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Abstract. Let f : Rn → Rn be a homeomorphism and K an asymptotically
stable attractor for f . The aim of this paper is to study when the inclusion of
K in its basin of attraction A(K) induces isomorphisms in Čech cohomology.
We show that (i) this is true if coefficients are taken in Q or Zp (p prime) and

(ii) it is true for integral cohomology if and only if the Čech cohomology of K
or A(K) is finitely generated. We compute the Čech cohomology of periodic
point free attractors of volume-contracting R3-homeomorphisms and present
applications to quite general models in population dynamics.

1. Introduction

Let K be a compact attractor of a flow and A(K) its basin of attraction. There
are many papers in the literature relating the homotopy properties of A(K) and K.
Since K may have a very complicated topological structure, the homotopy theory
that best suits the study of this problem is shape theory, which can be thought of
as a sort of Čech homotopy theory (see [2], [1], [3] or [15]). If the flow is defined
in a nice space (a manifold or more generally an ANR) the main conclusions are
that the inclusion i of K in A(K) is a shape equivalence and that K has the shape
of a finite polyhedron (see for instance [7], [4], [6] or [12]). In particular, i induces
isomorphisms in Čech cohomology. The proofs of these facts depend in an essential
way on the homotopies that a flow provides for free.

In the case of discrete dynamical systems few results are known about the ho-
motopical relationship between K and A(K), and —due to the absence of the
homotopies which a flow would naturally provide— they require strong conditions
on the homeomorphism or on the attractor (see [5], [16], [19]). Such conditions are
not useful in practice because a priori it is not known how strange the attractor
can be, although in low dimensions the situation is slightly more tractable ([19]).

Given the situation just described it is profitable to be less ambitious and con-
centrate on the relation between the Čech cohomology of K and A(K). One of
the difficulties that arises is related to the fact that, unless the attractor has some
kind of movability property (which is, again, difficult to check), information may
be lost when the whole inverse sequence used to compute Ȟ∗(K) is replaced by its
inverse limit. In this paper we show that when coefficients are taken in Q or Zp (p
prime) this issue disappears and the inclusion of K in A(K) induces isomorphisms
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in Čech cohomology (Theorem 1); we also characterize when the same holds true
for integral cohomology (Theorem 2):

Theorem 1. Let K ⊆ Rn be an attractor for a homeomorphism f . Then the
inclusion i : K −→ A(K) induces isomorphisms i∗ : Hd(A(K);Q) −→ Ȟd(K;Q).
Moreover, both Ȟd(K;Q) and Hd(A(K);Q) are finite dimensional vector spaces.

The same holds true when coefficients are taken in Zp with p prime.

Theorem 2. Let K ⊆ Rn be an attractor for a homeomorphism f . The following
are equivalent:

(1) the inclusion i : K ⊆ A(K) induces isomorphisms in Čech cohomology with
Z coefficients,

(2) K has finitely generated Čech cohomology with Z coefficients,
(3) A(K) has finitely generated cohomology with Z coefficients.

As an application we consider volume contracting homeomorphisms of R3 and
compute the cohomology of attractors having no fixed or periodic points (Theorem
17). The reader may find in [9] a complete exposition of the fixed point index and
Lefschetz theory. We then use this to study attractors of some periodic equations
in R3 (Theorem 18), in particular quite general 3-dimensional models of population
dynamics.

Acknowledgments. The authors want to express their gratitude to professors
S. Mardešić, A. Murillo, R. Ortega and A. Viruel for several comments and ideas
which have helped to substantially improve this manuscript.

Background definitions and notation. Unless otherwise stated, f will always
denote a homeomorphism of Rn. An attractor for f is a compact set K which the
following properties:

(1) f(K) = K (K is invariant),
(2) K has a neighbourhood U such that for every compact set P ⊆ U and every

neighbourhood V of K there exists k0 with the property that fk(P ) ⊆ V
for every k ≥ k0 (K attracts compact subsets of U).

The maximal U such that (2) holds is called the basin of attraction of K and
denoted A(K). It is always an invariant, open subset of Rn. The usual way of
proving that f has an attractor is by finding a compact set N ⊆ Rn such that
f(N) ⊆ int N , for then it can be shown that f has an attractor K ⊆ int N whose
basin of attraction A(K) contains N . In fact

K =

∞⋂
k=0

fk(N) and A(K) =

∞⋃
k=0

f−k(N).

We will make frequent use of the following fact: if K is an attractor and N
is a compact neighbourhood of K contained in A(K) then by (2) there exists a
power k0 such that fk(N) ⊆ int N for every k ≥ k0. In order to keep notation as
simple as possible we shall usually rename fk0 again as f and simply assume that
f(N) ⊆ int N . This is legitimate because fk0 is a homeomorphism still having K
as an attractor with basin of attraction A(K) [19].

Proposition 3. There exists a neighbourhood N of K contained in A(K) which has
finitely generated integral cohomology in all dimensions. In fact, N can be chosen
to be a compact manifold with boundary.
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Proof. We give two different proofs for the sake of generalisation later on.
(1) Let P be a compact neighbourhood of K contained in A(K). For each

p = (p1, . . . , pn) ∈ P let Qp be a cube
∏n
i=1[pi − ε, pi + ε] centered at p, with

ε > 0 so small that Qp ⊆ A(K). The interiors of these cubes cover the compact
set P , and so a finite number of them also cover P . Let N be their union. Then
N is a compact neighbourhood of K contained in A(K) with finite dimensional
cohomology in all dimensions. Replacing N by a regular neighbourhood of itself
(in the sense of piecewise linear topology) it can also be assumed to be a compact
manifold with boundary.

(2) There exists a differentiable function θ : Rn −→ [0, 1] such that θ|K ≡ 1
and θ ≡ 0 outside A(K). By Sard’s theorem θ has a regular value c ∈ (0, 1).
Letting N := θ−1([0, c]) we obtain a compact manifold that is a neighbourhood of
K contained in A(K). Since compact manifolds have finitely generated cohomology
in all dimensions, the proof is finished. �

Summing up,

Notation 4. K is an attractor for a homeomorphism f : Rn −→ Rn, with basin
of attraction A(K). We denote i : K −→ A(K) the inclusion. N is a compact
neighbourhood of K contained in A(K) and with finitely generated cohomology. We
will always assume that f(N) ⊆ N .

2. Proof of Theorem 1

Consider a set Z and a map u : Z −→ Z. In this section Z will be a topological
space and u a continuous map or Z will be a vector space and u a homomorphism.
In the next section we will also consider the case when Z is just an abelian group.
Using these elements we construct a biinfinite sequence

S : . . .
u←− Z u←− Z u←− Z0

u←− Z u←− Z u←− . . .
The middle Z0 is just another copy of Z, but one that we want to distinguish for
reference purposes. Sometimes we also need to label the remaining copies of Z, and
then we use the notation

S : . . .
u←− Z2

u←− Z1
u←− Z0

u←− Z−1
u←− Z−2

u←− . . .
We should also write uk : Zk −→ Zk+1 (rather than simply u) for the bonding
maps, but such care will not be necessary.

S can be split at the distinguished Z0, giving rise to an inverse sequence

S∗ : Z0
u←− Z u←− Z u←− . . .

and a direct sequence

S∗ : . . .
u←− Z u←− Z u←− Z0

We denote S∗ the inverse limit of S∗ and call it the inverse limit of S. This
inverse limit comes equipped with natural maps from S∗ to each of the terms in
the sequence S∗, but we are only interested in the one whose target is Z0, which
we denote s∗ : S∗ −→ Z0. The inverse limit S∗ may be described as the set

S∗ =
{
(zk)k≤0 : zk ∈ Zk and u(zk) = zk+1

}
and then

s∗((zk)) = z0.
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Similarly we denote S∗ the direct limit of S∗ and call it the direct limit of
S. Again, this comes equipped with natural maps from each of the terms in the
sequence S∗ to S∗; we are only interested in the one from Z0 to S∗, which we denote
s∗ : Z0 −→ S∗. The direct limit S∗ may be described as the quotient

S∗ =
(∐
k≥0

Zk
)
/ ∼,

where ∼ is the smallest equivalence relation in
∐
k≥0 Zk that is compatible with the

vector space structure and such that zk ∼ u(zk) for every zk ∈ Zk and any k ≥ 0.
With this notation,

s∗(z0) = [z0].

We call s∗ and s∗ the canonical maps associated with S.
Proposition 5. Let K be an attractor for a homeomorphism f and let N be a
compact neighbourhood of K contained in A(K) such that f(N) ⊆ N . Then for the
sequence

S : . . .
f←− N f←− N f←− N f←− . . .

we have

(1) S∗ = K and s∗ is the inclusion of K into N ,
(2) S∗ = A(K) and s∗ ◦ s∗ is the inclusion of K into A(K).

Part (1) should be interpreted as meaning that S∗ can be identified with K
and, under this identification, the map s∗ becomes the inclusion of K into N . An
analogous reading should be made of part (2). The proof of Proposition 5 is easy
and hence we omit it.

Proposition 6. Let V be a vector space of finite dimension m and ϕ : V −→ V
an endomorphism. Then for the sequence

S : . . .
ϕ←− V ϕ←− V ϕ←− V ϕ←− . . .

we have

(1) s∗ is an isomorphism onto im ϕm,
(2) s∗ ◦ s∗ : S∗ −→ S∗ is an isomorphism.

Proof. Denote W := im ϕm. It is a well known fact from linear algebra that
ϕ|W :W −→ W is an isomorphism.

(1) Let (uk) ∈ S∗. Then s∗((uk)) = u0 = ϕm(um) ∈ W , and so im s∗ ⊆W .
Now we show that s∗ is a bijection onto W . Pick u0 ∈ W . We need to find

u1, u2, . . . with (uk) ∈ S∗, so that s∗((uk)) = u0. Since all the uk have to belong
to W because uk = ϕm(uk+m) ∈ W , the only possible choices for the uk are
uk := (ϕ|W )−k(u0). These indeed give rise to an element (uk) belonging to S∗, so
s∗ is bijective.

(2) Now we prove that s∗|W : W −→ S∗ is a bijection. Coupled with (1), this
establishes (2).

Injectivity is easy: assuming that s∗(u) = s∗(v) for u, v ∈ W , there exists k
such that ϕk(u) = ϕk(v), and the injectivity of ϕ|W implies that u = v. To prove
surjectivity, choose an element [u] ∈ S∗ represented by a vector u ∈ Vk. Then
u ∼ ϕm(u) ∈ Vk+m. Since ϕm(u) ∈W and ϕk+m|W :W −→ W is an isomorphism,
there exists v ∈ W such that ϕm+k(v) = ϕm(u). Thus u ∼ ϕm(u) = ϕm+k(v) ∼ v
so [u] = [v] = s∗(v), which shows that s∗ is surjective. �
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Proof of Theorem 1. We prove the theorem for coefficients in Q, the Zp case being
entirely analogous.

Fix a dimension d ≥ 0. Consider the sequence

. . .
f←− N f←− N f←− N f←− . . .

which, according to Proposition 5, has direct limit A(K) and inverse limit K.
Moreover, the composition of its canonical maps equals the inclusion i : K −→
A(K). Passing to cohomology and denoting ϕ : Hd(N ;Q) −→ Hd(N ;Q) the map
induced by f |N : N −→ N we get the biinfinite sequence

S : . . .
ϕ−→ Hd(N ;Q)

ϕ−→ Hd(N ;Q)
ϕ−→ Hd(N ;Q)

ϕ−→ . . .

The direct limit S∗ of S is precisely Ȟd(K;Q) by the very definition of Čech
cohomology. And, because coefficients are taken in Q, the inverse limit S∗ of S is
Hd(A(K);Q). This is an easy consequence of the universal coefficient theorem and
the fact that homology commutes with direct limits [8, Proposition 3F.8, p. 312].
Finally, it is clear that s∗ ◦ s∗ is precisely the inclusion induced homomorphism i∗ :
Hd(A(K);Q) −→ Ȟd(K;Q). Since Hd(N ;Q) has finite dimension m, Proposition
6.(2) applies to show that i∗ is an isomorphism. Also, Proposition 6.(1) implies that
both Ȟd(K;Q) and Hd(A(K);Q) are isomorphic to im ϕm, which is a subspace of
Hd(N ;Q) and therefore has finite dimension too. �

In fact we can be more precise about the cohomology of the attractor and the
basin of attraction:

Remark 7. Let K be an attractor for a homeomorphism f . Let N be a compact
neighbourhood of K such that f(N) ⊆ N and assume that m := dim Hd(N ;Q) is
finite. Denote m(0) the algebraic multiplicity of the eigenvalue 0 for the homomor-
phism (f |N )∗ : Hd(N ;Q) −→ Hd(N ;Q). Then dim Ȟd(K;Q) = m−m(0).

The condition that m should be finite is met whenever N is any reasonable
neighbourhood ofK. For instance, it holds if N is a manifold, which in applications
will be a common situation.

Proof of Remark 7. We saw in the proof of Theorem 1 that dim Ȟd(K;Q) =
dim im ϕm, where ϕ = (f |N )∗. Then it is a standard fact from linear algebra
that this dimension is precisely m−m(0). �

3. Proof of Theorem 2

Although cohomology with coefficients in Q is especially useful for explicit com-
putations, as illustrated by Remark 7, it is well known that coefficients in Z convey
more information. Therefore it would be desirable to have a “Z coefficients version”
of Theorem 1. Unfortunately, the analogue of Theorem 1 for cohomology with Z

coefficients is false. In order to show this we first prove a necessary condition for
the theorem to be true and then present Example 9, where it is shown that this
condition is not always met.

Proposition 8. Let K ⊆ Rn be an attractor for a homeomorphism f . If the inclu-
sion i : K ⊆ A(K) induces isomorphisms in Čech cohomology with Z coefficients,
then Ȟd(K;Z) is finitely generated for every d ≥ 0.
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Proof. Let N be a compact neighbourhood of K contained in A(K) and having
finitely generated Čech cohomology in all dimensions, as the one constructed in the
proof of Theorem 1. The inclusion i can be written as i = k ◦ j, where j and k are

the inclusions K
j−→ N

k−→ A(K), and on passing to cohomology we see that the
composition

Hd(A(K);Z)
k∗−→ Hd(N ;Z)

j∗−→ Ȟd(K;Z)

equals i∗ which is an isomorphism by assumption. Hence j∗ is surjective and,
since Hd(N ;Z) is finitely generated, we conclude that Ȟd(K;Z) must be finitely
generated as well. �

For the sake of brevity we will say that a compact set K ⊆ Rn that satisfies the
necessary conditions of Proposition 8 (that is, all of its Čech cohomology groups
with Z coefficients are finitely generated) has finitely generated Z–cohomology.

Example 9. The dyadic solenoid K is an attractor for a homeomorphism of R3.
However, it does not have finitely generated Čech cohomology with Z coefficients,
and so the inclusion i : K ⊆ A(K) cannot induce isomorphisms in Čech cohomology
with Z coefficients.

Let us revisit the proof of Theorem 1 very briefly to see where it breaks down
when coefficients are taken in Z. Fix a dimension d and denote G := Hd(N ;Z) and
ϕ : G −→ G the homomorphism induced by f |N : N −→ N in Čech cohomology.
We again have a biinfinite sequence

(1) . . .
ϕ←− G ϕ←− G ϕ←− G ϕ←− . . .

whose direct limit G∗ is Ȟd(K;Z), but now two difficulties arise: (a) the inverse
limit G∗ does not need to be isomorphic toHd(A(K);Z), because the cohomology of
a direct limit is not necessarily isomorphic to the (inverse) limit of the cohomologies,
(b) there is no guarantee that G∗ = G∗, because G is not a vector space and
Proposition 6 does not apply.

We address (b) in the first place, because it will help us to deal with (a). The
following result is the appropriate analogue of Proposition 6 in the context of groups.

Proposition 10. Let G be a finitely generated abelian group and ϕ : G −→ G an
endomorphism. Then for the sequence

S : . . .
ϕ←− G ϕ←− G ϕ←− G ϕ←− . . .

the following are equivalent:

(1) S∗ is finitely generated,
(2) there exists m such that im ϕm = im ϕm+1,
(3) s∗ ◦ s∗ : S∗ −→ S∗ is an isomorphism.

Before giving the proof, let us recall the fact that finitely generated abelian
groups are Hopfian; that is, they have the property that every surjective endomor-
phism of such a group is actually an isomorphism (as it happens for vector spaces).
This is very easy to prove for G = finite group and G = Z. The general result
follows using the fact that every finitely generated abelian group G is a direct sum
of a finite number of copies of Z and a torsion group which is finite.
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Proof of Proposition 10. (1) ⇒ (2) Assume S∗ has a finite set of generators. For
reference purposes we write the direct limit half of S as

S∗ : . . .
ϕ←− G2

ϕ←− G1
ϕ←− G0

where as usual each Gk is just a copy of G. We denote sk : Gk −→ S∗ the canonical
maps from the Gk to the direct limit S∗.

Consider a finite family of generators for S∗. Each of them can be represented
by an element in some Sk and, pushing those representatives forward along the
sequence, we may assume that all of them belong to the same Gk. This implies
that im sk = S∗.
G was assumed to be finitely generated, so it has a finite family of generators

g1, g2, . . . , gr. Thinking for a moment of these gi as elements of Gk+1 we have that
sk+1([gi]) ∈ S∗ = sk(Gk), so there exist g′i ∈ Gk such that sk+1([gi]) = sk([g

′
i]).

According to the definition of direct limit, this means that there exist mi such that
ϕmi(gi) = ϕmi+1(g′i), where we think of the gi and g′i as elements of G. Taking
m := max {mi} we see that ϕm(gi) = ϕm+1(g′i) ∈ im ϕm+1 for every generator gi
of G, and so im ϕm ⊆ im ϕm+1. Since the opposite inclusion is trivially true, it
follows that im ϕm+1 = im ϕm.

(2) ⇒ (3) Let W := im ϕm. We will just show that ϕ|W : W −→ W is an
isomorphism, and then the argument of Proposition 6 applies word for word to
prove that s∗ ◦ s∗ is an isomorphism.

The hypothesis that im ϕm = im ϕm+1 can be spelled out as

ϕm(G) = ϕ(ϕm(G))⇒W = ϕ(W ),

whence we see that ϕ|W : W −→W is surjective. W is finitely generated, because
it is the image of the finitely generated group G under ϕm, so it is Hopfian. Thus
ϕ|W :W −→ W is an isomorphism.

(3)⇒ (1) This is very easy. By assumption s∗◦s∗ : S∗ −→ S∗ is an isomorphism,
so we see that S∗ = s∗(im s∗). Since im s∗ is a subgroup of the finitely generated
abelian group G, it is also finitely generated. Thus S∗ is finitely generated too. �

Remark 11. It also follows from (2) ⇒ (3) and the proof of Proposition 6 that
when im ϕm = im ϕm+1 then not only s∗ ◦ s∗ provides an isomorphism between S∗

and S∗, but also that these groups are isomorphic to W := im ϕm.

Now we address (a); namely, when is the inverse limit of (1) isomorphic to the
cohomology of the basin of attraction.

Let N ⊆ A(K) be a compact neighbourhood of K as in Notation 4. There is an
increasing sequence

N ⊆ f−1(N) ⊆ f−2(N) ⊆ . . .
whose union

⋃
n f

−n(N) is precisely A(K), and on cohomology this gives rise to
an inverse sequence

Hd(N ;Z)←− Hd(f−1(N);Z)←− Hd(f−2(N);Z)←− . . .
whose inverse limit we denote lim {Hd(f−n(N);Z)} (unlabeled arrows denote in-
clusion induced homomorphisms). It is not true in general that this inverse limit
is isomorphic to Hd(A(K);Z). The extent to which they are not isomorphic is
measured by the so-called first derived limit lim1 of the inverse sequence

Hd−1(N ;Z)←− Hd−1(f−1(N);Z)←− Hd−1(f−2(N);Z)←− . . .
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which is an abelian group that fits in the Milnor exact sequence [14, Lemma 2, p.
338]

0 −→ lim1 {Hd−1(f−n(N);Z)} −→ Hd(A(K);Z) −→ lim {Hd(f−n(N);Z)} −→ 0

and therefore vanishes precisely when Hd(A(K);Z) is isomorphic to the inverse
limit lim {Hd(f−n(N);Z)} (Milnor’s paper is set up for CW complexes, but his
argument is completely general).

The first derived limit of an arbitrary sequence of abelian groups and homomor-
phisms

A0
ψ1←− A1

ψ2←− A2
ψ3←− . . .

is defined as the cokernel of the map d :
∏
Ak −→

∏
Ak given by

d(a0, a1, a2, . . .) := (a0 − ψ1(a1), a1 − ψ2(a2), . . .).

Thus lim1{Ak} = 0 precisely when d is surjective, or otherwise stated when the
systems of equations ⎧⎪⎪⎨

⎪⎪⎩

a0 − ψ1(a1) = b0
a1 − ψ2(a2) = b1
a2 − ψ3(a3) = b2

. . . = . . .

has a solution (ak) ∈
∏
k≥0 Ak for every (bk) ∈

∏
k≥0 Ak.

The following result is a consequence of the well known fact that any inverse
sequence with the Mittag–Leffler property has vanishing first derived limit, but we
include an elementary proof for completeness.

Lemma 12. Let ϕ : G −→ G be a homomorphism of an abelian group G. Assume
that im ϕm = im ϕm+1 for some m. Then the inverse sequence

G
ϕ←− G ϕ←− G ϕ←− . . .

has vanishing first derived limit.

Proof. For reference purposes we will attach a subscript k to each copy of G. We
need to show that for any (bk) ∈

∏
k≥0Gk the equations ak − ϕ(ak+1) = bk have a

solution (ak) ∈
∏
k≥0Gk.

Consider the family of auxiliary equations ϕm+1(a∗k+1) = ϕm(a∗k + bk). These
have a solution (a∗k) ∈

∏
k≥0Gk: choose a∗0 arbitrarily and then use the condition

im ϕm = im ϕm+1 to find inductively a∗k+1 such that ϕm+1(a∗k+1) = ϕm(a∗k + bk)
for every k ≥ 0.

The above auxiliary equations can be rewritten as ϕm(a∗k − ϕ(a∗k+1) − bk) = 0,
which inmediately shows that a∗k − ϕ(a∗k+1) = bk + ck, where ck ∈ ker ϕm. Let

ak := a∗k −
∑m−1

j=0 ϕj(ck+j). We claim that these ak satisfy our original set of

equations ak − ϕ(ak+1) = bk. Indeed,

ak − ϕ(ak+1) =

=

⎛
⎝a∗k −

m−1∑
j=0

ϕj(ck+j)

⎞
⎠−

⎛
⎝ϕ(a∗k+1)−

m−1∑
j=0

ϕj+1(ck+j+1)

⎞
⎠ =

= (a∗k − ϕ(a∗k+1))− ck + ϕm(ck+m) = bk,

where we have used that ck+m ∈ ker ϕm. �
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Theorem 13. Let K ⊆ Rn be an attractor for a homeomorphism f . The following
are equivalent:

(1) the inclusion i : K ⊆ A(K) induces isomorphisms in Čech cohomology with
Z coefficients,

(2) K has finitely generated Čech cohomology with Z coefficients.

Proof. (1) ⇒ (2) This is just Proposition 8.
(2) ⇒ (1) Let N ⊆ A(K) be a compact neighbourhood of K as in Notation 4.

As usual, we assume that f(N) ⊆ N and denote G := Hd(N ;Z), ϕ : G −→ G
the homomorphism induced by f |N : N −→ N in cohomology, and S the biinfinite
sequence

S : . . .
ϕ←− G ϕ←− G ϕ←− G ϕ←− . . .

The direct limit S∗ of S is the cohomology of K, which by assumption is finitely
generated. Therefore by Proposition 10 the map s∗ ◦ s∗ : S∗ −→ S∗ is an isomor-
phism, so we only need to show that S∗ = Hd(A(K);Z).

Proposition 10 also guarantees that there exists m such that im ϕm = im ϕm+1.
Then by Lemma 12 the first derived limit of S∗ vanishes. Notice that all this is
true for every dimension d. Consider the commutative diagram

. . .
ϕ �� Hd(N ;Z)

ϕ �� Hd(N ;Z)
ϕ �� Hd(N ;Z)

. . . �� Hd(f−2(N);Z)

(f |−2
N )∗

��

�� Hd(f−1(N);Z)

(f |−1
N )∗

��

�� Hd(N ;Z)

��

where the unlabeled arrows denote inclusion induced homomorphisms. The vertical
arrows are all isomorphisms, and it is very easy to check that this implies that the
inverse limits of the upper and the lower rows are isomorphic, and similarly for
their first derived limits. The first derived limit of the upper row is zero, as argued
earlier, so the same is true of the latter. This holds for every dimension d, so by the
Milnor exact sequence the inverse limit of the lower row is Hd(A(K);Z). Thus the
inverse limit of the upper row is Hd(A(K);Z) too, which finishes the proof. �

Proof of Theorem 2. Clearly only (2) ⇔ (3) needs proof.
(2) ⇒ (3) By Theorem 13 the cohomology of A(K) is isomorphic to the coho-

mology of K, hence finitely generated.
(3) ⇒ (2) It is best to think of Rn as the n–dimensional sphere Sn minus the

point∞. f can be extended to a homeomorphism f̂ : Sn −→ Sn letting f̂(∞) :=∞,

and then K ′ := Sn\A(K) is an attractor for f̂−1 with basin of attraction A(K ′) =
Sn\K. Clearly K is still an attractor for f̂ with basin of attraction A(K).

By Alexander duality Ȟd(K ′;Z) = Hn−d(A(K);Z), so K ′ has finitely generated
Čech cohomology. It follows, as in (2) ⇒ (3), that A(K ′) has finitely generated
cohomology too. This implies that it also has finitely generated homology [8, Propo-
sition 3F.12, p. 318], and then by Alexander duality again K has finitely generated
Čech cohomology. �

There is an alternative way of proving Theorem 2 which roughly consists in
putting together the information given by Theorem 1 for Q and Zp coefficients
to reach a conclusion about Z coefficients. This approach makes no use of the
dynamics whatsoever; in fact, it proceeds by establishing the following lemma:
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Lemma 14. Let U ⊆ Rn be open and K ⊆ U be compact. Denote i : K −→ U the
inclusion. Assume that i induces isomorphisms in Čech cohomology with coefficients
in Q and Zp for every prime p, and that U has finitely generated cohomology. Then

i induces isomorphisms in Čech cohomology with Z coefficients.

Sketch of proof. Observe that the assertion that i induces an isomorphism in Čech
cohomology with G coefficients is equivalent to stating that Ȟ∗(U,K;G) = 0. By
hypothesis Ȟ∗(U,K;G) = 0 for G = Q and G = Zp, and we want to prove the same

for G = Z. Denote for brevity H := Ȟd(U,K;Z) for some fixed dimension d. It is a
general fact that for an abelian group A the kernel of the obvious map A −→ A⊗Q

is precisely the torsion subgroup of A. Thus if we show that (i) H ⊗ Q = 0 and
(ii) H has no torsion, then H = 0.

Part (i) follows from the universal coefficient theorem, since

Ȟd(U,K;Z)⊗Q = Ȟd(U,K;Q) = 0.

Some care has to be exercised, though, because the universal coefficient theorem
requires that Ȟd(U,K;Z) be finitely generated. This is a consequence of our hy-
pothesis that U has finitely generated cohomology.

Part (ii) uses Bockstein homomorphisms. Let p be a prime number. The exact

sequence 0 −→ Z
·p−→ Z −→ Zp −→ 0, where ·p denotes multiplication by p, induces

a long exact sequence

. . .←− Ȟd(U,K;Z)
·p←− Ȟd(U,K;Z)←− Ȟd(U,K;Zp)←− . . .

which, because Ȟd(U,K;Zp) = 0, implies that ·p : H −→ H is injective. Hence
H cannot contain elements of order p, and since this is true for every prime p, it
follows that H has no torsion. �

Choosing U = A(K) and using Theorem 1 the lemma directly proves implication
(3) ⇒ (1) of Theorem 2. Proposition 8 establishes (1) ⇒ (2). Finally, (2) ⇒ (3) is
proved using Alexander duality much in the same way as we already did above.

When the phase space is a manifold M other than Rn. There are only two stages
where we have specifically used that f is a homeomorphism of Rn. The first one
was in Proposition 3 of which we gave two different proofs; these can be readily
translated to triangulable manifolds or differentiable manifolds respectively. Thus
Proposition 3 holds when M is a differentiable or triangulable manifold, and so
does Theorem 1. The second one was in proving (3) ⇒ (2) in Theorem 2, because
we resorted to Alexander duality. However, the alternative argument via Lemma
14 shows the validity of (3)⇒ (2) in any manifold M . Hence Theorem 2 also holds
true in any differentiable or triangulable manifold.

4. Applications (1): attractors for volume contracting

homeomorphisms of R3

Proposition 15. Let K be a connected attractor for a volume contracting home-
omorphism f of R3. Then K has a compact neighbourhood N̂ ⊆ A(K) which is a

connected 3–manifold with H2(N̂ ;Q) = 0.

Proof. By Proposition 3 K has a compact neighbourhood N ⊆ A(K) that is a
3–manifold; by discarding those components of N that do not meet K (if any) we
may as well assume that N is connected. After replacing f by a suitable power we
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can also assume that f(N) ⊆ N . Notice that this operation does not alter the fact
that f is a volume contracting homeomorphism.

Observe that R3 −N has exactly one unbounded component V0 and (if any) a
finite number of bounded components V1, . . . , Vr. We label the Vi in such a way
that

vol V1 ≤ vol V2 ≤ . . . ≤ vol Vr.

Let

N̂ := N ∪ V1 ∪ . . . ∪ Vr = R3 − V0
be the union of N and the bounded Vi. Clearly N̂ is still a compact 3–manifold
which is a neighbourhood of K. Also, using Alexander duality we see that

H2(N̂ ;Q) = H̃0(R
3 − N̂ ;Q) = H̃0(V0;Q) = 0

because V0 is connected. Thus it only remains to show that N̂ ⊆ A(K).
Since f(N) ⊆ N , we have R3 −N ⊆ R3 − f(N) and therefore each component

of R3−N is contained in a component of R3− f(N). The components of the latter
are precisely the images under f of the components of the former, so we may write

Vi ⊆ f(Vj(i))
for suitable indices j(i). Notice that Vj(0) has to be unbounded, so j(0) = 0. When
j(i) �= 0 (so Vj(i) is one of the bounded components) we have

vol Vi ≤ vol f(Vj(i)) < vol Vj(i)

because f is volume contracting. By our labeling of the Vi the above inequality
implies that i < j(i) and, inductively,

i < j(i) < j2(i) < . . . < jk(i)

as long as jk(i) �= 0. However j only takes values in {0, 1, . . . , r}, so the above chain
cannot have length greater than r + 1 and jk(i) = 0 for some k ≤ r + 1; from then
on jk+1(i) = jk+2(i) = . . . = 0 because j(0) = 0. Thus jr+1(i) = 0 for every i, or
in other terms

Vi ⊆ f r+1(V0).

Recalling that R3 −N is the union of the Vi and V0 = R3 − N̂ we then have

R3 −N =

n⋃
i=0

Vi ⊆ f r+1(V0) = R3 − f r+1(N̂),

which implies f r+1(N̂) ⊆ N ⊆ A(K). Thus N̂ ⊆ f−(r+1)(A(K)) = A(K) because
A(K) is invariant. �

We also need the following known lemma, which can be found in [13].

Lemma 16. Let λ1, λ2, . . . , λm ∈ C. Assume that
∑m

i=1 λ
k
i = 1 for every k ≥ 1.

Then (possibly after relabeling) λ1 = 1 and λi = 0 for 2 ≤ i ≤ m.

Theorem 17. Let K be a connected attractor for a volume contracting homeomor-
phism f of R3. Assume that K does not contain fixed or periodic points. Then

Ȟd(K;Q) =

{
Q for d = 1,
0 for d ≥ 2.

Consequently, the same holds true for Hd(A(K);Q).



12 FRANCISCO R. RUIZ DEL PORTAL AND JAIME JORGE SÁNCHEZ-GABITES

Addendum. The homomorphism (f |K)∗ : Ȟ1(K;Q) −→ Ȟ1(K;Q) is either the
identity or minus the identity.

Proof. By Proposition 15 K has a compact neighbourhood N̂ ⊆ A(K) that is a

connected 3–manifold with H2(N̂ ;Q) = 0. Notice that also Hd(N̂ ;Q) = 0 for every
d ≥ 3 (for d = 3 this is a consequence of the fact that N has a nonempty boundary).

Replace f by a suitable power g = f r such that g(N̂) ⊆ N̂ . Notice that K is
still an attractor for g without fixed or periodic points. We want to consider the
restriction g|N̂ : N̂ −→ N̂ and apply Remark 7 to compute the Čech cohomol-

ogy of K. For dimension d ≥ 2 the condition Hd(N̂ ;Q) = 0 inmediately implies
Ȟd(K;Q) = 0. For dimension d = 1 we reason as follows.

Since K is an attractor and N̂ ⊆ A(K), any fixed or periodic points that g may

have in N̂ should be contained in K. Our hypothesis says that there are none of
them, so we conclude that g has no fixed or periodic points in N̂ . Therefore none
of its powers has fixed points in N̂ either, so their Lefschetz numbers Λ(gk|N̂ ) are

zero. Since Hd(N̂ ;Q) vanishes for d ≥ 2, in order to compute Λ(gk|N̂ ) only the

traces of the homomorphisms induced by gk|N̂ in dimension zero and one need to
be considered. In dimension zero the homomorphism is just the identity, and its
trace is 1 because N̂ is connected. Now let m := dim H1(N̂ ;Q) and λ1, . . . , λm the

eigenvalues of ϕ := (g|N̂)∗ : H1(N̂ ;Q) −→ H1(N̂ ;Q). Then in dimension one the

trace of ϕk is given by
∑m

i=1 λ
k
i . Hence for every k ≥ 1 we have

0 = Λ(gk|N̂ ) = 1−
m∑
i=1

λki .

Since this is true for all k ≥ 1, Lemma 16 implies that (maybe after reordering the
eigenvalues) λ1 = 1 and λ2 = . . . = λm = 0. Hence the algebraic multiplicity of 0
is m− 1 and therefore by Remark 7 we conclude that Ȟ1(K;Q) = Q.

Now we prove the addendum. Let j : K −→ N̂ be the inclusion. From Proposi-
tion 6 it follows that

j∗|im ϕm : im ϕm −→ Ȟ1(K;Q)

is an isomorphism onto. Thus the maps

ϕ|im ϕm : im ϕm −→ im ϕm

and

(g|K)∗ : Ȟ1(K;Q) −→ Ȟ1(K;Q)

are conjugate; in particular their traces are the same. The trace of ϕ|im ϕm is easily
seen to be 1, so this is also the trace of (g|K)∗. Now, since we proved in the previous
paragraph that Ȟ1(K;Q) = Q, it follows that (f |K)∗ = α id for some α ∈ Q. Thus

(g|K)∗ = (f r|K)∗ = αr id,

so if the trace of (g|K)∗ has to be 1 then αr = 1. This forces α = ±1 and finishes
the proof. �

5. Applications (2): periodic equations in R3

Consider the differential system

(2) ẋ = X(t, x), x ∈ R3
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where X : R× R3 → R3 satisfies

X(t+ 2π, x) = X(t, x), for each (t, x) ∈ R× R3.

We assume that the vector field X is continuous and such that there is global
existence and uniqueness for the initial value problem. The solution satisfying the
initial condition x(t0) = ξ will be denoted by x(t; t0, ξ). It is well defined for all
t ∈ R.

The Poincaré map associated to equation (2) is the continuous map P (ξ) =
x(2π; 0, ξ) which, owing to the assumption of global existence and uniqueness of so-
lutions, is a homeomorphism of R3. We are interested in the case when P is volume
contracting. This happens, for instance, when X is of class C1 and its divergence
with respect to the x variable is negative everywhere: divxX =

∑ ∂Xi

∂xi
(x, t) < 0

for every x and every t.
Equation (2) can be turned into an autonomous equation on R × R3 by the

usual device of introducing the variable y = (t, x) and the vectorfield Y (t, x) =
(1, X(t, x)), so that ẏ(t) = Y (y). SinceX is 2π–periodic, Y descends to a continuous
vectorfield Y on the quotient S1 × R3, where S1 = R/2πZ. Thus equation (2) can
be viewed as an autonomous equation on S1 × R3, and we will adopt this point of
view from now on.

Theorem 18. Suppose P contracts volume and assume that equation (2) has a
connected attractor K ⊆ S1 × R3. Then at least one of the following holds:

i) K contains periodic orbits.
ii)

Ȟd(K;Q) =

⎧⎨
⎩

Q
⊕

Q for d = 1,
Q for d = 2,
0 for d > 2.

To prove Theorem 18 we need the following lemma, whose proof is deferred to
an appendix. Given a space L and a map g : L −→ L, recall that the mapping
torus of g is defined as the result of quotienting the space L× [0, 1] with the relation
(p, 0) ∼ (g(p), 1).

Lemma 19. Let L be a space and g : L −→ L a homeomorphism. Denote Lg the
mapping torus of g. Then there is an exact sequence

(3) . . . Ȟd(Lg)�� Ȟd−1(L)
Δ�� Ȟd−1(L)

id−g∗�� Ȟd−1(Lg)�� . . .
Δ��

Proof of Theorem 18. It is easy to see that the Poincaré map P has an attractor
L ⊆ R3 such that the mapping torus of P |L is (homeomorphic to) K. Suppose that
K does not contain periodic orbits. Then P does not have fixed or periodic points
in L, so by Theorem 17 each component Li of L has cohomology

Ȟd(Li;Q) =

{
Q for d = 1,
0 for d ≥ 2.

We want to use the exact sequence of Lemma 19 to compute the cohomology of
K and show that (ii) holds. In order to do this we need to analyze the maps ψ0

and ψ1 defined by

ψd := id− (P |L)∗ : Ȟd(L;Q) −→ Ȟd(L;Q) (d = 0, 1).
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Specifically, we are going to prove that dim ker ψ0 = dim ker ψ1 = 1. The equality
concerning ψ0 is easy to obtain: using Lemma 19 and the hypothesis that K is
connected there is an exact sequence

. . . Ȟ0(L)�� Ȟ0(L)
ψ0�� Ȟ0(K) = Q�� 0��

which inmediately implies dim ker ψ0 = 1. The equality concerning ψ1 is not so
straightforward, and we deal with it now.

Let L1, . . . , Ls be the components of L (they are finite in number because
Ȟ0(L;Q) is finitely generated by Theorem 1). Since P |L is a homeomorphism,
it takes each Li homeomorphically onto some Lj(i), so we may write P (Li) = Lj(i)
for some permutation j of {1, . . . , s}. Now suppose that j(I) = I for some set I of
indices. Denoting I ′ the set of remaning indices, clearly both

⋃
i∈I Li and

⋃
i′∈I′ Li′

are invariant by P . If both were nonempty then the mapping torus of P |L would
have at least two connected components, contrary to our assumption that K is
connected. Thus either I = ∅ or I = {1, . . . , s} (actually this is a restatement of
the fact that dim ker ψ0 = 1).

We claim that, for any one i, the sequence

i, j(i), j2(i), . . . , js−1(i)

has no repetitions. For, suppose it had. Then there would exist 0 ≤ k < 
 < s
such that jk(i) = j�(i) and letting I := {jk(i), jk+1(i), . . . , j�(i)} it is clear that
j(I) = I which contradicts the previous paragraph. A similar reasoning shows that
js(i) = i.

Pick a generator 
1 for Ȟ1(L1;Q). Applying P ∗ repeatedly we obtain generators

j(1) = P ∗(
1) for Ȟ1(Lj(1);Q), then 
j2(1) = P ∗(
j(1)) for Ȟ1(Lj2(1);Q), and so
on. The previous paragraph guarantees that {
1, 
j(1), 
j2(1), . . . , 
js−1(1)} contains
precisely one generator for each Ȟ1(Li;Q); thus it is a basis for Ȟ1(L;Q). Also,
since js(1) = 1, it follows from the addendum of Theorem 17 (applied to P s) that
P ∗(
js−1(1)) = (P ∗)s(
1) = 
1. Now it is very easy to see that 
1+
j(1)+. . .+
js−1(1)

belongs to ker ψ1 and, actually, generates it. Thus dim ker ψ1 = 1.
The proof can be quickly finished now. From Lemma 19 we have

Ȟ2(L) = 0 Ȟ2(K)�� Ȟ1(L) = Qs
Δ�� Ȟ1(L) = Qs

ψ1�� . . .��

which implies dim Ȟ2(K) = dim im Δ = s− dim im ψ1 = 1. Finally, from

. . . Ȟ1(L) = Qs
ψ1�� Ȟ1(K)�� Ȟ0(L) = Qs

Δ�� . . .
ψ0��

we see that dim Ȟ1(K) = dim ker ψ1 +dim im Δ = dim ker ψ1 + s− dim im ψ0 =
2. �

Let X(x) be a C1 vectorfield on R3. Assume that the autonomous system

(S) : ẋ = X(x), x ∈ R3

has a connected attractor L ⊆ R3 such that Ȟ1(L;Q) �= Q, and suppose also that
divx X < 0 on L. As an interesting application of Theorem 18 we will now show
that periodic points appear in L when a sufficiently small periodic perturbation
ε(t, x) is added to X(x). A piece of terminology is needed: given a real number



ČECH COHOMOLOGY OF ATTRACTORS 15

ε > 0, we say that a 2π–periodic function ε(t, x) : R× Rn of class C1 is ε–small on
L if

‖ε(t, x)‖ ≤ ε and |divx ε(t, x)| ≤ ε
for every (t, x) ∈ [0, 2π]× L.
Corollary 20. In the situation just described, there exists ε > 0 such that if ε(t, x)
is an ε–small 2π–periodic function, the perturbed nonautonomous system

(Sε) : ẋ = X(x) + ε(t, x), x ∈ R3

has an attractor K ⊆ S1 × R3 which contains periodic orbits.

Before proving the corollary we need to recall the following result originally due
to Hastings [7]: if L is an attractor for a flow and N is a compact, positively
invariant neighbourhood of L contained in its basin of attraction A(L), then the
inclusion L ⊆ N induces isomorphisms in Čech cohomology. The reader might
recognize this as a close relative of the fact —mentioned in the introduction— that
the inclusion L ⊆ A(L) also induces isomorphisms in Čech cohomology.

Proof of Corollary 20. Let L be any differentiable Lyapunov function for L. For
any sufficiently small regular value c of L the set N := L−1[0, c] is a compact 3–
manifold neighbourhood of L such that divx X < 0 for each x ∈ N . Also, the
vectorfield X points transversally towards int N at each point of ∂N and therefore
N is positively invariant for (S), which implies that the inclusion L ⊆ N induces
isomorphisms in Čech cohomology by the theorem of Hastings stated above. Thus
N is connected and Ȟ1(N ;Q) �= Q.

Denote Xε := X(x) + ε(t, x) the vectorfield that governs (Sε). Since N and ∂N
are compact, there exists ε > 0 such that if the 2π–periodic perturbation ε(t, x)
is ε–small then Xε(t, x) still points transversally towards int N at each point of
∂N (for every t ∈ [0, 2π]) and also divx Xε < 0 for every x ∈ N . In particular,
R × N ⊆ R × R3 descends to a compact, positively invariant set N in S1 × R3,
which therefore contains an attractor K for (Sε). Once again, the inclusion K ⊆ N
induces isomorphisms in Čech cohomology.

It is very easy to compute the cohomology of N in terms of the cohomology of
N (one may use Lemma 19 with L = N and g = id), and it turns out that

Ȟ1(N ;Q) = Ȟ1(N ;Q)⊕ Ȟ0(N ;Q)

so

Ȟ1(K;Q) = Ȟ1(L;Q)⊕ Ȟ0(L;Q) �= Q⊕Q

since Ȟ0(L;Q) = Q because L is connected but Ȟ1(L;Q) �= Q by assumption. Thus
it follows from the alternative of Theorem 18 that K contains periodic orbits. �

Models of population dynamics type are natural contexts where the existence
of periodic behaviour is an important question. Many authors have studied them
using two dimensional fixed point index techniques or reducing the original prob-
lem to a two dimensional one via the carrying simplex method (see [9], [11], [10],
[17], [18] or [20] for some recent references). With the aid of Corollary 20 we can
adopt a different point of view and obtain sufficient conditions for the existence of
periodic behaviour provided there is an attractor and certain information about its
cohomology is known. Let us illustrate this by briefly discussing a standard model
for three interacting species.



16 FRANCISCO R. RUIZ DEL PORTAL AND JAIME JORGE SÁNCHEZ-GABITES

Suppose u1(t), u2(t) and u3(t) denote the population, at time t, of three species
(of course, ui ≥ 0). Taking into account the interaction of each species with the
other ones, a frequently used model for the evolution in time of ui is the system

(∗) u̇i =
(
ai(t)−

∑
j∈{1,2,3}

bij(t)uj

)
uj

where ai, bij are C1 and 2π–periodic, this last condition accounting for seasonal
effects on population. It is to be assumed that bii > 0 for i = 1, 2, 3, which means
that each species, if the others are not present, has a logistic behaviour. However, no
condition is required on the sign of bij with i �= j so we can consider simultaneously
different interactions between the three species (cooperation, competition, etc.)

Consider the change of variables ui = exp(xi), which turns (∗) into
(∗∗) ẋi = ai(t)−

∑
j∈{1,2,3}

bij(t) exp(xj).

Denoting X(t, x) the right hand side of (∗∗) one has

divxX(t, x) = −
∑

i∈{1,2,3}
bii(t) exp(xi) < 0

so the Poincaré map P associated with (∗∗) is volume contracting. Therefore an
application of Corollary 20 shows that if (∗) has an attractor L with Ȟ1(L;Q) �= Q

when the seasonal effects are discarded (so ai, bij do not depend on time) then it
has an attractor with periodic behaviour when the seasonal effects are taken into
account again, provided they are small enough.

6. Appendix: proof of Lemma 19

Let π : L×[0, 1] −→ Lg be the canonical projection. Identify L with π(L×0) and
let L′ := π(L×1/2), which is another copy of L placed halfway around the mapping
torus. There is a homeomorphism h : L −→ L′ given by h(π(p, 0)) := π(p, 1/2).
Denote i : L ⊆ Lg the inclusion. The unlabeled arrows in sequence (3) are induced
by i. Our goal is to show that (3) is exact.

Consider the open sets U := Lg−π(L×[5/8, 7/8]) and V := Lg−π(L×[1/8, 3/8]).
Refer to Figure 1.

We compute Ȟ∗(Lg) using the Mayer–Vietoris sequence that corresponds to the
decomposition Lg = U ∪ V ; namely
(4)

. . .←− Ȟd(Lg)
δ←− Ȟd−1(U ∩ V )

ψ←− Ȟd−1(U)⊕ Ȟd−1(V )
ϕ←− Ȟd−1(Lg)←− . . .

where δ denotes the connecting homomorphism, ϕ(z) = (z|U , z|V ) and ψ(u, v) =
u|U∩V − v|U∩V . Here we have used the common notation for images of cocycles
under inclusion induced homomorphisms; for instance z|U means j∗(z), where j :
U ⊆ Lg is the inclusion, and so on.

Notice that the inclusion L ∪ L′ ⊆ U ∩ V is a homotopy equivalence, and so we
may identify Ȟ∗(U ∩ V ) with Ȟ∗(L) ⊕ Ȟ∗(L′). Moreover, Ȟ∗(L′) can be further
identified with Ȟ∗(L) via h∗. Then we have that the map ψ : Ȟ∗(U)⊕ Ȟ∗(V ) −→
Ȟ∗(L)⊕ Ȟ∗(L) reads ψ(u, v) = (u|L − v|L, h∗(u|L′)− h∗(v|L′)).

The inclusions L ⊆ U and L ⊆ V are homotopy equivalences too, and again lead
to identifications of Ȟ∗(U) and Ȟ∗(V ) with Ȟ∗(L). In particular, any cocycles u
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V

U

Lg

L′L

Figure 1. Computing the cohomology of Lg

and v in Ȟd−1(U) and Ȟd−1(V ) may be represented as extensions u = ẑ and v = ŵ
of cocyles z, w ∈ Ȟd−1(L). We want to express ψ(u, v) in terms of z and w alone.

Trivially we have u|L = ẑ|L = z and v|L = ŵ|L = w. We claim that h∗(u|L′) = z
and h∗(v|L′) = g∗(w). To check this we may reason as follows. Denote i′U the
inclusion of L′ in U and i′V the inclusion of L′ in V , and similarly denote iU the
inclusion of L in U and iV the inclusion of L in V . It is easy to see that i′U ◦h � iU
and i′V ◦h � iV ◦ g. From these relations it follows inmediately that h∗(u|L′) = u|L
and h∗(v|L′) = g∗(v|L), which proves our claim.

From the above arguments it follows that ψ can be expressed as a mapping
ψ : Ȟ∗(L)⊕Ȟ∗(L) −→ Ȟ∗(L)⊕Ȟ∗(L), with ψ(z, w) = (z−w, z−g∗(w)); a similar
reasoning shows that ϕ can be viewed as a mapping ϕ : Ȟ∗(Lg) −→ Ȟ∗(L)⊕Ȟ∗(L)
with ϕ(z) = (z|L, z|L). Recall that z|L is an alternative expression for i∗(z), where
i : L ⊆ Lg denotes the inclusion. Thus (4) becomes

(5) . . .←− Ȟd(Lg)
δ←− Ȟd−1(L)⊕ Ȟd−1(L)

ψ←−
ψ←− Ȟd−1(L)⊕ Ȟd−1(L)

ϕ←− Ȟd−1(Lg)←− . . .
with ψ(z, w) = (z − w, z − g∗(w)) and ϕ(z) = (z|L, z|L).

Now let Δ : Ȟd−1(L) −→ Ȟd(Lg) be defined by Δ(z) := δ(0, z). We are going
to show that, with this definition, (3) is exact.
• im i∗ = ker (id− g∗). Let z ∈ Ȟd−1(L). Then (id−g∗)(z) = 0⇔ z = g∗(z)⇔

ψ(z, z) = 0⇔ (z, z) ∈ im ϕ⇔ z ∈ im i∗.
• im (id− g∗) = ker Δ. Let z ∈ Ȟd−1(L). Then Δ(z) = 0 ⇔ δ(0, z) = 0 ⇔

(0, z) ∈ im ψ ⇔ (0, z) = ψ(z′, w′) for some (z′, w′), but since ψ(z′, w′) = (z′ −
w′, z′ − g∗(w′)), the latter is equivalent to z = z′ − g∗(z′)⇔ z ∈ im (id− g∗).
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• im Δ = ker i∗. Before proving this observe the following: for any (z′, w′), the
equality δ(z′, w′) = δ(0, w′ − z′) holds. Indeed: we have (−z′,−z′) = ψ(−z′, 0) ∈
im ψ = ker δ, so δ(z′, w′) = δ((z′, w′) + (−z′,−z′)) = δ(0, w′ − z′). Now, i∗(z) =
0⇔ ϕ(z) = (0, 0)⇔ z = δ(z′, w′) = δ(0, w′ − z′) = Δ(w′ − z′).
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