∩ S).
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3.5 Invariant acyclic continua

Henceforth, we will assume that our isolated invariant set X is connected and acyclic. In the
previous subsection we proved that it suffices to know the traces of the iterates of the map f̃∗,r in
order to compute the sequence {trace(hr(f

n,X))}n≥1, they are equal. In this subsection we provide
the statement of a result from which all the theorems presented in the introduction follow easily,
hence it is the key result of the article.

Theorem 3.10. Let f be a local homeomorphism of Rd and X an isolated invariant acyclic contin-
uum. There exists two finite maps ϕ : J → J and ψ : J ′ → J ′ and, for every r ≥ 1, a representative
f̃∗,r of the spectrum equivalence class of the r-homological discrete Conley index of X and f such
that:

• f̃∗,1 is a reduced permutation endomorphism defined by ϕ.

• f̃∗,r is dominated by ψ.

• ϕ and ψ are shift equivalent.

The proof of this theorem is the content of Section 5. We have all ingredients to prove Theorems
A, B and C. The particular cases where X is an attractor or a repeller have already been addressed
in Subsection 3.2.

Proof of Theorem A. It is straightforward once we apply Propositions 2.10 and 2.12 to the reduced
permutation endomorphism f̃∗,1, which is spectrum equivalent to any map in the class h1(f,X).

Proof of Theorem B. From Theorem A we get that trace(h1(f,X)) = −1 if and only if ϕ is fixed
point free. In that case, ψ is also fixed point free because it is shift equivalent to ϕ. The trivial
remark that follows Definition 2.8 finishes the proof.

Proof of necessity of Theorem C. From equation (5) we obtain that for n ≥ 1,

i(fn,X) = −trace(h1(f
n,X)) + trace(h2(f

n,X)). (6)

Theorem A and Szymczak’s duality tell us that there exist two finite maps ϕ : J → J and ϕ′ : J ′ →
J ′ such that

trace(h1(f
n,X)) = −1 + #Fix(ϕn)

and
trace(h2(f

n,X)) = (−1)n(−1 + #Fix((ϕ′)n)).

Plugging these expressions into (6), we deduce that

i(fn,X) =

{
2−#Fix(ϕn)−#Fix((ϕ′)n) if n ≥ 1 is odd

−#Fix(ϕn) + #Fix((ϕ′)n) if n ≥ 1 is even.

If we denote bk and ck the number of k-periodic orbits of ϕ and ϕ′, respectively, we get

i(fn,X) =

{
2−

∑
k|n k · (bk + ck) if n ≥ 1 is odd

−
∑

k|n k · (bk − ck) if n ≥ 1 is even.
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Thus, a careful computation shows that if we define

ak =





2− b1 − c1 if k = 1,

−1− b2 + c2 + c1 if k = 2,

−bk − ck if k > 1 is odd,

−bk + ck if k > 2 and k/2 are even,

−bk + ck + ck/2 if k > 2 is even and k/2 is odd.

(7)

we can write {i(fn,X)}n≥1 =
∑

k akσ
k. Now, it is trivial to check that Corollary 1.1 implies that

a1 ≤ 1, hence b1 + c1 ≥ 1 and, evidently, ak ≤ 0 for all odd k > 1. Moreover, there are only a finite
number of non-zero bk and ck, hence of ak, which implies that the sequence of fixed point indices
must be periodic.

4 A toy model: a radial case

4.1 Proof of the results

In this section we will sketch a proof of our results for the case in which the homeomorphism
fixes only one point and presents a radial dependence. This type of maps will provide us with
examples which realize all possible sequences of fixed point indices of the iterates of a map at a
fixed point described in Theorem C.

The (d+1)-dimensional sphere is the end compactification of Sd×R, where one adds the lower
end e−, adherent to Sd × (−∞, 0], and the upper end e+, adherent to Sd × [0,+∞).

Let h be a homeomorphism of Sd and g : Sd → R be a continuous map. The skew-product of
g and h

(z, r) 7→ (h(z), r + g(z))

induces in Sd+1 a homeomorphism f which fixes the two ends. An extra hypothesis may be added
to ensure that the origin is isolated as an invariant set. Assume that

g(z) ≥ 0⇒ g(h(z)) > 0 (P)

which evidently implies that there exists ǫ > 0 so that

g(z) ≥ −ǫ ⇒ g(h(z)) ≥ ǫ.

Property (P) implies that no discrete interior tangency is possible in any closed (d+ 1)-ball of the
form (Sd × (−∞, r]) ∪ {e−}, hence it is an isolating block for f . In particular, there are no fixed
points in Sd ×R. Assume additionally that the origin is neither a repelling nor an attracting fixed
point, which means that g must take positive and negative values.

Let l− be a submanifold with boundary of Sd which is a neighborhood of {z ∈ Sd | g(z) ≥ ε}
included in {z ∈ Sd | g(z) > 0}. Observe that

• h(l−) ⊂ int(l−).

• g > 0 in l− and g < 0 in Sd \ h−1(l−).
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Define l+ = Sd \ l−, then h−1(l+) ⊂ int(l+). After identifying Sd to Sd × {0}, the sets l− and l+

may be considered as subsets of Sd×{0} ⊂ Sd×R. If we set N = (Sd× (−∞, 0])∪{e−}, the triple
(N, l−, l+) is a filtration triple as defined in Subsection 3.3.

The map f̄ induced by f on the quotient N/l− induces an endomorphism f̄∗,r : Hr(N, l
−) →

Hr(N, l
−) which is a representative of the r-homological Conley index. Each space Hr(N) being

trivial if r 6= 0 and 1-dimensional if r = 0, the connecting map

∂r : Hr(N, l
−)→ Hr−1(l

−),

induces an isomorphism between Hr(N, l
−) and the reduced r-homological group H̃r−1(l

−), where

H̃r(l
−) =

{
Hr(l

−) if r ≥ 1

ker(j∗) if r = 0

and
j∗ : H0(l

−)→ H0(N)

is the inclusion-induced map.
There is an easy way to understand the inverse of the connecting map. Denoting ∆r the standard

affine simplex, one can associate to every singular r-simplex σ : ∆r → l− a singular (r+1)-simplex
p(σ) : ∆r+1 → N defined as follows:

p(σ)(t1, . . . tr+1) =

{(
σ
(

t1
1−tr+1

, . . . , tr
1−tr+1

)
, tr+1

tr+1−1 ,
)

if tr+1 6= 1,

e− if tr+1 = 1.

By linear extension, p associates to every r-chain σ of l− a (r + 1)-chain of N . If σ is a cycle
of l− (inducing an element of H̃0(l

−) if r = 0), then p(σ) is a relative cycle of (N, l−). If σ is
the boundary of a (r + 1)-chain of l−, then p(σ) is the boundary of a relative (r + 2)-chain of
(N, l−). The morphism p∗ : H̃r(l

−)→ Hr+1(N, l
−) naturally induced is nothing but the inverse of

∂r. Observe now that
f̄∗,r([p(σ)]) = [p(h(σ))].

In other words, the map f̄∗,r+1 : Hr+1(N, l
−)→ Hr+1(N, l

−) is conjugate to h∗,r : H̃r(l
−)→ H̃r(l

−)

by p∗. Similarly the map (f−1)∗,r+1 : Hr+1(N, l
+) → Hr+1(N, l

+) is conjugate to (h−1)∗,r :

H̃r(l
+)→ H̃r(l

+).
The duality explained in Subsection 3.3 can be deduced from classical duality results. By

Alexander’s duality, there is a natural isomorphim

H̃r(l
−)→ H̃d−r−1(l+),

where H̃d−r−1(l+) is the dual space of H̃d−r−1(l
+). This isomorphism conjugates h∗,r to the dual

map of (h−1)∗,d−r−1 if h preserves the orientation and to its opposite if h reverses the orientation.
This morphism induces naturally an isomorphism

Hr+1(N, l
−)→ H̃d−r(N, l+),

where H̃d−r(N, l+) is the dual space of H̃d−r(N, l
+), which conjugates f̄∗,r+1 (up to the sign) to

the dual map of (f−1)∗,d−r.
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Theorem 3.10 is obvious in this case. Here ψ = ϕ is the natural map induced by h on the set
π0(l

−) of connected components of l−. Indeed, every connected component c of l− is associated to
an element [c] of the homology group H0(l

−), and the set {[c]}c∈π0(l−) is a basis. Taking [N ] as a
basis of H0(N), one has the natural identification H0(N) ∼ Q. The map j∗ sends every [c] onto 1.
This means that h∗,0|H̃0(l−) is nothing but the reduced permutation endomorphism defined by ϕ.

Moreover, for every r ≥ 1, one has

H̃r(l
−) = Hr(l

−) =
⊕

c∈π0(l−)

Hr(c)

and h∗,r(Hr(c)) ⊂ Hr(ϕ(c)).
As a conclusion, note that given a homeomorphism h of Sd and an attractor/repeller regular

decomposition (l−, l+) of Sd it is possible to define a map g : Sd → R such that g > 0 in l− and
g < 0 in h−1(l+). The triple (N, l−, l+) is a filtration triple for the map f , induced in Sd+1 by the
skew-product of g and h.

4.2 Realizing all possible sequences {i(fn, p)}n≥1

In the second half of this section we will prove the sufficiency condition of Theorem C, which
characterizes the sequences I = {In} of integers that can be realized as the sequence {i(fn, p)}n≥1 of
an orientation-reversing local homeomorphism f of R3 with a fixed point p isolated as an invariant
set. The class of radial homeomorphisms already defined contains examples of homeomorphisms
which realize any sequence I satisfying the conditions in the statement of Theorem C. The idea
will be to control the sequence of fixed point indices in terms of the combinatorial descriptions we
have obtained. In order to define the examples we need orientation-reversing homeomorphisms of
S2 with an arbitrary number of periodic orbits. More precisely, we need to prove the following
lemma.

Lemma 4.1. Let ϕ : J → J be a permutation of the finite set J . It is possible to construct an
orientation-reversing homeomorphism f of S2 which permutes a family {Dj}j∈J of pairwise disjoint
closed disks such that

• f(Dj) = Dϕ(j), for every j ∈ J ;

• if fn(Dj) = Dj and n is even then fn|Dj
is equal to the identity;

• if fn(Dj) = Dj and n is odd then fn|Dj
is conjugate to the map z 7→ z̄ defined on D = {z ∈

C | |z| ≤ 1}.

Several approaches may be taken to prove this result. In this article we will follow the ideas of
Homma, see [Ho53]. Define a simple triod in S2 as the union of three closed arcs having only one
point in common, endpoint of every one of them.

Theorem 4.2 (Homma). Let F be a compact, connected and locally connected subset of S2. A one-
to-one continuous map from F to S2 can be extended to an orientation-preserving homeomorphism
of S2 if and only if it preserves the cyclic order of all simple triods contained in F .

Proof of Lemma 4.1. Let {Dj}j∈J be a family of pairwise Euclidean circles of same radius, all
centered on the real line R in the complex plane C. Let h :

⋃
j∈J Dj →

⋃
j∈J Dj be the map
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that translates each disk Dj over Dϕ(j). It obviously preserves the cyclic order of all simple triods.
By Homma’s theorem, one can extend it to a map (with the same name) on the Riemann sphere
C∪{∞}. Composing h with the extension of the complex conjugation to the Riemann sphere yields
the required map.

Therefore, using Lemma 4.1 we can produce examples of orientation-reversing homeomorphisms
of the 2-sphere having an arbitrary number of periodic orbits with prescribed periods. Now, we are
ready to complete the proof of Theorem C.

Proof of sufficiency of Theorem C. Consider the following system of equations:

ak =





2− b1 − c1 if k = 1,

−1− b2 + c2 + c1 if k = 2,

−bk − ck if k > 1 is odd,

−bk + ck if k > 2 and k/2 are even,

−bk + ck + ck/2 if k > 2 is even and k/2 is odd.

Clearly, there exist two sequences of non-negative integers {bk}k≥1 and {ck}k≥1 which satisfy the
system of equations and such that c1 = 1, b2 ≥ 1 and ck = 0 for all odd k > 1. Since at most a finite
number of ak are non-zero, we can assume that there are only a finite number of non-zero integers
bk and ck as well. By applying Lemma 4.1, choose an orientation-reversing homeomorphism h+ of a
2-sphere S+ having bk cycles of pairwise disjoint disks of period k, for every positive integer k 6= 2,
which include a couple of 2-periodic disks {D+

1 ,D
+
2 }. This set of periodic disks, excluding D

+
1 and

D+
2 , will be denoted F

+. Similarly, one may construct an orientation-reversing homeomorphism h−

of a 2-sphere S− that induces a permutation on a set of pairwise disjoint closed disks, which will be
denoted F−, with ck cycles of length k/2 for every even number k ≥ 2, plus an additional fixed disk
D−. The complement ofD− and all other periodic disks in F− will be denoted Σ−. One can suppose
that our two homeomorphisms satisfy the last two assertions of Lemma 4.1. Consider two spheres
S−
1 and S−

2 of the type S− together with S+. Let s be a map which identically identifies S−
1 to S−

2

and viceversa. Take out the interior of the disks D− in S−
1 and S−

2 and the disks D+
1 and D+

2 of S+.
Then, paste one boundary ∂D− to each ∂D+

i , i = 1, 2. The result is a topological sphere. The fact
that our two homeomorphisms satisfy the assertions of Lemma 4.1 implies that the pasting can be
done in such a way that there exists an homeomorphism h′ of our sphere coinciding with h+ in the
complement of D+

1 ∪D
+
2 and with the composition s◦h− = h−◦s in the complement of the two disks

D− in S−
1 ∪ S

−
2 . Construct a homeomorphism h by composing h′ with an orientation-preserving

homeomorphism h′′ such that every disk D of F+ satisfies h′′(D) ⊂ int(D) and h′′(Σ−
1 ) ⊂ int(Σ−

2 )
and h′′(Σ−

2 ) ⊂ int(Σ−
1 ). The union l− of the disks in F+, Σ−

1 and Σ−
2 is an attracting set for h′′

and, more importantly, for h.
The action h∗,0 of h on the reduced homology group H̃0(l

−) is associated to the reduced per-
mutation automorphism defined by a permutation having bk cycles of length k, for all k ≥ 1. The
action h∗,1 of h on H̃1(l

−) = H1(l
−) is associated to the opposite of the permutation automorphism

associated to a permutation with ck cycles of length k, for all even k ≥ 2. Indeed, the boundaries
of the disks of the sets F− corresponding to each S−

1 and S−
2 define a basis of H1(l

−). To study

h∗,1, one can also use the duality by considering the repeller l+ = S2 \ l− and look at the action

of (h−1)∗,0 on H̃0(l
+) which is the reduced permutation automorphism defined by a permutation

having ck cycles of length k, for all k ≥ 1. The traces of the maps (h∗,0)
n and (h∗,1)

n are now easy
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to compute using Propositions 2.10, 2.12 and Szymczak’s Duality. They are equal respectively to
−1 +

∑
k|n k · bk and to (−1)n(−1 +

∑
k|n k · ck). Combining these expressions we obtain,

−trace((h∗,0)
n) + trace((h∗,1)

n) =

{
2−

∑
k|n k · (bk + ck) if n is odd,

−
∑

k|n k · (bk − ck) if n is even.

As remarked in the end of Subsection 4.1, it is possible to associate to the attractor/repeller
pair (l−, l+) a continuous map g : S2 → R such that g > 0 in l− and g < 0 in h−1(l+). The map
f induced in S3 by the skew-product of h and g, is the one we are looking for. Summarizing what
has been done in Subsection 4.1, one knows that the lower end {e−} is an isolated invariant set for
f and, for any integer n ≥ 1,

i(fn, e−) = −trace((f̄∗,1)
n) + trace((f̄∗,2)

n) = −trace((h∗,0)
n) + trace((h∗,1)

n),

whose exact value has been computed in terms of the integers bk and ck. It remains to realize that
the work done in equation (7) guarantees that the definition of bk and ck leads to the expression

{i(fn, e−)}n≥1 =
∑

k

akσ
k.

5 Proof of Theorem 3.10

5.1 Construction of a good filtration pair

We suppose in this section that X is an isolated invariant acyclic continuum of a local homeo-
morphism f . Consider a regular filtration pair (N,L0) for X and f such that N is connected. The
compact set L′

1 = (f−1(L0) ∩N) ∪ L0 is a neighborhood of L0 in N such that

f(L′
1) ∩ (N \ L′

1) ⊂ (L0 ∩ (N \ L′
1)) ∪ (f(L0) ∩ (N \ L′

1)) = ∅

and also that N \ L′
1 is an isolating neighborhood of X. Therefore, we can find a neighborhood L1

of L′
1 in N such that

• (N,L1) is a regular pair,

• N \ L1 is an isolating neighborhood of X,

• f(L1) ∩ (N \ L1) = ∅,

• f(N \ L1) ⊂ N \ L0,

In particular, (N,L1) is a filtration pair. With the same process, we can define inductively a
sequence (N,Ln) of regular filtration pairs of X, such that

• Ln+1 is a neighborhood of (f−1(Ln) ∩N) ∪ Ln in N ,

• f(N \ Ln+1) ⊂ N \ Ln.
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Note that these properties imply that f(Ln+1 \ Ln) ⊂ intN (Ln). Observe that the boundary of a
set N \ Ln+1 relative to N and relative to any N \ Lm, m ≤ n coincide because ∂NLn+1 ∩ Ln = ∅
and also that f(∂NLn) ∩ (N \ Ln) = ∅.

Let us denote Sn the connected component of N \ Ln that contains X. Of course one has that
f(Sn) ⊂ Sm, whenever 0 < m < n. Indeed f(Sn) is connected, contains X and does not meet Lm.
It is trivial to check that each triple (N,Sm, Sn) is regular and satisfies the properties

i) Sm is a neighborhood of Sn in N (for the relative topology),

ii) f(Sm) ⊂ N , f(Sn) ⊂ Sm,

iii) f(∂NSn) ∩ Sn = ∅,

iv) Sn is an isolating neighborhood and Inv(Sn) = X,

introduced in Subsection 3.4.
For every n ≥ 0 and every r ∈ {0, . . . , d} denote Er,n the subspace of Hr(N) generated by the r-

cycles in Sn. We obtain d+1 non-increasing sequences. Each space Hr(N) being finite-dimensional,
one can find an integer n0 such that for every n ≥ n0 and every r ∈ {0, . . . , d}, one has Er,n = Er,n0

.
Replacing L0 with Ln0

, and each Ln with Ln0+n, we have the following property, consequence of
the minimality of the images of Hr(Sn)→ Hr(N) and the following chain of inclusions:

Sn+m ⊂
⋂

0≤k≤m

f−k(Sn) ⊂ Sn.

v) For every n,m ≥ 0 and r ∈ {0, . . . , d}, every r-cycle in Sn is homologous, as a cycle of N , to
a r-cycle in

⋂
0≤k≤m f

−k(Sn).

Let us fix some extra notation valid for the rest of the proof:

S′ = S0, S = S1.

The endomorphisms
f̃∗,r : Hr(S

′, S′ \ S)→ Hr(S
′, S′ \ S)

induced by f were shown, in Proposition 3.8, to be spectrum equivalent to the r-homological
discrete Conley index of X and f . These will be the representatives required by Theorem 3.10.

5.2 Nilpotence

A first approach to the task of describing the homological Conley indices may wonder about
the homology groups of the sets Sn, and, in particular, to that of S′. An isolating neighborhood as
S′ that arises from a filtration pair should be somehow similar to the invariant set X. Thus, for
example, it may be possible to prove that there exists a contractible S′ provided that X is reduced
to a point. However, we have not found yet the dynamical argument, if any, which allows to make
such a simplification. The discussion which we present in this subsection formalizes the following
idea: a homology class of S′ which is not represented by some chain close to the invariant set X,
is eventually mapped onto the zero class by the map f̃∗,r.

The idea of nilpotence is already present in the work of Richeson and Wiseman, see [RW02]. In
our context, we have to use it in a much more delicate way and need property v).
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Denote Fr the image of the inclusion map

ιr : Hr(S
′)→ Hr(S

′, S′ \ S),

that is, the subspace of Hr(S
′, S′ \ S) generated by the r-cycles in S′.

Proposition 5.1. The space Fr is forward invariant under f̃∗,r and included in its generalized
kernel.

Proof. Let us begin by proving the invariance of Fr. By property v) every r-cycle in S′ is homolo-
gous, as a cycle of N , to a r-cycle of S′ ∩ f−1(S′), so it is homologous to such a cycle as a relative
cycle of (N,N \ S) and, by excision, as a relative cycle of (S′, S′ \ S). In particular, every homology
class in Fr is represented by a r-cycle σ in S′ ∩ f−1(S′) and its image f̃∗,r is represented by f(σ)

which is a r-cycle in S′. This means that Fr is forward invariant under f̃∗,r. Let us prove now

that Fr is included in the generalized kernel of f̃∗,r. Since X is acyclic, we can find neighborhoods
V ⊂ U of X contained in int(S) such that the inclusion-induced map Hr(V ) → Hr(U) is trivial.
The set

⋂
k∈Z f

−k(S′) being reduced to X, there exists n0 ≥ 0 such that

⋂

|k|≤n0

f−k(S′) ⊂ V.

By using again property v) one knows that every class κ ∈ Fr is represented by a r-cycle σ in⋂2n0

k=0 f
−k(S′). This implies that f̃n0

∗,r(κ) is represented by fn0(σ), which is a cycle in V , hence a

boundary in U . One deduces that f̃n0
∗,r(κ) = 0.

5.3 Definition of ϕ, description of f̃∗,1

Property v) applied to r = 1 gives information about the display of the subsets S and S′ of N ,
which the next proposition will illustrate.

Lemma 5.2. Let (M,T ′, T ) be a regular triple such that all three sets are connected,

• T ∩ (M \ T ′) = ∅ and

• the images of the inclusion-induced maps H1(T )→ H1(M) and H1(T
′)→ H1(M) are equal.

Then:

• Given any c ∈ π0(T ′ \ T ), the set c ∩ T = c ∩ ∂MT is connected.

• If ∆ ⊂ T is closed and ∆ ∩ ∂MT = ∅, there is a bijection

λ : π0(T
′ \∆)→ π0(T \∆)

defined by λ(c) ⊂ c for any c ∈ π0(T
′ \∆).

Proof. Let us begin by proving the first point. Every connected component of ∂MT is a (d −
1)-manifold with boundary, whose boundary belongs to ∂M . It defines a homology class κ ∈
Hd−1(M,∂M) and, by Lefschetz duality, a cohomology class in H1(M), defined by intersecting κ
with homology classes in H1(M). This cohomology class vanishes on the image of H1(T ) in H1(M),
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so it vanishes on the image of H1(T
′) in H1(M), by hypothesis. Every connected component c of

T ′ \ T meets ∂MT because T ′ is connected and one knows that c ∩ ∂MT = c ∩ T . More precisely,
c ∩ ∂MT is the finite union of connected components of ∂MT contained in c. The manifold T
being connected, if there is more than one component, one can find a loop γ in T ′ that intersects
a given component of ∂MT in a unique point and transversally. The cohomology class defined by
this component does not vanish on the homology class of γ.

Let us prove now the second point. Denote µ : π0(T \∆)→ π0(T
′ \∆) the map that assigns to

every connected component C of T \∆ the connected component of T ′ \∆ that contains C. The
first point tells us that µ(C) is the union of C and of the connected components c of T ′ \ T such
that the non-empty connected set c ∩ ∂MT is included in C. As a consequence, one deduces that
µ is one-to-one. The fact that µ is onto is an immediate consequence of the connectedness of T ′.
One has λ = µ−1.

The previous lemma permits us to define a map

ϕ : π0(S′ \ S)→ π0(S′ \ S)

as follows. Take a component c ∈ π0(S′ \ S). One knows that c ∩ S = c ∩ ∂NS is connected. Since
f(S) ⊂ S′ and f(∂NS)∩S = ∅, one deduces that f(c∩∂NS) is contained in a connected component
ϕ(c) ∈ π0(S′ \ S).

Proposition 5.3. The spectrum equivalence class of h1(f,X) is represented by the reduced permu-
tation endomorphism defined by ϕ.

Proof. By Lemma 2.5 and Proposition 5.1, one knows that the induced endomorphism

f̌∗,1 : H1(S
′, S′ \ S)/F1 → H1(S

′, S′ \ S)/F1

is shift equivalent to f̃∗,1 and therefore represents the spectrum equivalence class of the first-
homological Conley index of X and f .

From the long exact sequence of homology groups of the pair (S′, S′ \ S), the homology group
H1(S

′, S′ \ S)/F1 is isomorphic to im(∂1) = ker(j∗), where

∂1 : H1(S
′, S′ \ S)→ H0(S′ \ S)

is the connecting map and
j∗ : H0(S′ \ S)→ H0(S

′)

the inclusion-induced map.
Every connected component c of S′ \ S is associated to an element [c] of the homology group

H0(S′ \ S), and the set {[c]}
c∈π0(S′\S)

is a basis. To the map ϕ is naturally associated a per-

mutation endomorphism u on H0(S′ \ S). Taking [S′] as a basis of H0(S
′), one has the natural

identification H0(S
′) ∼ Q. The map j∗ sends every [c] onto 1. Observe now that the isomorphism

H1(S
′, S′ \ S)/F1 → ker(j∗) conjugates f̌∗,1 to the restriction of u to ker(j∗) which is nothing but

the reduced permutation endomorphism defined by ϕ.

The previous proposition proves the first item of Theorem 3.10.
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5.4 Introducing the stable set

Recall that the stable set of f in S is Λ+ =
⋂
k≥0 f

−k(S). Lemma 5.2 implies the following:

• every connected component of S′ \ Λ+ that meets a connected component of S′ \ S contains
this component.

Notice that every connected component of S′\Λ+ contains a unique connected component of S\Λ+.
Denote C = π0(S

′ \ Λ+) the set of connected components of S′ \ Λ+ and C∗ the set of components
C ′ ∈ C that meet S′ \ S. Like in Subsection 5.3, one can define a map

Ψ : C → C

as follows. Consider a connected component C ′ ∈ C and denote C the unique connected component
of S \ Λ+ contained in C ′. Every point in S whose image by f belongs to Λ+ must be contained
in Λ+. One deduces that f(C) is included in S′ \ Λ+, hence contained in a unique connected
component Ψ(C ′) ∈ C. Should C ′ meet S′ \ S, then C ′ would meet ∂NS so, by definition, Ψ(C ′)
would also meet S′ \ S because f(∂NS) ⊂ S′ \ S. Therefore, C∗ is forward invariant. Observe that,
for every C ′ ∈ C, there exists n ≥ 0 such that

• fn(C ′) ∩ (S′ \ S) 6= ∅;

• fk(C ′) ∩ (S′ \ S) = ∅, if k < n.

In particular, Ψk(C ′) ∈ C∗ for every k ≥ n.

Proposition 5.4. Suppose that for some c, c′ ∈ π0(S′ \ S) and any n ≥ 0, ϕn(c) 6= ϕn(c′). Then,
every path in S′ which joins c and c′ meets Λ+.

Proof. Let γ0 be a path in S′ which joins c and c′. As a 1-cycle in (S′, S′ \ S), it represents a
relative homology class [γ0] ∈ H1(S

′, S′ \ S). With the notations introduced in Subsection 5.3, one
knows that f̃n∗,1([γ0]) 6= 0 for every n ≥ 1, because

∂1(f̃
n
∗,1([γ0])) = [ϕn(c)]− [ϕn(c′)] 6= 0.

By Lemma 3.9, one can construct a sequence of relative 1-cycles {γn}n≥0 of (S′, S′ \ S) such that

• γn represents the class f̃n∗,1([γ0]) and

• γn+1 ⊂ f(γn ∩ S), for every n ≥ 0.

The sequence {f−n(γn ∩ S)}n≥0 is a decreasing sequence of non-empty compact subsets of γ0.
Therefore the set

⋂
n≥0 f

−n(γn∩S) is not empty, included both in γ0 and in
⋂
n≥0 f

−n(S) = Λ+.

Since every C ∈ C is pathwise connected, the previous proposition shows that any two compo-
nents of S′ \ S that are contained in the same component C ∈ C∗ have equal image under ϕn for
sufficiently large n.

Corollary 5.5. The maps ϕ and ψ = Ψ|C∗ are shift equivalent.
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Proof. The inclusion Λ+ ⊂ S induces a map a : π0(S′ \ S)→ C∗ which is onto and semiconjugates
ϕ and Ψ. This last property can be deduced immediately from the following fact: for every
component c ∈ π0(S′ \ S), the non-empty connected set f(c ∩ ∂NS) belongs both to ϕ(c) and to
ψ(a(c)). As seen in Section 2, there exists an integer n0 such than the restriction of ϕ to im(ϕn0)
is the permutation induced by ϕ. The map a being onto, its restriction to im(ϕn0) sends im(ϕn0)
onto im(ψn0). Proposition 5.4 tells us that the restriction of a to im(ϕn0) is one-to-one, which
implies that this restriction conjugates ϕn0 |im(ϕn0 ) to ψ

n0 |im(ψn0 ). Consequently, the restriction of
ψ to im(ψn0) is bijective. This implies that it is the permutation induced by ψ. The permutation
induced by ϕ and ψ being conjugate, ϕ and ψ are shift equivalent.

This corollary proves the third item of Theorem 3.10.

5.5 Gathering all dynamical information around the unstable set

Given a neighborhood U of X contained in the interior of S, denote Er(U) the subspace of
Hr(S

′, S′ \ S) generated by the relative r-cycles of (S′, S′ \ S) that are included in (S′\Λ+)∪U . The
space Hr(S

′, S′ \ S) being finite-dimensional, one can choose U such that for every neighborhood
V of X contained in U one has Er(V ) = Er(U).

Proposition 5.6. The space Er(U) is forward invariant under f̃∗,r and contains the generalized

image of f̃∗,r.

Proof. Fix a neighborhood V of X such that U contains V and f(V ). Every homology class
κ ∈ Er(U) is represented by a relative cycle σ of (S′, S′ \ S) included in (S′ \ Λ+) ∪ V because
Er(V ) = Er(U). The class f̃∗,r(κ) is represented by a relative cycle of (S′, S′ \ S) which is included
in f(σ ∩ S). But such set will meet Λ+ only in f(V ) (recall that f(S \ Λ+) ∩ Λ+ = ∅) so it is
included in (S′ \ Λ+) ∪ U . One deduces that Er(U) is forward invariant.

Let us conclude by proving that it contains the generalized image of f̃∗,r. Fix κ ∈ Hr(S
′, S′ \ S)

and σ0 a relative cycle in (S′, S′ \ S) representing κ. By Lemma 3.9, one can construct inductively
a sequence of relative cycles {σn}n≥0 of (S′, S′ \ S) such that

• σn represents f̃n∗,r(κ),

• σn ⊂ f(σn−1 ∩ S).

Consequently, one deduces that σn ∩ S ⊂
⋂

0≤k≤n f
k(S). The fact that

⋂
k∈Z f

−k(S) = X

implies that
(⋂

0≤k≤n f
k(S)

)
∩ Λ+ ⊂ U if n is large enough, hence σn ∩ Λ+ ⊂ U . Therefore, one

has f̃n∗,r(κ) ∈ Er(U).

5.6 Higher-dimensional homological decomposition

The space Gr(U) = Er(U) + Fr is forward invariant and contains both Fr and the generalized
image of f̃∗,r. Applying Lemma 2.5 to the couple (Fr, Gr(U)), one knows that f̃∗,r is shift equivalent
to f̌∗,r, the induced endomorphism of Gr(U)/Fr. We will prove now that f̌∗,r is dominated by ψ.

For every C ∈ C, write ECr (U) for the subspace of Hr(S
′, S′ \ S) generated by the relative r-cycles

of (S′, S′ \ S) that are included in C ∪U and define GCr (U) = ECr (U)+Fr. The set C
∗ being finite,

one can suppose U small enough to ensure that for every neighborhood V of X contained in U ,
and every C ∈ C∗, one has ECr (V ) = ECr (U).
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Proposition 5.7. Let us suppose that r ≥ 2. Then one has a direct sum

Gr(U)/Fr =
⊕

C∈C∗

GCr (U)/Fr .

Moreover, for every C ∈ C∗, one has

f̌∗,r
(
GCr (U)/Fr

)
⊂ Gψ(C)

r (U)/Fr .

Proof. Since X is acyclic there exists neighborhoods W ⊂ V of X contained in U such that the
inclusion-induced maps Hs(W ) → Hs(V ) and Hs(V ) → Hs(U) are trivial for every s ≥ 1. By
hypothesis, ECr (W ) = ECr (U) for every C ∈ C∗. The proof of Mayer Vietoris formula tells us that

Er(W ) =
∑

C∈C

ECr (W ).

Indeed, if σ is a relative chain of (S′, S′ \ S) included in (S′ \Λ+)∪W , the decomposition principle
tells us that the chain σ is homologous to

σ =
∑

i∈I

σi + σ′,

where σ′ is a r-chain in W and where each σi is a connected r-chain in S′ \ Λ+ whose boundary
may be written

∂σi = (∂σi)
S′\S + (∂σi)

W

where (∂σi)
S′\S is a (r − 1)-cycle in S′ \ S and (∂σi)

W a (r − 1)-cycle in W . Of course each
cycle σi is included in a connected component Ci ∈ C. The fact that Hr−1(W ) → Hr−1(V ) and
Hr(V ) → Hr(U) are trivial implies that there exists a r-chain νi in V such that ∂νi = −(∂σi)

W

and a (r + 1)-chain ω in U such that ∂ω = σ′ −
∑

i∈I νi. One deduces that σ is homologous in

(S′, S′ \ S) to
∑

i∈I(σi + νi), which implies that its homology class is included in
∑

C∈C E
C
r (U).

Every space ECr (U) being included in Fr if C 6∈ C∗, one can write

Gr(U) =
∑

C∈C∗

GCr (U).

To prove that it is a direct sum, one must prove that for every family {κC}C∈C∗ in Hr(S
′, S′ \ S)

such that κC ∈ ECr (U) and
∑

C∈C∗ κC ∈ Fr, then one has κC ∈ Fr for every C ∈ C∗. Let us
consider the connecting map

∂r : Hr(S
′, S′ \ S)→ Hr−1(S′ \ S)

and the inclusion map
ιr : Hr(S

′)→ Hr(S
′, S′ \ S).

Recall that im(ιr) = ker(∂r). We will use the equality

Hr−1(S′ \ S) =
⊕

C∈C∗

Hr−1((S′ \ S) ∩C),
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true if r ≥ 2. We have

∑

C∈C∗

κC ∈ Fr =⇒
∑

C∈C∗

∂r(κC) = 0 =⇒ ∂r(κC) = 0 =⇒ κC ∈ im(ιr) =⇒ κC ∈ Fr

for every C ∈ C∗.
A proof similar to the proof of the invariance of Er(U) gives us

f̃∗,r(E
C
r (U)) ⊂ Eψ(C)

r (U),

for every C ∈ C∗. Indeed, every homology class in ECr (U), C ∈ C∗, is represented by a relative cycle
σ included in C∪V and its image by f̃∗,r is represented by a relative cycle included in ψ(C)∪f(V ),
so by a relative cycle included in ψ(C) ∪ U .

This proposition completes the proof of Theorem 3.10.

6 Further remarks

The purpose of this section is to give an overview on what was known about the fixed point
index of isolated fixed points of local homeomorphisms and to show how the results contained in
this article fit in the theory.

It seems to be a connection between the behavior of the fixed point index of orientation-
preserving local homeomorphisms in Rd and that of orientation-reversing local homeomorphisms
in Rd+1. Let us begin with the obvious case R0 = {0}. The unique homeomorphism of R0 is
orientation-preserving and the index of its unique fixed point is 1. Let us continue with the simple
case of R. In dimension 1, a fixed point p of an orientation-preserving homeomorphism f isolated in
the set Fix(f) is necessarily an isolated invariant set, the fixed point index can take the values −1,
0 or 1 and the sequence {i(fn, p)}n≥1 is constant. A fixed point of an orientation-reversing homeo-
morphism is always isolated in the set of fixed points (but not necessarily an isolated invariant set)
and its index is 1.

In dimension 2, one can construct, for every l ∈ Z, a local orientation-preserving homeomor-
phism having a fixed point p such that i(f, p) = l. But if one supposes that {p} is an isolated
invariant set, it was proven by Le Calvez and Yoccoz in [LY97] that l ≤ 1. More precisely there
exist two integers q ≥ 1 and r ≥ 1 such that the sequence of indices of iterates can be written

{i(fn, p)}n≥1 = σ1 − rσq.

Franks introduced Conley index techniques in [Fr99] to get a short proof of the inequality i(f, p) ≤ 1
and of the fact that the sequence {i(fn, p)}n≥1 takes periodically a non-negative value. Some
restrictions appear in the orientation-reversing case, the index of an isolated (in Fix(f)) fixed point
only can take the values −1, 0 or 1, as was shown by Bonino in [Bo02]. In the case where the fixed
point is an isolated invariant set, much more can be said. Ruiz del Portal and Salazar, see [RS02],
used Conley index techniques to find again the formula written above for the sequence of indices
of positive iterates, and to state an analogous formula in the orientation-reversing case: there exist
e ∈ {−1, 0, 1} and r ≥ 0 such that

{i(fn, p)}n≥1 = eσ1 − rσ2,
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(the same approach was taken, at least in the orientation-preserving case, in the unpublished article
[LY]).

In dimension 3, one can construct, for every l ∈ Z, a local orientation-preserving or reversing
homeomorphism having a fixed point p such that i(f, p) = l. In case where the fixed point is an
isolated invariant set, it is known that the sequence of fixed point indices {i(fn, p)}n≥1 is periodic,
see [LRS10]. No further restrictions appear in the orientation-preserving case. However, it seemed
plausible that the orientation-reversing case would exhibit some particular behavior connected to
the planar orientation-preserving case. This was the motivation for this work. Corollary 1.1 and,
more precisely, Theorem C show the extra restrictions which appear in the orientation-reversing
case in dimension 3. In particular, the index is always less than or equal to 1, as occurred for
orientation-preserving planar homeomorphisms. Nevertheless, the behavior of the sequence of fixed
point indices of the iterates is different in both cases, it is much more rigid in the planar case.
Indeed, in dimension 2, the map ϕ that appear in Theorem 3.10 will have to preserve or reverse
a cyclic order depending whether f preserves or reverses the orientation. In the first case, all
periodic points have the same period, in the second case ϕ has at most two fixed points and the
other periodic points of ϕ have period 2.

In [LRS10], an example of a fixed point isolated as invariant set of a local homeomorphism of
R4 with an unbounded sequence of fixed point indices is shown. Therefore, in higher dimensions
the only restriction one may expect the fixed point sequence to satisfy are Dold’s congruences.
Here, we present an orientation-reversing analogue of the example constructed in Remark 6 of the
aforementioned article. Suppose that T is a 2-torus embedded in S3 and which cuts it in two
solid tori, T+ and T−. Define an orientation-reversing diffeomorphism h of S3 such that the maps
h : T+ → T+ and h−1 : T− → T− are solenoidal maps of degree −m, m a positive integer, which
means conjugate to a mapping

(θ, z) 7→

(
θ−m,

1

2
θ +

1

2m+1
z

)

defined on the filled torus {θ ∈ C, |θ| = 1} × {z ∈ C, |z| ≤ 1}. The pair (T+, T−) is an attrac-
tor/repeller decomposition of S3 such that

i(hn, T+) = 1 + (−m)n.

At the end of Subsection 4.1 we showed that given a regular attractor/repeller decomposition of
the sphere, it is possible to define g : S3 → R so that the diffeomorphism f : S4 → S4 induced by
the skew-product of g and h satisfies:

• e− is an isolated fixed point.

• Its index by fn is i(fn, e−) = i(hn, T+) = 1 + (−m)n.

Consequently, the sequence of indices is unbounded either from below or from above.
Another important topic concerning fixed point index which attracted some attention was the

local study of conservative homeomorphisms. If we drop the hypothesis about isolation of the
fixed point, it remains true for the planar case that the index of a fixed point is less than or equal
to 1 Provided that the homeomorphism is area-preserving. This result was proved by Pelikan
and Slaminka in [PS87]. Previously, Nikishin and Simon had addressed the same question for
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diffeomorphisms, see [Ni74] and [Si74]. However, the analogue statement referred to orientation-
reversing local homeomorphisms of R3 does not hold, as the following example shows.

Let l be a positive integer and define f(z) = z+zl, a local diffeomorphism of the complex plane
in a neighborhood U of the origin. Using the definition, one may check that the fixed point index
of the origin is l. Then, the map

g : (z, t) 7→

(
f(z),

−t

|f ′(z)|

)

defined in U × [−1, 1] is a local diffeomorphism of R3 using the usual identification of C ∼ R2.
The Jacobian of g is equal to 1, hence it preserves volume. Since f preserves orientation, g is
orientation-reversing. The origin, 0, is the unique fixed point of g and its index can be computed
easily because g is isotopic to the map (z, t) 7→ (f(z),−t) through an isotopy which does not create
extra fixed points in U × [−1, 1]. Then,

i(g, 0) = i(f, 0) · i(s, 0) = l,

where
s = −id : [−1, 1]→ [−1, 1].
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