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Abstract

Let U ⊂ R2 be an open subset and f : U → R2 be an arbitrary local
homeomorphism with Fix(f) = {p}. We compute the fixed point in-
dices of the iterates of f at p, iR2(fk, p), and we identify these indices
in dynamical terms. Therefore we obtain a sort of Poincaré index
formula without differentiability assumptions. Our techniques apply
equally to both, orientation preserving and orientation reversing home-
omorphisms. We present some new results, specially in the orientation
reversing case.

1. Introduction.

There is abundant literature about the fixed point index of a homeo-
morphism f , in a neighborhood of an isolated fixed point, and the local
dynamical behavior of f . There are results in both directions, i.e. bounds
(or explicit computation) for the fixed point index from dynamical properties
of f and conversely how the knowledge of the fixed point index is used to
describe the dynamics locally.

One can notice that due to the systematic use of Brouwer’s translation
arcs theorem (see [8] or [10]), most of the known results are limited to ori-
entation preserving homeomorphisms.

It is well known the classical Poincaré index formula relating the index
of a planar vector field with the elliptic and hyperbolic regions in a neigh-
borhood of a critical point. Such a formula, for the iterates of an arbitrary
∗The authors have been supported by MEC, MTM 2006-0825.
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homeomorphism, will give a geometric interpretation of the fixed point in-
dices of the iterates, it could help to attack some open problems and it will
provide simple proofs of many of the strongest theorems in the subject. This
is the main goal of this article.

The Ulam’s problem about the existence of minimal homeomorphisms
in the multi-punctured plane was solved completely in the negative by Le
Calvez and Yoccoz in [29]. The main technique in the proof of their theorem
is the computation of the fixed point index of all iterates of an orientation
preserving homeomorphism in a neighborhood of a fixed point p which is an
isolated invariant set, neither an attractor nor a repeller. Given an orien-
tation preserving local homeomorphism f : U ⊂ R2 → R2 they carry out a
detailed local study, near the fixed point p. Then they prove the existence
of integers r, q ≥ 1 such that

iR2(fk, p) =
{

1− rq if k ∈ rN
1 if k /∈ rN

The authors, in [36], using Conley index ideas, gave, in a quite simple
way, a general theorem extending the above result to arbitrary local home-
omorphisms. In particular, if f reverses the orientation, there are integers
δ ∈ {0, 1, 2} and q such that

iR2(fk, p) =
{

1− δ if k odd
1− δ − 2q if k even

Later, Le Calvez extended his theorem with Yoccoz to arbitrary isolated
fixed points of orientation preserving planar homeomorphisms. Again the
fixed point indices of the iterations of the homeomorphism have periodical
behavior. Le Calvez, in [27], uses in a very clever way the nice Carathéodory’s
prime ends theory (see [12] and [13]). The idea of applying the compactifi-
cation of Carathéodory to study planar dynamical problems is not new. It
was introduced by Pérez-Marco in [33] and it was used more recently by the
first author, in [35], to prove that the index of arbitrary stable planar fixed
points is equal to 1.

On the other hand, Baldwin and Slaminka, in [2], dealt with the problem
of relating the fixed point index of an orientation and area preserving home-
omorphism around an isolated fixed point p and the number of branches in
which the stable/unstable "manifold" of p decompose. The results of Bald-
win and Slaminka were improved by Le Roux, in [30], where the fixed point
index is used not only to detect stable/unstable branches but also Leau-Fatou
petals around p. The authors, in [37], gave a stable/unstable "manifold" the-
orem for arbitrary planar homeomorphisms near a fixed point admitting nice
filtration pairs.

There are some papers dedicated to the study of the analogous problem
in dimension 3. See [20], [28], [39] and [40] and its references.
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The computation of the fixed point index of any iteration of any planar
homeomorphism at an isolated fixed point laying in an isolated invariant
compactum was done by the authors in [36] and [37]. As we said above,
when p does not belong to any isolated invariant compactum and the home-
omorphism is orientation preserving, Le Calvez improved a result of Brown,
see [9], showing that the sequence of indices is periodic. We will find with our
methods the same formula for orientation preserving homeomorphisms and
we shall solve the problem also for orientation reversing homeomorphisms.
The main fact to obtain our results is the existence of special classes of filtra-
tion pairs in the Carathéodory’s prime ends compactification that will allow
us to by-pass the technical problem that occurs if the fixed point does not
lay in an isolated invariant compactum.

Roughly speaking, if a fixed point p does not lay in arbitrary small iso-
lated compacta, we can consider any disc J containing p in its interior and
take Kp, the component containing p of the maximal invariant set contained
in J . By using the Carathéodory’s compactification of S2 \Kp we work in a
disc and we can compute the index at p from the local indices (in semi-discs)
of the fixed prime ends that now will admit isolating blocks. The existence
of such isolating blocks around the fixed prime ends not only provides a
simple technique to compute the index of the iterations of arbitrary home-
omorphisms but also allows to identify such indices in a geometrical way.
Given a disc J the existence of isolating blocks, around the fixed points that
appear in the compactification, allows to find dynamical objects (generalized
stable/unstable branches and generalized attracting/repelling petals whose
definitions we will precise later) which are the keys for the computations of
the indices.

Essentially, the index of the homeomorphism at p only provides "opti-
mal" dynamical information if p admits isolating blocks. Otherwise, the set
of indices of the induced homeomorphism in the Carathéodory’s compacti-
fication of S2 \Kp at the new fixed points provides much more information
than the index at p.

The main goals of this paper are the following:

a) To provide a general geometrical method to compute the fixed point
index of the iterations of an arbitrary local homeomorphism at an isolated
fixed point.

b) Given any Jordan domain J such that Inv(cl(J), f) ∩ ∂(J) 6= ∅ and
an isolating block, N , a neighborhood that isolates the fixed (or periodical)
prime ends of the component of Inv(cl(J), f) containing p, to prove that
J and N determine canonically a number of generalized unstable (stable)
branches and generalized repelling (attracting) petals around the fixed point
(see Definition 3). Their number depends on J and N but their difference
depends just on the germ of f .

c) To provide some dynamical consequences. We shall give new and short
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proofs of some known results and new theorems in the orientation reversing
framework.

The paper is organized as follows: In Section 2 we start with some pre-
liminary definitions. We will dedicate subsections to recall the results we
will need in the special case where the fixed point is an isolated invariant set
and to give a brief presentation of the Carathéodory’s prime ends theory. At
the end of the section we give the statement of the main results. Section 3
is devoted to the computation of the fixed point indices of the iterations of
arbitrary planar homeomorphisms at an isolated fixed point. In Section 4 we
will give the proof of the main theorems and the dynamical meaning of the
indices. First we shall study the case where the homeomorphism has a finite
number of periodic prime ends. The general case follows easily from this
previous simpler case (Section 4.3.). Finally Section 5 contains the proofs of
a number of corollaries of our techniques.

2. Preliminary definitions and results. The main construction
and the statement of the principal results.

2.1. Preliminary definitions.

Given A ⊂ B ⊂ N , cl(A), clB(A), int(A), intB(A), ∂(A) and ∂B(A) will
denote the closure of A, the closure of A in B, the interior of A, the interior
of A in B, the boundary of A and the boundary of A in B respectively.

Let U ⊂ X be an open set. By a (local) semidynamical system we mean
a local homeomorphism f : U → X. The invariant part of N , Inv(N, f),
is defined as the set of all x ∈ N such that there is a full orbit γ with
x ∈ γ ⊂ N .

Inv+(N, f) (resp. Inv−(N, f)) will denote the set of all x ∈ N such that
f j(x) ∈ N for every j ∈ N (resp. f−j(x) is well defined and belongs to N
for every j ∈ N).

A compact set S ⊂ X is invariant if f(S) = S. A compact invariant
set S is isolated with respect to f if there exists a compact neighborhood N
of S such that Inv(N, f) = S. The neighborhood N is called an isolating
neighborhood of S.

An isolating block N is a compactum such that cl(int(N)) = N and
f−1(N)∩N ∩f(N) ⊂ int(N). Isolating blocks are a special class of isolating
neighborhoods.

We consider the exit set of N to be defined as

N− = {x ∈ N : f(x) /∈ int(N)}.
If X is a locally compact ANR (absolute neighborhood retract for metric

spaces), iX(f, S) will denote the fixed point index of f in a small enough
neighborhood of S. The reader is referred to the text of [11], [16] and [31]
for information about the fixed point index theory.
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An isolated fixed point p is said to be indifferent if for every small enough
disc D such that p ∈ int(D), Inv(D, f) ∩ ∂(D) 6= ∅.

An isolated fixed point p is accumulated if p ∈ cl(Per(f |V ) \ {p}) for
every neighborhood V of p.

2.2 Strong filtration pairs.

The next definition is based in the notion of filtration introduced by
J.Franks and D.Richeson, in [19]. It is the key for the direct computation of
the fixed point index of any iteration of any homeomorphism of the plane.

Definition 1. Let f : U ⊂ R2 → R2 be a local homeomorphism. Suppose
that L ⊂ N is a compact pair contained in the interior of U . The pair
(N,L) is said to be a strong filtration pair for f provided N and L are each
the closure of their interiors and

1) N and ∂(N \ L) are homeomorphic to a disc and S1 respectively.
2) cl(N \ L) is an isolating neighborhood.
3) f(cl(N \ L)) ⊂ int(N) (i.e. L is a neighborhood of N− in N).
4) For any component Li of L, ∂N (Li) is an arc and there exists a topolog-

ical disc Bi such that ∂N (Li) ⊂ Bi ⊂ Li, Bi∩N− 6= ∅ and f(Bi)∩cl(N \L) =
∅.
Theorem 1. ([36] and [37]). Let f : U ⊂ R2 → f(U) ⊂ R2 be a home-
omorphism. Suppose that there exists a strong filtration pair, (N,L), for
f and let K = Inv(cl(N \ L), f). Then, there are an absolute retract for
metric spaces, D0, containing a neighborhood V ⊂ R2 of K, a finite subset
{q1, . . . , qm} ⊂ D0 and a map f : D0 → D0 such that f |V = f |V and for
every k ∈ N, Fix((f)k) ⊂ K ∪ {q1, . . . , qm}.

Moreover,
a) If f preserves the orientation, then

iR2(fk,K) =
{

1− rq if k ∈ tN
1 if k /∈ tN

where k ∈ N, q is the number of periodic orbits of f in {q1, . . . , qm} and r is
their period.

b) If f reverses the orientation, then

iR2(fk,K) =
{

1− δ if k odd
1− δ − 2q if k even

where δ ∈ {0, 1, 2} and q are the number of fixed points and period two orbits
of f in {q1, . . . , qm} respectively.

Definition 2. Under the setting of the above theorem, the integer r (r = 2
if f is orientation reversing) is called the period of the strong filtration pair
(N,L).
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We conclude this subsection with the next theorem that resumes the
main results of [37]. We will construct a family of branches of the stable and
unstable "manifolds" associated to a fixed point p which admits a strong
filtration pair (N,L). The minimum number of elements of these families
depends on the fixed point index iR2(f r, p) with r the period of the strong
filtration pair (N,L). In order to make the paper as self-contained as possible
we shall sketch the proof which contains some ingredients we will need in
the future.

Theorem 2. Let f : U ⊂ R2 → f(U) ⊂ R2 be a homeomorphism with p
an isolated fixed point of f and let us assume that there is a strong filtration
pair of period r, (N,L), such that p ∈ int(N \ L), L 6= ∅, f j(cl(N \ L)) ⊂ U
for j ∈ {1, . . . , r} and Fix(f r) ∩ cl(N \ L) = {p}. Let us suppose that the
connected component of K = Inv(cl(N \L), f) which contains p is Kp = {p}.
Then there exist trivial shape continua S1, . . . , Ss, U1, . . . , Us in cl(N \ L),
with s = 1− iR2(f r, p), such that:

1)
⋃s
i=1 Si ⊂ K+

p and
⋃s
i=1 Ui ⊂ K−p , with K+

p and K−p the connected
components of K+ = Inv+(cl(N \L), f) and K− = Inv−(cl(N \L), f) which
contain p.

2) Si ∩ Sj = Ui ∩ Uj = {p} for all i 6= j and Si ∩ Uj = {p} for all
i, j ∈ {1, . . . , s}.

3) f r(Si) ⊂ Si, f−r(Ui) ⊂ Ui and
⋂
n∈N f

−nr(Ui) =
⋂
n∈N f

nr(Si) = {p}
for every i ∈ {1, . . . , s}.

4) The sets Si∩∂(cl(N\L)) and Ui∩∂(cl(N\L)) alternate in ∂(cl(N\L)).

Proof. If L = L1 ∪ · · · ∪ Lm, let us consider the quotient space NL obtained
from cl(N \L) by identifying each ∂N (Li) to a point qi for i = 1, . . . ,m. Take
the projection map π : cl(N \L)→ NL and the retraction r : N → cl(N \L).
The map

f ′ = π ◦ r ◦ f ◦ π−1 : NL \ {q1, . . . , qm} → NL

induces in a natural way a continuous map f̄ : NL → NL . It is easy to
see that f̄({q1, . . . , qm}) ⊂ {q1, . . . , qm}. Let θ = {p1, . . . , ps} be the biggest
subset of {q1, . . . , qm} on which f̄ acts as a permutation. It is clear that θ is
an attractor for f̄ (is locally constant for every pi ∈ θ). Let A be the region
of attraction of θ,

A = {x ∈ NL : there is n0 such that (f̄)n0(x) ∈ θ}
and let A(pj) be the component of A containing pj ∈ θ. Let us observe
that K−p and K+

p are trivial shape continua such that limk→∞ f
−k(x) = p

for every x ∈ K−p and limk→∞ f
k(x) = p for every x ∈ K+

p (see the Main
Theorem in [37] for a proof). Then it is not difficult to see that p ∈ cl(A(pj))
for all j = 1, . . . , s.
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Let Ki =
⋂
n∈N(f̄)nr(cl(A(pi)) for i ∈ {1, . . . , s}. Since (f̄)r(cl(A(pi)) ⊂

cl(A(pi)) it is clear that Ki is a continuum with {p, pi} ⊂ Ki = (f̄)r(Ki) ⊂
cl(A(pi)). Then we have that

⋃
i∈{1,...,s}(Ki\{pi}) ⊂ K−p and, then ∂N (Li)∩

K−p 6= ∅ for all i = 1, . . . , s.
Let us define the continuum Ui = π−1(Ki) ∩ K−p . We have that Ui is

negatively invariant for f r and contains p.
On the other hand, Ui ∩ K = {p}. In fact, since

⋂
n∈N f

−nr(Ui) is an
invariant continuum for f r which contains p then

⋂
n∈N f

−nr(Ui) ⊂ Kp =
{p}. If x ∈ Ui ∩K, then x ∈ ⋂n∈N f

−nr(Ui) ⊂ Kp = {p}.
Let us see that Ui has trivial shape. In fact, if Ui has a hole V , then there

are a ∈ V and n0 ∈ N such that f rn0(a) ∈ int(Li) and f rn(a) ∈ cl(N \L) for
all n ∈ Z, n < n0. Then it is immediate that a ∈ Ui which is a contradiction.

Let us prove that Ui ⊂ π−1(A(pi))∪{p}. If x ∈ Ui \{p} then there exists
n0 ∈ N such that fnr(x) ∈ cl(N \ L) for all integer n < n0 and fn0r(x) ∈
int(Li) (if this is not true, x ∈ K and we have x = p). Then it follows that
x ∈ π−1(A(pi)). As a corollary we obtain that Ui = (π−1(A(pi))∪{p})∩K−p .

It is obvious that Ui ∩ ∂(cl(N \ L)) ⊂ ∂N (Li).
If we repeat this construction for i ∈ {1, . . . , s} we obtain U1, . . . , Us with

Ui ∩ Uj = {p} for every i 6= j.

Let us construct the sets S1, . . . , Ss. Let us consider the set θ = {p1, . . . , ps}
with pi−1 adjacent to pi (there is an arc γ ⊂ π(∂(N \ L)) joining pi−1 with
pi such that γ ∩ θ = {pi−1, pi}). If pi−1pi is the arc in π(∂(cl(N \ L)) which
makes adjacent pi−1 and pi, we have that there is a component Kpi ⊂ K+

p

of ∂(A(pi)) separating pi from θ \ pi (see the Main Theorem in [37]) with
Kpi ∩ pi−1pi 6= ∅.

Let Bi be the connected component of cl(N \L) \ (Ui−1 ∪Ui) which con-
tains π−1(Kpi ∩pi−1pi). Then we define Si = (Bi∪{p})∩K+

p . Following the
steps given with the family {Ui} it is easy to prove the analogous properties
for the family {Si}.

2.3. Carathéodory’s prime ends.

Let B ⊂ C be the unit open disc and let f : B → G ⊂ C ∪ {∞}
be an onto and conformal mapping. The problem whether f admits an
extension to cl(B) = B ∪ S1, by defining f(z) = limx→z f(x) for z ∈ S1,
has a topological answer. Indeed, f admits an extension iff ∂(G) is locally
connected. The problem whether f has an injective extension has also an
answer of topological nature: f has an injective extension iff ∂(G) is a Jordan
curve (Carathéodory’s Theorem, see [34]). If ∂(G) is locally connected but
not a Jordan curve there are points of ∂(G) that have several pre-images. The
situation becomes much more complicated if ∂(G) is not locally connected.
Carathéodory introduced the notion of prime end to describe this setting.
The points z ∈ S1 correspond one-to-one to the prime ends of G and the
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limit f(z) exists iff the prime end has only one point (Prime End Theorem,
see [34]).

Let D ⊂ R2 be a simply connected open domain containing the point at
infinity such that ∂(D) contains more than one point. Then ∂(D) is bounded.
A cross-cut is a simple arc, C, lying in D, except in the end points, with
different extremities. If C is a cross-cut of D then D \ C has exactly two
components A1 and A2 such thatD∩∂(A1) = D∩∂(A2) = C\{ end points }.

A sequence {Cn} of mutually disjoint cross-cuts and such that each Cn
separates Cn−1 and Cn+1 is called a chain. A chain of cross-cuts induces a
nested chain of domains (bounded by each Cn) . . . Dn+1 ⊂ Dn . . . . Each
chain of cross-cuts defines an end. Two chains of cross-cuts, {Cn} and {C ′n},
are equivalent if for any n ∈ N there is m(n) such that Dm ⊂ D′n and
D′m ⊂ Dn for every m > m(n). Equivalent chains of cross-cuts are said to
induce the same end. If P and Q are ends represented by chains of cross-
cuts {C(P )n} and {C(Q)n} such that for every n, D(P )m ⊂ D(Q)n for
m > m(n) we say that P divides Q. A prime end P is an end which can not
be divided by any other.

Let P be a prime end. The set of points of P is the intersection E =⋂
n∈N cl(D(P )n) where {D(P )n} is the sequence of domains bounded by any

sequence of cross-cuts representing P . A principal point of P is a limit point
of a chain of cross-cuts representing P tending to a point. The set HP ⊂ E
of principal points of a prime end P is a continuum (compact connected set)
(see [12] or [13] for details).

Each chain of cross-cuts inducing a prime end P determines a basis of
neighborhoods of P . We obtain in this way a topology in the set of prime
ends of D. More precisely, if P is the set of prime ends of D and D∗ is the
disjoint union of D and P, we can introduce a topology in D∗ in such a way
that it becomes homeomorphic to the closed disk and the boundary being
composed by the prime ends. It is enough to define a basis of neighborhoods
of a prime end P ∈ P. Given the sequence of domains {D(P )n}, we produce
a basis of neighborhoods {Un} of P in D∗. Each Un is composed by the
points in D(P )n and by the prime ends Q such that D(Q)m ⊂ D(P )n for m
large enough.

If S2 is the 2-sphere R2 ∪ {∞} and ∞ ∈ D ⊂ S2 is a simply connected
open domain, the natural compactification, due to Carathéodory, see [12], of
D obtained by attaching to D a set homeomorphic to the one-dimensional
sphere S1 is called the prime ends compactification of D. We identify R2 = C
and we consider a conformal homeomorphism g : D → S2\B (where B is the
disc B = {z ∈ C : |z| ≤ 1}). Now a one-dimensional sphere S1 is attached
to D using g. Each point of S1 corresponds to a prime end of D.

2.4. The main construction.

Let f : U → W be a local homeomorphism with U,W ⊂ R2 open
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subsets and let p be a non-accumulated and indifferent fixed point in a small
enough Jordan domain J with {p} the unique periodic orbit contained in
cl(J) and such that Kp ∩ ∂(J) 6= ∅ for Kp the connected component of
K = Inv(cl(J), f) which contains p. We will suppose that p ∈ ∂(Kp) (for
example, if p is not stable and J is small enough, then p ∈ ∂(Kp)).

Remark 1. Let us observe that, given p a non-accumulated and indifferent
fixed point, if iR2(fk, p) 6= 1 for some k ∈ N then we can select a Jordan
domain J , as above, with p ∈ ∂(Kp). In fact, if p ∈ int(Kp) for every small
enough Jordan domain J , then p is stable for fk and iR2(fk, p) = 1 (see [35],
[15]).

It is easy to see that the set Kp ⊂ cl(J) has trivial shape, that is, Kp

and R2 \Kp are connected.
We follow with some of the most important notions of the paper: The

generalized stable/unstable branches and generalized attracting/repelling
petals. The first ones are essentially branches, in a classical sense, for the
map that our homeomorphism f induces in the compactification of R2 \Kp

at a fixed prime end.
Let p ∈ J be an indifferent and non-accumulated fixed point for f in the

above conditions. Given the open domain S2 \Kp, for each open arc γ ⊂ J
with end-points a, b ∈ Kp (we do not exclude the possibility a = b) such that
γ ∩Kp = ∅ we call Dγ the bounded connected component of R2 \ (γ ∪Kp).
The set Dγ is an open ball contained in J .

Definition 3. A continuum Up ⊂ cl(J) is a generalized unstable branch for
f at p if:

i) Up∩Kp is an invariant continuum contained in ∂(Kp) such that p ∈ Up∩
Kp and Up \Kp ⊂ J is non-empty and has trivial shape components.

ii) f−1(Up) ⊂ Up and
⋂
n∈N f

−n(Up) = Up ∩Kp.

iii) There exists an open ball Dγ associated to an open arc γ, as above,
with Up ⊂ cl(Dγ), Up ∩ γ a compact set, and such that:

– The set Up is locally maximal, that is, if U ′p ⊂ cl(Dγ) satisfies
conditions i) and ii), then U ′p ⊂ Up.

– For every open neighborhood V of Up there exists x ∈ Dγ ∩ V
with f−nx(x) /∈ cl(Dγ) for some nx ∈ N.

In an analogous way we define generalized stable branches Sp for f at
p. We only have to replace f by f−1 in ii) and iii).

A set Rp is a generalized repelling petal for f at p if:
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i) Rp = cl(Dγ) ⊂ cl(J) with Dγ an open ball associated to an open arc
γ, as above, such that cl(γ) = γ ∪ {q1, q2} with p /∈ {q1, q2}.

ii) f−1(Rp) ⊂ Rp and
⋂
n∈N f

−n(Rp) ⊂ ∂(Kp) is an invariant continuum
for f which contains p.

In an analogous way we define generalized attracting petals for f at p.
We only have to replace f by f−1 in ii).

Remark 2. The stable and unstable branches in the classical sense associ-
ated to f at p and constructed in the proof of Theorem 2, are, of course,
particular cases of generalized unstable and stable branches if we consider
the map f ′ = f r and Kp = {p}. It is easy to obtain an adequate arc
γj ⊂ cl(N \ L) for each unstable (stable) branch Uj .

Let U ′ be a Jordan domain such that cl(J) ⊂ U ′ ⊂ U ⊂ S2 and let
f̄ : S2 → S2 be a homeomorphism such that f̄ |U ′ = f . The Carathéodory’s
compactification of S2\Kp is a disc (obtained by gluing S1 to S2\Kp) which
we call D. The homeomorphism f̄ |S2\Kp

: S2\Kp → S2\Kp can be extended
to a homeomorphism f̂ : D → D. Let us denote D \ (S2 \Kp) = ∂(D) and
let us consider the set of prime ends obtained from the accessible points
Kp ∩ ∂(J) (by arcs on U \ cl(J)) and which we call P(Kp ∩ ∂(J)) ⊂ ∂(D).

If f̂ is orientation preserving and there exist periodic orbits for f̂ |∂(D),
then all of them have the same period r. If f̂ is orientation reversing, then
f̂ |∂(D) has exactly two fixed points and period two periodic orbits.

Let us see that the compact sets Per(f̂ |∂(D)) and P(Kp ∩ ∂(J)) are
disjoint. Let P0 be a prime end in P(Kp ∩ ∂(J)) associated with a point
p0 ∈ Kp ∩ ∂(J). Then P0 /∈ Per(f̂ |∂(D)). In fact, if this is not true, P0 is
a fixed prime end for f̂ r (r = 2 if f̂ is orientation reversing) and, since p0

is accessible by an arc γp0 ⊂ U \ cl(J) such that cl(γp0) \ γp0 = {p0}, then
the principal points of the fixed prime end P0 are the continuum, invariant
for f r, HP0 = {p0} (HP0 ⊂ cl(γp0) \ γp0 = {p0}). Then, p0 must be a fixed
point for f r. But this is a contradiction.

Remark 3. Note that both f̂ and the set of fixed prime ends of f̂ depend
on the Jordan domain J such that Inv(cl(J), f)∩∂(J) 6= ∅. See Example 1.

Example 1.

Let us consider the dynamical system of Figure 1, which gives us a home-
omorphism f of R2 with p a non-accumulated and indifferent fixed point.

10



p

J2

J1

Figure 1

The Jordan domains J1 and J2 of Figure 1 are such that Inv(cl(J1), f) =
K1p is a "petal" which contains p and such that K1p ∩ ∂(J1) 6= ∅. On the
other hand, Inv(cl(J2), f) = K2p are two "petals" which contain p and such
that K2p ∩ ∂(J2) 6= ∅.

The maps f̂ : D → D have the following dynamical behavior

p1

̂
f for J1

p1 p2

̂
f for J2

Figure 2

The map f̂ for J1 has, in ∂(D), a fixed prime end p1 and the map f̂ for
J2 has, in ∂(D), two fixed prime ends {p1, p2}.

Following with the main construction, there are two possible situations:

a) Per(f̂ |∂(D)) is a finite set of n points.

b) Per(f̂ |∂(D)) is an infinite set of points.

Let us suppose that we are in case a) (the case b) will be reduced to the
case a) by identifications to points of adequate intervals in ∂(D)). If f̂ is
an orientation preserving homeomorphism we have that n = qr for certain
q, r ∈ N with r the period of the periodic orbits of f̂ |∂(D) and q the number
of periodic orbits. On the other hand, if f̂ is orientation reversing, we obtain
q periodic orbits of period 2 and two fixed points in ∂(D). It is obvious that
n = 2q + 2.

Let us suppose that D ⊂ S2 and let us denote by f̂s : S2 → S2 the
homeomorphism obtained by pasting along ∂(D) a symmetric copy of f̂ :
D → D.

11



The next lemma is needed for the computation of the fixed point index
iR2(fk, p) by using strong filtration pairs.

Lemma 1. Given a fixed point p1 of f̂s
k|∂(D), (k ∈ rN if f is orientation

preserving), there is a pair (N1, L1) which is in one of the following two
situations:

a) (N1, L1) is a strong filtration pair for f̂s
k

: S2 → S2, in a neighborhood
of p1. The period of the strong filtration pair is 1 if f is orientation preserving
or 2 if f reverses the orientation.

b) The pair (N1, L1) has the properties 1), 2) and 3) of strong filtration
pairs with L1 a disc with a hole, ∂N1(L1) ' S1 and N1 ⊂ int(f̂s

k
(N1)).

Proof. Given a fixed point p1 of f̂s
k|∂(D), let us see that there exists the pair

(N1, L1) for f̂s
k
in S2 with p1 ∈ Inv(cl(N1 \ L1), f̂s

k
).

Take a small enough arc [a, b] ⊂ ∂(D) with p1 ∈ (a, b) and such that
Inv([a, b], f̂k|∂(D)) = p1. The set [a, b] is an isolating block for f̂k|∂(D).
Let us consider a small enough disc M in D with M ∩ ∂(D) = [a, b] and
Fix(f̂k|M ) = {p1}. Since the space of components of Inv(M, f̂k) is a zero-
dimensional compactum, it is easy to construct a disc M1 ⊂ M such that
[a, b] ⊂ M1 and Inv(M, f̂k) ∩ ∂D(M1) = ∅. If we choose the disc N ⊂ S2

obtained by joining M1 with its reflected disc on ∂(D), M2, we have that N
is an isolating neighborhood for f̂s

k
.

It is not difficult to construct a disc N1 ⊂ int(N), N1 symmetric with
respect to ∂(D) and isolating block for f̂s

k
(see [37] and [38]), with ∂(N1) ∩

Inv(N, f̂s
k
) = ∅ and p1 = Fix(f̂s

k|N1).
If there is not a disc B ⊂ N1 such that p1 ∈ int(B) and B ⊂ int(f̂s

k
(B))

then there exists a strong filtration pair (N1, L1) for f̂s
k
with L1 a finite

(perhaps empty) union of disjoint discs (see [36], [37]). By the symmetry
property with respect to ∂(D) of f̂s

k
it is immediate that the period of the

generalized filtration pair is 1 if f̂s
k
is orientation preserving and 2 if f̂s

k
is

orientation reversing (see [36]). Therefore, we are in the conditions of a).
On the other hand, it there exists the above disc B, we obtain in an easy

way the pair (N1, L1) of the case b).

Definition 4. We are interested, for each fixed point pi of f̂s
k|∂(D), in the

pairs (Ni∩D,Li∩D) = (N ′i , L
′
i) which we call strong filtration pairs adapted

to D for pi. Let us observe that the pair (N ′i , L
′
i) has the properties of the

strong filtration pairs for f̂k : D → D at each fixed point pi ∈ ∂(D). We will
suppose without loss of generality that each arc γi = ∂D(N ′i) corresponds in
J to an arc with two end points in Kp.

There are three possible cases:

12



i) If Li = ∅, then f̂k(N ′i) ⊂ intD(N ′i) and we say that N ′i is an attracting
petal associated to f̂k at pi.

ii) If ∂Ni(Li) ' S1, then N ′i ⊂ intD(f̂k(N ′i)) and we say that N ′i is a
repelling petal associated to f̂k at pi.

iii) If (Ni, Li) is a strong filtration pair with Li 6= ∅, given the sets of stable
and unstable branches {Sj}, {Uj} of (Ni, Li) associated to f̂s

k
at pi

(see Theorem 2), we select the subsets of branches {Sm}, {Um} which
are contained in (N ′i \ ∂(D)) ∪ {pi} . We call {Sm} and {Um} stable
and unstable branches of (N ′i , L

′
i) associated to f̂k at pi.

S1S2

U1

Li ∩D

Li ∩D

case i)

case ii)

pi

pi

pi

case iii)

Figure 3

Remark 4. If Per(f̂ |∂(D)) is not a finite set of points (we supposed before),
we can select a finite and disjoint union I = I1∪· · ·∪In, of closed arcs of ∂(D),
with f̂(I) = I, such that Per(f̂ |∂(D)) ⊂ I and P(Kp ∩ ∂(J))∩ I = ∅. Let us
identify each component of I to a point. We obtain a new disc which we call
D again. If f̂ : D → D is the new induced homeomorphism we have that
Per(f̂ |∂(D)) is a finite set and the construction of the strong filtration pairs
adapted to D is also valid (see Figure 3). It is obvious that this construction
depends on the choice of the set I.

13



Example 2.

Let us consider the dynamical system of Figure 4. We obtain a home-
omorphism f of R2 with p a non-accumulated and indifferent fixed point
and Inv(cl(J), f) = Kp an infinite family of petals which contain p in their
boundary.

p

J

Kp

Figure 4

The dynamic of the map f̂ in D is given in Figure 5a. We have an infinite
family of fixed prime ends (fixed points for f̂ in ∂(D)). If we consider the
two invariant arcs for f̂ , I1 and I2, of Figure 5a and make a identification of
them to points p1 and p2, we obtain a new homeomorphism (which we call in
the same way) f̂ : D → D. This homeomorphism has only two fixed points
in ∂(D) and we are in case a). See Figure 5b. The new map f̂ has a repelling
point in p2 and an unstable branch in p1. Let us observe that the choice of
the invariant intervals which contain the fixed prime ends, I = I1 ∪ I2 is not
unique. We can select I with an arbitrary family of intervals of this type
which gives us a different dynamic for f̂ and a different set of fixed points in
∂(D) for the identification map.

I2I1 p2p1

Figure 5bFigure 5a

Figure 5

Definition 5. Given a Jordan domain J , a set of strong filtration pairs
adapted to D is a finite collection of pairs {(Ni ∩D,Li ∩D)}i associated to
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the family {pi}i of fixed points of f̂s
k|∂(D).

Let us observe that this set depends on the choice of J and, if Per(f̂ |∂(D))
is not finite, on the choice of the set I such that, after an identification,
transforms Per(f̂ |∂(D)) in a finite set .

2.5. The statement of the principal results.

To conclude this section we summarize below the main results of this
article.

Let f : U →W be a local homeomorphism with U,W ⊂ R2 open subsets
and let p be a non-accumulated, indifferent fixed point. If p is stable, that is,
if there exists a basis of neighborhoods {Un}n∈N of p such that f(Un) ⊂ Un
for all n ∈ N, we obtain iR2(fk, p) = 1 for all k ∈ N (see [15] and [35]).

We are interested in the relation between the fixed point index of the
iterations of f at p and the local dynamics at p, with p a non-stable fixed
point.

Main Theorem 1. (Poincaré formula. Orientation preserving case.)
Let f : U → W be an orientation preserving local homeomorphism with

p an unstable, non-accumulated and indifferent fixed point. Let us select a
Jordan domain J such that p ∈ J ⊂ cl(J) ⊂ U with Kp ∩ ∂(J) 6= ∅, and
let {(Ni ∩ D,Li ∩ D)}i be a set of strong filtration pairs adapted to D, the
Carathéodory’s compactification of S2 \ Kp. Then there exist r ∈ N and
rp, up, sp, ap ∈ rN such that

iR2(fk, p) =
{

1 if k /∈ rN
1− up + rp = 1− sp + ap if k ∈ rN

=
{

1 if k /∈ rN
1 + 1

2((rp + ap)− (up + sp)) if k ∈ rN

We have the following dynamical interpretation: there are up (sp) gener-
alized unstable (stable) branches and rp (ap) generalized repelling (attract-
ing) petals for f r at p (see Definition 3). They are negatively (positively)
invariant for f r and f−1 (f) acts as a permutation on them. Let us observe
that the numbers {up, rp, sp, ap} depend on J and the set of strong filtration
pairs but their differences depend only on the germ of f .

Remark 5. The last result gives us, as a corollary, a theorem due to Le
Calvez (see [27]) which says that if p is a non-accumulated, indifferent fixed
point, there exist r ≥ 1 and q ∈ Z such that

iR2(fk, p) =
{

1 if k /∈ rN
q if k ∈ rN
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On the other hand, if f preserves or contracts (expands) areas, then
rp = 0 (ap = 0) and we obtain a corollary which improves a result of Simon
(see [42]) about the existence of a bound for the fixed point index of the
area and orientation preserving homeomorphisms at an isolated fixed point.
More precisely, if f preserves or contracts areas then iR2(f, p) ≤ 1.

From the above considerations, given an orientation preserving homeo-
morphism h : U ⊂ R2 → R2 which preserves a measure supported in the
open sets, such that Fix(h) = Per(h) = {0} and iR2(hk, 0) = 1 for every
k ∈ Z, it is natural to ask if 0 must be a stable (in the past or in the future)
fixed point. The famous example of Anosov and Katok, [1], is a counterex-
ample to this problem. They produced a diffeomorphism of the disc which
preserves natural measures and it is ergodic. This map is constructed in-
ductively as limit of an appropriate sequence of diffeomorphisms. In the
next section (see Example 3) we will exhibit an explicit, very simple and
geometric example of an orientation and area preserving homeomorphism
h : R2 → R2 such that Fix(h) = Per(h) = {0}, 0 is stable neither for h nor
for h−1 and the fixed point indices iR2(hk, 0) = 1 for every k ∈ Z. Moreover,
there will not be h-invariant subsets of positive finite measure.

For the orientation reversing case we prove the following theorem:

Main Theorem 2. (Poincaré formula. Orientation reversing case.)
Let f : U → W be an orientation reversing local homeomorphism with p

an unstable, non-accumulated, indifferent fixed point. Let us select a Jordan
domain J such that p ∈ J ⊂ cl(J) ⊂ U , with Kp ∩ ∂(J) 6= ∅, and let
{(Ni ∩ D,Li ∩ D)}i be a set of strong filtration pairs adapted to D, the
Carathéodory’s compactification of S2\Kp. Then there exist up, u′p, rp, r′p ∈ N
with u′p ≤ up, r′p ≤ rp, u′p + r′p ≤ 2 such that

iR2(fk, p) =
{

1− up + rp if k even
1− u′p − r′p if k odd

and with the following dynamical meaning: there are up generalized unstable
branches for f2 at p with u′p ≤ 2 of them negatively invariant for f . In the
same way there are rp generalized repelling petals for f2 at p and r′p ≤ 2 of
them are negatively invariant for f .

As in the orientation preserving case we have similar formulas involving
generalized stable branches and generalized attracting petals.

Remark 6. As a corollary iR2(f, p) ∈ {−1, 0, 1} for f an orientation re-
versing local homeomorphism and p a non-accumulated fixed point. This is
Bonino’s theorem (see [3]) when p is non-accumulated.
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Remark 7. The Main Theorem for orientation reversing homeomorphisms
says that iR2(f2n, p) is constant. Then it solves Problem 7.3.9. of [23].

Theorem 3. Let f : U → W be an arbitrary local homeomorphism with
Fix(f) = {p} an indifferent fixed point, such that iR2(f r, p) = 1−m < 1 for
some r ∈ N (r = 2 if f reverses orientation). Then there exist m unstable
(stable) branches, in the classical sense, {Ui} ({Si}) for f r at p such that:

1) f−1 and f act as permutations in {Ui} and {Si} respectively.
2) limn→∞ f

−n(x) = p for every x ∈ Ui, limn→∞ f
n(y) = p for every

y ∈ Si.
3) There exists a closed disc Dp ⊂ J , with p ∈ int(Dp),

⋃m
i=1(Ui ∪ Si) ⊂

Dp, in such a way that the intersection of the stable and unstable branches
with ∂(Dp) alternate in ∂(Dp).

Each generalized repelling (attracting) petal contains p in its boundary.
As a corollary of the Main Theorems for both, orientation preserving and
orientation reversing homeomorphisms we shall obtain the following result
(see [30] for the orientation preserving case):

Theorem 4. (Petal’s theorem.)
Let f : U → W be an arbitrary local homeomorphism with p a non-

accumulated and isolated fixed point such that iR2(f r, p) = 1 + m > 1 for
some r ∈ N. Then there exist m generalized repelling petals {Ri} and m
generalized attracting petals {Ai} for f r at p such that:

1) int(Ai)∩ int(Aj) = int(Ri)∩ int(Rj) = ∅ for all i 6= j, and int(Ai)∩
int(Rj) = ∅ for all i, j.

2) The map f (f−1) acts as a permutation in {Ai} ({Ri}).
3) limn→∞ f

−n(x) = p for every x ∈ Ri, limn→∞ f
n(y) = p for every

y ∈ Ai.
4) The sequences {f−nr(Ri)}n∈N and {fnr(Ai)}n∈N determine ends con-

taining p and
⋂
n∈N f

−nr(Ri) and
⋂
n∈N f

nr(Ai) are f r-invariant continua
containing p.

5) There is a Jordan curve γ around p such that γ intersects alternatively
the sets {Ai} and {Ri}, with γ ∩Ai and γ ∩Ri closed arcs.

Remark 8. Using the petal’s theorem one can prove the following conse-
quences that extend a theorem due to Le Calvez (see [27]):

If f : U → W is a local homeomorphism such that Fix(f) = {p} and
1 6= iR2(f r, p) > 1 − q for some r ∈ N (r = 2 if f reverses orientation).
Take a disc J such that p ∈ int(J) ⊂ cl(J) ⊂ U . We have the following two
properties:

a) If there exist q generalized stable branches for f r at p then there exists
a domain V1 ⊂ U such that the domains of the sequence {fn(V1)}n∈N are
well defined and disjoint.
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b) If there exist q generalized unstable branches for f r at p then there
exists a domain V2 ⊂ U such that the domains of the sequence {f−n(V2)}n∈N
are well defined and disjoint.

As a corollary, if iR2(f r, p) > 1 for some r ∈ N there exist domains
V1, V2 ⊂ U such that the domains of the sequences {fn(V1)}n∈N and {f−n(V2)}n∈N
are well defined and disjoint.

The last remark can be applied to the following interesting situation:
Let M be an oriented compact 2-dimensional manifold with boundary and
let f : U ⊂ M → M be an orientation preserving homeomorphism. Let
p ∈ ∂(M) ∩ U be an isolated fixed point of f . Denote by DM the double of
the manifold M and Df : DM → DM the natural map induced by f .

Then,
a) If p is a saddle point of f |∂(M) and iDM (Df, p) > 0 then there exist

domains V1, V2 ⊂ U such that the domains of the sequences {fn(V1)}n∈N
and {f−n(V2)}n∈N are well defined and disjoint.

b) If p is an attractor of f |∂(M) and iDM (Df, p) > −1 then there exists a
domain V1 ⊂ U such that the domains of the sequence {fn(V1)}n∈N are well
defined and disjoint.

c) If p is a repeller of f |∂(M) and iDM (Df, p) > −1 then there exists a
domain V2 ⊂ U such that the domains of the sequence {f−n(V2)}n∈N are
well defined and disjoint.

Note that in this particular setting, since p is isolated using Brouwer’s
lemma on translation arcs, it is not necessary to assume iDM (Df, p) 6= 1.

For orientation and area preserving homeomorphisms in surfaces we have
the following Nielsen type theorem (see [7] for the particular case where M
is a disc).

Corollary 1. Let M be an oriented compact 2-dimensional manifold with
boundary and let f : M →M be an area and orientation preserving homeo-
morphism such that f |∂(M) has n attracting fixed points and n repelling fixed
points. Then f has, at least, n+ Λ(f) fixed points in int(M) where Λ(f) de-
notes the Lefschetz number of f . As a consequence, ifM is the 2-dimensional
disc, we have that f has, at least, n+ 1 fixed points in int(M).

Restricting ourselves to orientation reversing homeomorphisms and using
that iR2(f, p) ∈ {−1, 0, 1}, we shall produce a sharp theorem. The proof will
be obtained easily by using the previous results.

Theorem 5. Let f : U → W be an orientation reversing local homeomor-
phism with p a non-accumulated, indifferent fixed point, and iR2(f2, p) 6= 1.
Then there are up generalized unstable branches and rp generalized repelling
petals for f2 at p such that iR2(f2, p) = 1− up + rp and:
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a) The generalized unstable (stable) branches and the generalized repelling
(attracting) petals are negatively (positively) invariant for f2.

b.1) If iR2(f2, p) = 1 + m > 1, then rp ≥ m and there are, at least, m
generalized attracting petals for f2 at p (m of the generalized attracting petals
alternate with m of the generalized repelling petals around p).

b.2) If iR2(f2, p) = 1 −m < 1, then up ≥ m and there are, at least, m
generalized stable branches for f2 at p (m of the generalized stable branches
alternate with m of the generalized unstable branches around p).

c.1) If iR2(f, p) = 1 then:
There are neither generalized repelling petals nor generalized unstable

branches for f2 at p, negatively invariant for f . On the other hand there
are two generalized attracting petals or two generalized stable branches or
a generalized stable branch and a generalized attracting petal for f2 at p,
positively invariant for f .

The numbers up and rp are even. Therefore, iR2(f2, p) is odd.

c.2) If iR2(f, p) = −1 then:
There are two generalized repelling petals or two generalized unstable

branches or a generalized unstable branch and a generalized repelling petal
for f2 at p, negatively invariant for f . On the other hand, there are nei-
ther generalized attracting petals nor generalized stable branches for f2 at p,
positively invariant for f .

The number up + rp is even and iR2(f2, p) is odd.

c.3) If iR2(f, p) = 0 then:
There are a generalized unstable branch or a generalized repelling petal for

f2 at p negatively invariant for f . On the other hand there are a generalized
stable branch or a generalized attracting petal for f2 at p, positively invariant
for f .

The number up + rp is odd and iR2(f2, p) is even.

Corollary 2. Let f : S2 → S2 be an orientation reversing and area preserv-
ing homeomorphism. If f has a fixed point, then |Per(f)| =∞.

3. Computation of iR2(fk, p).

3.1. Orientation preserving case.

Let f : U →W be an orientation preserving local homeomorphism with p
a non-accumulated, indifferent fixed point for f . Let Jp be a Jordan domain,
with p ∈ Jp the unique periodic orbit contained in cl(Jp), Kp ∩ ∂(Jp) 6= ∅,
and such that p ∈ ∂(Kp). Given k ∈ N, we can select a small enough Jordan
domain J ⊂ Jp such that Fix(f̄k|cl(J)) = {p} (the map f̄ is defined after
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Remark 2) and such that the above continuum Kp is also the connected
component of Inv(cl(J), f) which contains p. Then

iS2(f̄k, p) + iS2(f̄k, S2 \ J) = 2

We have (after identification if necessary) that Per(f̂ |∂(D)) is a finite set.
Then f̂ |∂(D) has q periodic orbits of period r.

If k ∈ rN, then

Fix(f̂k|∂(D)) = {{p11, . . . , p1r}, . . . , {pq1, . . . , pqr}}

with {pj1, . . . , pjr} the periodic orbits of f̂ |∂(D) for j = 1, . . . , q.
We have that Fix(f̄k|∂(J)) = ∅ and Fix(f̂k|P(Kp∩∂(J))) = ∅.
Let A = (J \Kp)∪∂(D) ⊂ D. Then iS2(f̄k, S2 \J) = iD(f̂k, D \A) and,

since D is contractible,

iD(f̂k, D \A) + r

q∑

j=1

iD(f̂k, pj1) = 1.

Then we have the following proposition:

Proposition 1. Under the above setting,

iR2(fk, p) = iS2(f̄k, p) = 2− iS2(f̄k, S2 \ J) =

= 2− iD(f̂k, D \A) = 1 + r

q∑

j=1

iD(f̂k, pj1).

For each fixed point pj1 of f̂k we have a strong filtration pair adapted to
D, (Nj1, Lj1), with pj1 ∈ Kj1 = Inv(cl(Nj1 \ Lj1), f̂k) (see Lemma 1).

The set Lj1 is a finite amount of disjoint discs and it is easy to see that
iD(f̂k, pj1) = 1 − qj with qj the number of components Lmj1 of Lj1 such
that f̂k(∂Nj1(Lmj1)) ⊂ intD(Lmj1) (see [36]). Since f̂ is a homeomorphism, the
number qj is the same for any other pjk with k ∈ {1, . . . , r}.

Then, if k ∈ rN,

iR2(fk, p) = 1 + r(q −
q∑

j=1

qj)

If f̂ |∂(D) has not periodic orbits it is obvious that iR2(fk, p) = 1 for all
k ∈ N.

If k /∈ rN, then Fix(f̂k|∂(D)) = ∅ and iR2(fk, p) = 1.
Therefore, we have proved the following theorem (see [27]).

20



Theorem 6. If f : U → W is an orientation preserving local homeomor-
phism with p a non-accumulated, indifferent fixed point, then:

a) If Per(f̂ |∂(D)) = ∅,

iR2(fk, p) = 1 for all k ∈ N.

b) If Per(f̂ |∂(D)) is a non-empty finite set, then f̂ |∂(D) has q periodic
orbits of period r, and

iR2(fk, p) =
{

1 If k /∈ rN
1 + r(q −∑q

j=1 qj) If k ∈ rN

with qj ∈ N defined as above. Let us recall that we obtain iR2(fk, p) for
all k ∈ N by observing f̂ r .

As an application of these techniques, we shall give an explicit simple
example of an area and orientation preserving homeomorphism h : R2 → R2

such that Fix(h) = Per(h) = {0}, 0 is neither stable for h nor for h−1 and
the fixed point indices iR2(hk, 0) = 1 for every k ∈ Z. Moreover, there are
not h-invariant subsets of positive finite Lebesgue measure.

Example 3. Let gα : R2 → R2 be a rotation with center the origin and
angle α ∈ R \Q.

Let S1 be the unit circle and x0 ∈ S1. For every point of the orbit of x0,
{(gα)n(x0) : n ∈ Z}, following the classical construction of Denjoy, we paste
an interval In in each point (gα)n(x0) for every n ∈ Z such that:

a) l(Im+1) < l(Im) and l(Im) = l(I−m) for everym ∈ N and
∑

n∈Z l(In) =
2π <∞ where l(I) denotes the length of the interval I.

b) limn→∞
l(In+1)
l(In) = 1.

Extending radially to the whole plane the corresponding map of Denjoy
we obtain a homeomorphism g : R2 → R2.

Let Qn = {a ∈ R2 : there are λ ≥ 0 and bn ∈ In such that a = λbn}.
The homeomorphism h we are looking for, will satisfy that h|R2\

⋃
n∈Z Qn

=
g.

Let us define h in
⋃
n∈ZQn. Consider n ∈ Z and take an isometric copy

of Qn, denoted by Θn ⊂ R× [0,∞) such that Θn is obtained by rotating Qn
in such a way that the line x = 0 divides Θn into two symmetric sectors ,
Θ+
n and Θ−n . We shall denote by 2αn ∈ [0, π) the interior angle determined

by Θm.
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It is clear that Θm+1 ⊂ Θm and Θ−m ⊂ Θ−m+1 for every m ∈ N. For
each n ∈ Z let us denote by jn : Qn → Θn the obvious isometry.

To define the required homeomorphism h we shall consider, for every
n ∈ Z, area and orientation preserving linear homeomorphisms fn,n+1 :
Θn → Θn+1.

Let fn,n+1 : Θ+
n → Θ+

n+1 be given by the formula

fn,n+1(x, y) =
(sinαn+1

sinαn
x, y

sinαn
sinαn+1

+ x(
cosαn+1

sinαn
− cosαn

sinαn+1
)
)
.

Since fn,n+1(0, y) = (0, y sinαn
sinαn+1

), we can extend fn,n+1 : Θ−n → Θ−n+1 by
the obvious symmetry.

On the other hand, fn,n+1(r sinαn, r cosαn) = (r sinαn+1, r cosαn+1).
Then, it is easy to check that fn,n+1 is an area and orientation preserving
injective map such that fn,n+1(Θn) = Θn+1.

Moreover, fn+1,n+2 ◦ fn,n+1 = fn,n+2 and 1 ≤ ‖fn,n+1(z)‖
‖z‖ ≤ sinαn

sinαn+1
(1 ≥

‖fn,n+1(z)‖
‖z‖ ≥ sinαn

sinαn+1
) for every z ∈ Θn and n ≥ 0 (n ≤ 0).

Now we are in a position to give an explicit definition of the homeomor-
phism h : R2 → R2 by

i) h|R2\
⋃

n∈Z Qn
= g,

ii) h(z) = ((jn+1)−1 ◦ fn,n+1 ◦ jn)(z) ∈ Qn+1 for z ∈ Qn.

By the construction it is obvious that h is a bijective and area preserving
map such that Fix(h) = Per(h) = {0}.

1) h in continuous in 0. Indeed, for any ε > 0 take δ > 0 such that ε =
δmax{ sinαm

sinαm+1
: m ∈ N}. Then, if B(0, s) denotes the open ball centered in 0

and radius s, we have that h(B(0, δ)) ⊂ B(0, ε) and h−1(B(0, δ)) ⊂ B(0, ε).

2) h is continuous in any z ∈ R2 \ {0}. In fact, we only have to pay
attention to z ∈ R2 \ ⋃n∈Z int(Qn). For such points we use polar coordi-
nates z = (r, θ) and g(r, θ) = (r, g2(θ)). Since fn,n+1(r sinαn, r cosαn) =
(r sinαn+1, r cosαn+1) for every n ∈ Z, we have that h(z) = h(r, θ) =
(r, g2(θ)).

Consider any open neighborhood V = (r− ε, r+ ε)× (g2(θ)− ε, g2(θ) + ε)
of h(z) and take any open neighborhood U of z such that g(U) ⊂ V and
U∩Qn 6= ∅ just for |n| such that sinαn

sinαn+1
is close enough to 1. Then, if z′ ∈ U

then ‖h(z′)‖/‖z′‖ is close enough to 1 and ‖h(z′)‖ ∈ (r − ε, r + ε).
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3) 0 is neither stable for h nor for h−1. Indeed, take any z ∈ int(Qm)
with m ∈ N such that jm(z) ∈ {(x, y) : x = 0, y ≥ 0} ⊂ Θm. Then,
‖fm,m+1(jm(z))‖

‖jm(z)‖ = sinαm
sinαm+1

.

Now, consider any k ∈ N. There exists km ∈ N such that jm+km((hkm(z)) ∈
{(x, y) : x = 0, y ≥ 0} ⊂ Θm+km and sinαm

sinαm+km
> 2k

‖z‖ . Then, ‖hkm(z)‖ > 2k.

In the same way we have that 0 is not stable for h−1. The same arguments
allow to prove that neither the positive semi-orbit nor the negative semi-orbit
of z ∈ int(Qn) are bounded. On the other hand, any h-invariant subset has
null or infinite Lebesgue measure.

5) For any closed disc, D, centered in 0, we have that Inv(D,h) =
(R2 \ ⋃n∈Z int(Qn))

⋂
D. Then, Inv(D,h) has not h-periodic prime ends

and consequently iR2(hk, 0) = iR2(h−k, 0) = 1 for every k ∈ N. �

3.2. Orientation reversing case.

Let f : U → W be an orientation reversing local homeomorphism with
p a non-accumulated, indifferent fixed point and let Jp and Kp as in the
orientation preserving case. Note that from a theorem of Kuperberg, see
[25], p ∈ ∂(Kp).

Given k ∈ N, we can select a small enough Jordan domain J ⊂ Jp such
that Fix(f̄k|cl(J)) = {p} and such that Kp is the connected component of
Inv(cl(J), f) which contains p.

Since f̄ : S2 → S2 is orientation reversing,

iS2(f̄k, p) + iS2(f̄k, S2 \ J) =
{

0 if k odd
2 if k even

and, since Per(f̂ |∂(D)) is, after identification if necessary, a finite set, then
f̂ |∂(D) has q periodic orbits of period 2 and two fixed points {p0, p1}.

Let us divide the computation of iR2(fk, p) into two cases: k odd and k
even.

Case a). Let us suppose that k is odd.
Since f̄k is orientation reversing,

iS2(f̄k, p) + iS2(f̄k, S2 \ J) = 0

On the other hand, since Fix(f̂k|∂(D)) = {p0, p1},

iD(f̂k, D \A) + iD(f̂k, p0) + iD(f̂k, p1) = 1.

Then we have the following proposition:
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Proposition 2. Under the above setting,

iR2(fk, p) = iD(f̂k, p0) + iD(f̂k, p1)− 1.

Let us compute iD(f̂k, p0) for k odd.
There exists a strong filtration pair adapted to D, (N0, L0), associated

to p0.
If q0 is the number of components {Lj0} of L0 such that f̂k(∂N0(Lj0)) ⊂

intD(Lj0), since f̂k is orientation reversing, we have that q0 ∈ {0, 1} (see
[36]).

We obtain that

iD(f̂k, p0) = 1− q0

In the same way we have

iD(f̂k, p1) = 1− q1

with q1 ∈ {0, 1} defined as q0.
Then, for k odd and f an orientation reversing local homeomorphism,

iR2(fk, p) = (1− q0) + (1− q1)− 1 = 1− q0 − q1 ∈ {−1, 0, 1}

and the Case a) is finished.

Case b). Let us suppose that k is even.
Then f̂k is an orientation preserving homeomorphism with Fix(f̂k|∂(D)) =

{p0, p1, {p11, p12}, . . . , {pq1, pq2}}. Following the steps of the orientation pre-
serving case,

iD(f̂k, pj1) = 1− qj for j ∈ {1, . . . , q} and iD(f̂k, pi) = 1− qi for i ∈ {0, 1}

Then

iR2(fk, p) = 2− iD(f̂k, D \A) = 2− [1− 2
q∑

j=1

(1− qj)− (1− q0)− (1− q1)]

= 3 + 2q − q0 − q1 − 2
q∑

j=1

qj

Let us observe that in this case (k even) we have not qi ∈ {0, 1}.
Therefore, we have the following theorem.
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Theorem 7. Let f : U → W be an orientation reversing local homeomor-
phism with p a non-accumulated, indifferent fixed point such that Per(f̂ |∂(D))
is a finite set (two fixed points and q periodic orbits of period 2). Then:

iR2(fk, p) =
{

1− q0 − q1 ∈ {−1, 0, 1} if k odd
3 + 2q − q0 − q1 − 2

∑q
j=1 qj if k even

with qj, q0 and q1 defined as above. Let us recall that we obtain iR2(fk, p),
for all k ∈ N, by observing f̂ and f̂2.

4. Dynamical meaning of iR2(fk, p).

4.1. Proof of the Main Theorem. Orientation preserving case.

Let f : U →W be an orientation preserving local homeomorphism with
p a non-accumulated, indifferent fixed point for f in the conditions of the
orientation preserving case of Section 2. Then Per(f̂ |∂(D)) is a finite set of
q periodic orbits of period r. Let pj1 ∈ Fix(f̂k|∂(D)) with k ∈ rN. We will
relate iD(f̂k, pj1) with the dynamical behavior of f̂k in the proximity of pj1.
This fact permits us to establish a new relation between iR2(fk, p) and the
dynamical meaning of f at a neighborhood of p.

Let (Nj , Lj) be a pair, as in Lemma 1, for f̂s
k
at pj1. If (Nj , Lj) is a

strong filtration pair the period of (Nj , Lj) is 1. We have then a family
(perhaps empty) {U1, . . . , Us} of unstable branches of (Nj , Lj) associated to

f̂s
k
at pj1 with s = 1− iS2(f̂s

k
, pj1).

If (Nj1, Lj1) is a strong filtration pair adapted to D for pj1, we call uj
the number of unstable branches of (Nj1, Lj1) associated to f̂k at pj1. If we
select any other pjk with k ∈ {1, . . . , r}, since f̂ is a homeomorphism, we
obtain the same numbers uj associated to pjk. Let us study the relations
between the numbers uj and qj .

Case a). If pj1 is an attractor for f̂k|∂(D), then Lj1 ∩ ∂(D) = ∅ and qj = uj .
If qj = 0, then Nj1 is an attracting petal associated to f̂k at pj1, that is

f̂k(Nj1) ⊂ intD(Nj1).

Case b). Let us suppose that pj1 is a repeller for f̂k|∂(D).
Then qj ≥ 1. We have two subcases:
b.1) If qj = 1, Nj1 is a repelling petal associated to f̂k at pj1, that is,

Nj1 ⊂ intD(f̂k(Nj1)). We have uj = 0.
b.2) If qj > 1, we obtain uj = qj − 2.

Case c). If pj1 is a saddle point for f̂k|∂(D) then qj = uj + 1.

Let us denote
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A = {j ∈ {1, . . . , q} : pj1 is in case a) }
R1 = {j ∈ {1, . . . , q} : pj1 is in case b.1) }
R2 = {j ∈ {1, . . . , q} : pj1 is in case b.2) }
S = {j ∈ {1, . . . , q} : pj1 is in case c) }

Since f̂k|∂(D) is orientation preserving, the sets A and R = R1 ∪ R2

have the same number of elements. There are r|A| = r|R| attractors (and
repellers) and r|S| = r(q − 2|A|) saddle points for f̂k|∂(D).

If we come back to the computation of iR2(fk, p), then

iR2(fk, p) = 1 + r(q −
q∑

j=1

qj) =

= 1 + r[q −
∑

j∈A
uj − |R1| −

∑

j∈R2

(uj + 2)−
∑

j∈S
(uj + 1)] =

= 1− r
∑

j∈A∪R2∪S
uj + r|R1|

If we associate the number ujm = uj to each point pjm, then

iR2(fk, p) = 1−
∑

j∈{1,...,q}
m∈{1,...,r}

ujm + r|R1|

The number ujm is the number of unstable branches of (Njm, Ljm) asso-
ciated to f̂ r at pjm.

Let Ujm be an unstable (stable) branch of (Njm, Ljm) associated to f̂ r at
pjm. It is easy to see that the continuum clR2(Ujm\pjm) ⊂ U is a generalized
unstable (stable) branch for f r at p.

We can select the repelling petals Njm in such a way that the arcs
∂D(Njm) are cross-cuts of ∂(Kp) i.e. their end points are exactly two points
in ∂(Kp) (the set of elements of ∂(D) which are accessible by arcs on U \Kp

is dense in ∂(D)). Then, the continuum clR2(int(Njm)) is a generalized
repelling petal for f r at p.

The generalized attracting petals for f r at p are constructed in an anal-
ogous way.

We define up =
∑
ujm to be the number of generalized unstable branches

for f r at p and rp = r|R1| to be the number of generalized repelling petals
for f r at p.

We have proved that, if f is an orientation preserving local homeomor-
phism, then rp, up ∈ rN and

iR2(fk, p) =
{

1 if k /∈ rN
1− up + rp if k ∈ rN

26



Let us recall that iR2(fk, p) is computed by observing f̂ r. The numbers
up and rp depend on the choice of the Jordan domain J and of the set
of strong filtration pairs adapted to D (if Per(f̂∂(D)) is not a finite set).
However, the difference rp − up does not change.
�

Remark 9. Note that the above techniques allow us to compute iR2(f, p)
even if p is an accumulated isolated fixed point. Using Lemma 1 there are
not problems to construct strong filtration pairs adapted to each fixed prime
end. Since it is well known that for an accumulated isolated fixed point
p iR2(f, p) = 1, we have that the number of generalized unstable (stable)
branches and generalized repelling (attracting) petals that are negatively
(positively) invariant for f coincide.

Corollary 3. Let pj1 ∈ Fix(f̂k|∂(D)) with k ∈ rN and let (N ′j1, L
′
j1) be a

pair as in Lemma 1 and (Nj1, Lj1) = (N ′j1 ∩D,L′j1 ∩D) a strong filtration
pair adapted to D at pj1. Then

iD(f̂k, Nj1)− iS2(f̂s
k
, N ′j1) =

{
−1 if ∂N ′j1(L′j1) ' S1

uj1 otherwise

with uj1 the number of unstable branches of (Nj1, Lj1) associated to f̂k at
pj1. Therefore,

∑
iD(f̂k, Njm)−

∑
iS2(f̂s

k
, N ′jm) = up − rp and

∑

j /∈R1

iD(f̂k, Njm)−
∑

j /∈R1

iS2(f̂s
k
, N ′jm) = up

4.2. Proof of the Main Theorem. Orientation reversing case.

Let f : U → W be an orientation reversing local homeomorphism and
let p be a non-accumulated, indifferent fixed point for f in the conditions of
the orientation reversing case of Section 2. Then, Per(f̂ |∂(D)) is a finite set
with two fixed points and q periodic orbits of period two.

If k is even we have that f̂k is orientation preserving and Fix(f̂k|∂(D)) =
{p0, p1, {p11, p12}, . . . , {pq1, pq2}}. Then

iR2(fk, p) = 1− up + rp.

with rp and up the number of generalized repelling petals and unstable
branches for f2 at p. The petals and branches are constructed as in the
orientation preserving case.
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If k is odd, then let Fix(f̂k|∂(D)) = {p0, p1} with {(N0, L0), (N1, L1)}
be strong filtration pairs adapted to D for p0 and p1. Let u′p and r′p be the
number of unstable branches and generalized repelling petals associated to f̂k

at the fixed points of ∂(D) which are negatively invariant for f̂k. Since f̂k is
orientation reversing, we obtain that u′p ≤ 2, r′p ≤ 2 and r′p+u′p = q0+q1 ≤ 2.
Then

iR2(fk, p) = 1− q0 − q1 = 1− u′p − r′p ∈ {−1, 0, 1}
If f is an orientation reversing local homeomorphism,

iR2(fk, p) =
{

1− up + rp if k even
1− u′p − r′p if k odd

with iR2(fk, p) ∈ {−1, 0, 1} if k is odd. The numbers {up, rp} and {u′p, r′p}
are computed by observing f̂2 and f̂ . �

Definition 6. Irreducibility of branches and petals.
Let p ∈ J be a non-accumulated and indifferent fixed point with J a Jor-

dan domain such that Kp∩∂(J) 6= ∅ and let us construct the Carathéodory’s
compactification of S2 \ Kp, D, and the homeomorphism f̂ : D → D. If
pi ∈ Fix(f̂k|∂(D)) is an isolated fixed prime end (and not a identification to
a point of an interval Ii of prime ends) and it gives us a family of generalized
unstable branches for f r at p, we call them irreducible unstable branches for
f r at p in J . In the same way, if pi gives us a generalized repelling petal for
f r at p we call it irreducible repelling petal for f r at p in J .

Remark 10. If the set of isolated fixed prime ends of f̂k|∂(D) is not finite
then, given m ∈ N we can obtain another identification homeomorphism,
which we call again f̂k : D → D, which gives us a number > m of generalized
unstable branches and a number > m of generalized repelling petals at p
(obviously, we have up > m and rp > m). However, the number rp − up =
iR2(fk, p)− 1 is constant and it just depends on the germ of f .

Remark 11. Let us observe that if f is orientation reversing, since Fix(f̂ |∂(D))
is a set of two fixed prime ends for every f̂ , then the numbers u′p and r′p of
iR2(f, p) = 1− u′p − r′p are independent of the map f̂ considered (this fact is
not true for up and rp).

The following proposition is a consequence of our previous results.

Proposition 3. Let us suppose that iR2(f r, p) 6= 1 for some r ∈ N (r = 2
if f reverses orientation). There exists a family of up generalized unstable
branches, {Uj}, and a family of rp generalized repelling petals, {Ri}, for f r
at p such that iR2(f r, p) = 1− up + rp and:
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1) The open repelling petals and the sets {Uj \ Kp} are two families of
mutually disjoint sets. Moreover, each set of a family is disjoint from the
sets of the other family.

2) limn→∞ f
−rn(x) = {p} and limn→∞ f

−rn(y) = {p} for every x ∈ Ui
and every y ∈ Ri.

3)
⋂
n∈N f

−nr(Ui) and
⋂
n∈N f

−nr(Ri) are f r-invariant continua contain-
ing p and the sequence {f−nr(Ri)}n∈N determines an end containing p.

If f is orientation reversing, the numbers u′p ≤ 2 and r′p ≤ 2, of the
decomposition iR2(f, p) = 1 − u′p − r′p, determine the number of generalized
unstable branches and generalized repelling petals of our families which are
negatively invariant for f .

Proof. Let us select an adequate J such that Fix(f r|J) = {p}. Given a
fixed point pi for f̂ r|∂(D) and a strong filtration pair (Ni, Li) adapted to D,
the unstable branches {U1i, . . . , Usi} for f̂ r at pi are compact sets of trivial
shape. We define generalized unstable branches {Uj} as the closure in R2 of
the sets {U1i \ {pi}, . . . , Usi \ {pi}} for every pi ∈ Fix(f̂ r∂(D)).

Since iR2(f r, p) 6= 1 and Fix(f r|J) = {p}, it is not difficult to prove that
for every x ∈ clR2(Uli \ {pi}), f−rn(x)→ {p} (see [37], Proposition 2).

Let us construct generalized repelling petals {Ri}. There are rp general-
ized repelling petals {N1, . . . , Nrp} associated to the fixed points of f̂ r|∂(D).
We can select generalized repelling petals {Ni} in such a way that each arc
γi = ∂D(Ni) has two end points in ∂(Kp). Each pi has associated a union of
prime ends {Pi}. At least one of these prime ends, Pi, is a fixed prime end
for f̂ r. We call Pi the set of points of Pi. It is not difficult to prove that
Pi ⊂ ∂(Kp) is a continuum, invariant for f r, with p ∈ Pi.

For each pi we obtain a generalized repelling petal, Ri, for f r at p

Ri = clR2(intS2(Ni))

with p ∈ Pi ⊂ ∂(Ri). The associated open repelling petals are disjoint and
it is obvious that they are disjoint from the sets {Uj \ Kp} which are also
disjoint.

Remark 12. If a generalized unstable branch (or a generalized repelling
petal) for f r at p, U0, is irreducible, then

⋂
n∈N f

−rn(U0) ⊂ ∂(Kp) is a
continuum, invariant for f r, and it is the set of points of a fixed prime end
for f̂ r.

Remark 13. Note that from our techniques one can provide reasonable
notions of local hyperbolic and elliptic sectors in terms of the generalized
stable/unstable branches and generalized attracting/repelling petals such
that the classical Poincaré formula remains true (Question 1.16 of [30]).
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5. The remaining proofs.

Proof of Theorem 3.

We can assume that p ∈ ∂(Kp).
The fixed point index iR2(f r, p) = 1− up + rp < 1 gives us m = up − rp.

We obtain that there are up ≥ m unstable branches {U1, . . . , Uup} for f̂ r at
the fixed points in ∂(D).

Let ap and rp be the number of fixed points in ∂(D) associated to at-
tracting and repelling petals for f̂ r. If the disc Ni of a strong filtration pair
adapted to D, (Ni, Li), is not an attracting nor a repelling petal, then we
say that Ni is an unstable petal. We call R ≥ rp the number of repelling
fixed points for f̂ r|∂(D). R is also the number of attracting fixed points for
f̂ r|∂(D).

Given a point pi ∈ Fix(f̂ r|∂(D)) associated to an unstable petal Ni, there
are three cases:

Case a). pi is a saddle point for f̂ r|∂(D).
Then there are the same number of unstable and stable branches for f̂ r

at pi.

Case b). pi is a repelling fixed point for f̂ r|∂(D).
If ri is the number of unstable branches for f̂ r at pi then there are ri + 1

stable branches at pi.

Case c). pi is an attracting fixed point for f̂ r|∂(D).
If ri is the number of unstable branches for f̂ r at pi then there are ri− 1

stable branches at pi.

We have a family {S1, . . . , Ssp} of stable branches for f̂ r at the fixed
points in ∂(D) with

sp = up − (R− ap) + (R− rp) = up + ap − rp ≥ up − rp = m

Let {pi} be the family of fixed points of f̂ r|∂(D) and let {Ni} be the
family of attracting, repelling and unstable petals of the strong filtration
pairs adapted to D, {(Ni, Li)}, associated to each fixed point. We denote
Nu =

⋃
iNi such that Ni is unstable.

Let us consider the Jordan curve contained in D,

γ = (∂(D) \Nu) ∪ ∂D(Nu)

Let L =
⋃
i,j L

j
i , with Lji the components of each Li such that Lji ⊂

intS2(D) and f̂ r(∂Ni(L
j
i )) ⊂ intS2(Lji ). Let U1 be an unstable branch for

f̂ r at D with U1 ∩ γ ⊂ l1, where l1 is the connected component of L ∩ γ
which intersects U1. Two unstable branches {U1, U2} are adjacent if there is
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an arc l1,2 in γ joining the arcs l1 and l2, with l1 ∪ l2 ⊂ l1,2 in such a way
that l1,2 ∩ L = l1 ∪ l2.

If two unstable and adjacent branches for f̂ r, {U1, U2}, are contained in
the same region N1, there exists a stable branch S1 in N1 between U1 and
U2.

If two unstable and adjacent branches {U1, U2} are contained in disjoint
regions N1 and N2 associated to fixed points p1 and p2, then we have two
situations:

i) If there is a stable branch S1 which intersects l1,2 ∩ ∂D(N1 ∪N2) then,
S1 is a stable branch between U1 and U2 in l1,2.

ii) If there is not a stable branch which intersects l1,2 ∩ ∂D(N1 ∪ N2),
then the points p1 and p2 are attractors on the right side and on the left
side respectively for f̂ r|∂(D). By this observation, if p1p2 ⊂ ∂(D) is the
arc induced by l1,2 joining p1 and p2 we have that there exists a repelling
fixed point p′ for f̂ r|∂(D) contained in the interior of p1p2. The point p′ has
associated an unstable or repelling petal N ′.

If N ′ is unstable, there exists in N ′ a stable branch S1 (between U1 and
U2 in l1,2).

Since there are rp repelling petals, we can construct, at least, up − rp =
m stable branches {S1, . . . , Sm} alternating in γ with m unstable branches
{U1, . . . , Um}.

The stable and unstable branches for f̂ r atD, {S1, . . . , Sm} and {U1, . . . , Um},
give us the alternating set of generalized stable and generalized unstable
branches for f r at p we are looking for.

Let us consider a Jordan curve γ0 ⊂ D near enough ∂(D) and let

γ1 = (γ0 \Nu) ∪ ∂D(Nu)

The closed disc Dp ⊂ J (and containing p) determined by γ1 is the disc
we are looking for. �

Proof of Theorem 4.

Since iR2(f r, p) = 1 +m > 1, we have that p is indifferent. On the other
hand, p ∈ ∂(Kp) (if p ∈ int(Kp) then p is stable and iR2(f r, p) = 1, see [15]).

We have iR2(fk, p) = iR2(f r, p) = 1 − up + rp > 1 for all k ∈ rN with r
the period of the periodic orbits of f̂ |∂(D). We obtain that there is a family
of rp generalized repelling petals (see Proposition 3), {Ri}, with int(Ri) ∩
int(Rj) = ∅ for i 6= j. The fixed point index iR2(f r, p) = 1 − up + rp gives
us m = rp − up. Since rp ≥ m, there are, at least, m generalized repelling
petals.

Let us construct the m generalized attracting petals {Ai}. Since f̂ r|∂(D)

has, at least, rp repelling fixed points then there are also rp attracting fixed
points {p′1, . . . , p′rp} (f̂ r|∂(D) is an orientation preserving homeomorphism).
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From these rp fixed points, there are no more than up without generalized at-
tracting petals. Then, the remainder points (at least rp−up = m) are points
with associated generalized attracting petals N ′i . We define the generalized
attracting petals Ai as

Ai = clR2((intS2(N ′i))

It only remains to construct the Jordan curve γ around p. Let us consider
two repelling fixed points {p1, p2} of f̂ r|∂(D), with repelling petals {N1, N2},
and adjacent in the set of fixed points R = {p1, . . . , prp} ⊂ ∂(D) associated
to repelling petals. Given the arc γ1,2 ⊂ ∂(D) joining the points p1 and p2

(with γ1,2 ∩ R = {p1, p2}), there are λ1 unstable branches in D associated
to the fixed points of f̂ r|∂(D) contained in γ1,2. In the same way we consider
the arcs γi,i+1 for {pi, pi+1} and the numbers λi of unstable branches of the
fixed points in the arcs γi,i+1. Then

rp∑

i=1

λi = up = rp −m

There are, at least, m elements {λi1 , . . . , λim} ⊂ {λ1, . . . , λrp} such that
λi1 = · · · = λim = 0.

Since pi1 and pi1+1 are repellers for f̂ r|∂(D), there exists, at least an
attractor for f̂ r|∂(D), p′i1 , in the interior of γi1,i1+1. Since λi1 = 0, then
p′i1 is associated to an attracting petal N ′i1 . In the same way we construct
attracting petals {N ′i1 , . . . , N ′im} which alternate with the repelling petals
{Ni1 , . . . , Nim} around ∂(D). The required Jordan curve is obtained by
selecting γ ⊂ int(D) near enough ∂(D). The generalized attracting petals
{Ai1 , . . . , Aim} associated to {N ′i1 , . . . , N ′im} and the generalized repelling
petals {Ri1 , . . . , Rim} associated to {Ni1 , . . . , Nim} alternate with respect to
γ. �

Proof of Corollary 1.

Let DM be the double of the manifold M and let Df : DM → DM be
the homeomorphism induced by f .

We only have to pay attention to the case where Fix(f)∩int(M) is finite.
Let p1, . . . , pn ∈ ∂(M) (q1, . . . , qn ∈ ∂(M)) the repellers (attractors) of

f |∂(M) and r1, . . . , rq the fixed points of f in int(M).
We know that the index of Df at each fixed point is ≤ 1 because there

are not generalized repelling petals.
Note that the saddle points in ∂(M) have index ≤ 0 because there exists,

at least, a generalized unstable branch.
Then,

Λ(Df) ≤ 2
∑

j∈{1,...,q}

iM (f, rj)+

32



+
∑

i∈{1,...,n}

iDM (Df, pi) +
∑

i∈{1,...,n}

iDM (Df, qi)

.
Now, since there exist al least two generalized unstable (stable) branches

with each repeller (attractor), iDM (Df, pi) ≤ −1 and iDM (Df, qi) ≤ −1 for
every i ∈ {1, . . . , n}.

Then 2Λ(f) = Λ(Df) ≤ 2
∑

j∈{1,...,q} iM (f, rj)− 2n.
Therefore, Λ(f) + n ≤∑j∈{1,...,q} iM (f, rj) and q ≥ Λ(f) + n. �

Remark 14. In the particular case where M is the closed 2-disc much
more can be said. Indeed, if f has a fixed point in the boundary then it has
another fixed point in int(M). ThenDf : S2 → S2 is an area and orientation
preserving homeomorphism with at least three fixed points. Therefore, using
a theorem of Franks ([17]) (see also [27], we have thatDf has infinite periodic
orbits. Consequently, f also has infinite periodic orbits.

Proof of Theorem 5.

The proof of a), b.1) and b.2) follows as in the orientation preserving
case. Let us prove c.1). Since iR2(f, p) = 1 − u′p − r′p = 1 we obtain that
there are not generalized repelling petals and generalized unstable branches
for f2 at p, negatively invariant for f (that are associated to the two fixed
points for f̂ , {p0, p1}).

An easy topological argument allows us to say that p0 and p1 are attract-
ing or repelling fixed points for f̂ |∂(D). For each one of the three cases (two
attractors, two repellers or an attractor and a repeller) we obtain the three
situations of the case c.1).

Since u′p = r′p = 0 and f is orientation reversing, it is easy to see that up
and rp are even. This fact gives us iR2(f2, p) = 1− up + rp odd.

The proofs of c.2) and c.3) are analogous. �

Proof of Corollary 2.

We shall give a proof based on our results and a strong theorem of exis-
tence of periodic orbits of orientation and area preserving homeomorphisms
in the 2-sphere. Note that it can be used also the results of Bonino in [4].

If |Fix(f)| ≥ 3 then |Fix(f2)| ≥ 3 and, since f2 is an orientation and
area preserving homeomorphism, by a theorem of Franks ([17]) (see also [27])
we have that |Per(f2)| =∞ and, therefore, |Per(f)| =∞.

If 1 ≤ |Fix(f)| ≤ 2, let us see that |Per(f)| = ∞. If we suppose that
|Per(f)| < ∞ then, each pj ∈ Fix(f) is an isolated periodic orbit and we
have iS2(f, pj) ≤ 1 (see [3]). If pj is stable, the index is 1 (see [35]). If pj
is not indifferent, then the index is 1 − δ ∈ {−1, 0, 1} (see [37]). If pj is
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indifferent, then the index is 1 − u′pj
∈ {0, 1}. Let us observe the following

two equalities,

0 = iS2(f, S2) =
∑

pj∈Fix(f)

iS2(f, pj)

2 = iS2(f2, S2) =
∑

pj∈Fix(f)

iS2(f2, pj) +
∑

qj∈Fix(f2)\Fix(f)

iS2(f2, qj)

It is easy to see that iS2(f2, pj) ≤ iS2(f, pj). In fact, if pj is stable the
index for f2 is 1. If pj is not indifferent, the index for f2 is 1− δ−2q ≤ 1− δ
(see [37]) and, if pj is indifferent, the index for f2 is 1 − upj ≤ 1 − u′pj

.
Using the above two equalities we have that |Fix(f2)| ≥ 3 and we obtain a
contradiction which gives us |Per(f)| =∞.

�
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