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Abstract. Let f : U → R2 be a continuous map, where U is an open
subset of R2. We consider a fixed point p of f which is neither a sink nor
a source and such that {p} is an isolated invariant set. Under these as-
sumption we prove, using Conley index methods and Nielsen theory, that
the sequence of fixed point indices of iterations {ind(fn, p)}∞n=1 is peri-
odic, bounded by 1, and has infinitely many non-positive terms, which
is a generalization of Le Calvez and Yoccoz theorem [Annals of Math.,
146 (1997), 241-293] onto the class of non-injective maps. We apply
our result to study the dynamics of continuous maps on 2-dimensional
sphere.

1. Introduction

Let x0 be a fixed point of a map f . The local fixed point index ind(f, x0) ∈
Z is a topological invariant that plays important role in fixed point theory.
It can also be used to study the structure of periodic points and dynami-
cal properties of a map. In such a case the sequence of fixed point indices
of iterations {ind(fn, x0)}∞n=1 may be applied. Unfortunately, it is usually
difficult to establish the exact form of the indices for a given map. Never-
theless, during the last years the description of indices was given for many
important classes of maps such as: planar homeomorphisms [10], [15], [19];
R3-homeomorphisms [20]; smooth maps [4], [9], [17], [23]; and holomorphic
maps [3], [6], [24], [25].

In this paper we give the restrictions for indices of some class of planar
maps. The investigations of indices in dimension 2 was initiated by the
famous result of Le Calvez and Yoccoz [15]. These authors considered local
orientation preserving planar homeomorphism f with the fixed point p which
is neither a sink nor a source. Under the assumption that there exists a
neighborhood V of p such that orbits of all points (except for p) leave V
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either in positive or negative time, they proved that the sequence of fixed
point indices has very special form, namely there exist positive integers r,
q, such that for each n 6= 0 :

(1.1) ind(fn, 0) =
{

1− rq if q|n,
1 if q 6 |n.

Le Calvez and Yoccoz in [15] used this fact to solve in the negative the
classical Ulam problem from Scottish Book about the existence of minimal
homeomorphisms of multipunctured sphere (cf. [18]).

Later Franks [7] by a use of discrete Conley index gave much shorter
prove of the fact that in the sequence {ind(fn, p)}∞n=1 there are infinitely
many non-positive terms. What is more, Conley index approach turned
out to be very fruitful in this problem, by this method Ruiz del Portal and
Salazar reproved the formula (1.1), found the form of indices also in reversing
orientation case [21] and described the behavior of f near p [19], [20] (the
reader may consult [16] for general theory of Conley index).

The aim of this paper is to generalize the result of Le Calvez and Yoccoz
onto continuous maps. We drop the demanding that f is homeomorphism,
and replace the condition for orbits by the same condition for so-called so-
lutions, which are the counterparts of full orbits for non-injective maps.
Under these assumptions our main result states that {ind(fn, p)}∞n=1 is pe-
riodic (which was conjectured by A. Szymczak in 1998 during the workshop
on Conley index in Warsaw), bounded from above by 1 and has infinitely
many non-positive terms (Theorem 2.4). In section 6 we apply it to examine
the existence of minimal maps of two-dimensional sphere with finite number
of periodic points.

The proof of our main theorem consists of two parts. In the first one we
modify the map f and the considered space by Conley index methods, so
that we obtain a self-map f̄ ′ of a nice space with a finite number of periodic
points, which coincides with f near p. In the second step we apply the result
of B. Jiang from [12] to the map f̄ ′. Jiang’s theorem gives the estimates for
index of each Nielsen fixed point class of f̄ ′ and for Lefschetz number. This
allow us to deduce periodicity and the bounds for indices of iterations of f .

2. Statement of the main result

In this section we define the notions of solution and isolated invariant set
and formulate the main result.

Definition 2.1. For any set N ⊂ U define InvmN to be the set of x ∈ N
such that there exists an orbit segment {xn}m−m ⊂ N with x0 = x and
f(xn) = xn+1 for n = −m, . . . ,m−1.We will call a complete orbit containing
x a solution through x. More precisely, if σ : Z → N is given by σ(n) = xn
and x0 = x and f(xn) = xn+1 for all n, we will call σ a solution through
x. We define the maximal invariant subset, InvN to be Inv∞N , the set of
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x ∈ N such that there exists a solution σ with {σ(n)}∞−∞ ⊂ N and with
σ(0) = x.

Definition 2.2. A compact set N is called an isolating neighborhood if
InvN ⊂ IntN . A set S is called an isolated invariant set if there exists an
isolating neighborhood N with S = InvN .

Definition 2.3. A fixed point p of a map f is called a source (sink) if
there is a base of compact neighborhoods Vα of p such that Vα ⊂ f(Vα)
(f(Vα) ⊂ Vα) for every α.

Theorem 2.4. Let f : U → R2 be a continuous map, where U is an open
subset of R2. Assume that {p} is an isolated invariant set for f and p is
neither a sink nor a source, then

(1) {ind(fn, p)}∞n=1 is periodic,
(2) for each n ind(fn, p) ≤ 1,
(3) {ind(fn, p)}∞n=1 has infinitely many non-positive terms.

Remark 2.5. If f is an arbitrary continuous planar map, then the only
restrictions on local fixed point indices are given by so-called Dold relations
given in the formula (7.1) [1], [9].

3. Modifying a map by Conley index methods

In this section we modify (in two steps) a map f which satisfies the
assumptions of Theorem 2.4 to a map f̄ ′, which is a self-map of R, a space
which is homotopy equivalent to a bucket of circles. Furthermore f̄ ′ has
finitely many periodic points and in the proximity of p is equal to f .

Let N be an isolating neighborhood.

Definition 3.1. We define the exit set of N to be

N− := {x ∈ N : f(x) 6∈ IntN}.

Definition 3.2. Let S be an isolated invariant set and suppose L ⊂ N is a
compact pair contained in the interior of the domain of f . The pair (N,L)
is called a filtration pair for S provided N and L are each the closures of
their interiors and

(1) cl(N \ L) is an isolating neighborhood of S,
(2) L is a neighborhood of N− in N , and
(3) f(L) ∩ cl(N \ L) = ∅.

Theorem 3.3. ([8] Theorem 3.7) Let U be an open subset of an n-dimensional
manifold M and suppose f : U → M is a continuous map with an isolated
invariant set S. Inside any neighborhood of S there exists a filtration pair
(N,L) such that N is an n-dimensional manifold with boundary and ∂L is
an (n− 1)-dimensional submanifold of M .

We consider the 2-dimensional case with S equals to one fixed point, i.e.
f : U → R2 and its fixed point p is an isolated invariant set. Let N be an
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isolating neighborhood of {p}. Then, by Theorem 3.3 we get the following
observation:

Remark 3.4. N is a closed disk with a finite numbers of holes and each
component Li of L is also a disk with some finite numbers of holes.

For A, a subset of N , by cc(A) we will denote the connected component
of A which contains the fixed point p.

Only cc(N \ L) impacts on fixed point indices, so it would be more con-
venient for us to consider the sets L̃i ⊃ Li instead Li, where

L̃i = N \ cc(N \ Li).
Notice ∂N L̃i is a connected subset of N . Let L̃ be a union of its compo-

nents L̃ = L̃1 ∪ . . . ∪ L̃m.
Identifying each L̃i to a point qi we get a continuous map f ′ : cl(N \L̃)/ ∼

\{q1, . . . , qm} → cl(N\L̃)/ ∼, such that in a small neighborhood of p, f ′ ≡ f .
Now we ask whether there exists continuous extension of f ′ for {q1, . . . , qm}.

Notice that ∂N L̃i ⊂ ∂NLi, so by Definition 3.2 (3) f(∂N L̃i) ⊂ IntL.

Lemma 3.5. For every i there exists only one j such that f(∂N L̃i) ⊂ IntL̃j.

Proof. Suppose, contrary of our claim, that f(∂N L̃i)∩IntL̃j 6= ∅ and f(∂N L̃i)∩
IntL̃k 6= ∅, where j 6= k. Then because ∂N L̃i is connected and by the con-
dition (3) ∂N L̃i ∩ N− = ∅, thus f(∂N L̃i) is a connected set which joins
L̃j and L̃k inside IntN , so we may find a point x0 ∈ ∂N L̃i such that
f(x0) ∈ Int(N \ L̃) ⊂ N \ L̃ ⊂ N \ L ⊂ cl(N \ L), which contradicts
the condition (2) of filtration pair. �

Due to Lemma 3.5 there is a unique extension f̄ ′ of f ′

f̄ ′ : cl(N \ L̃)/ ∼→ cl(N \ L̃)/ ∼,
and the continuity of f ′ results from the fact that f̄ ′ is locally constant

near each qi.
On the other hand, the only periodic points which may appear for f̄ ′ are

situated in {q1, . . . , qm}. As a result, for every n, Fix (f̄ ′n) ⊂ {p, q1, . . . , qm}.
The last set consists of periodic and eventually periodic points. Without
loss of generality we may assume that all of them are periodic. Then
ind(f̄ ′n, qi) = 1 if qi is the point of period n, because in a small enough
neighborhood of qi the map f̄ ′

n is constantly equal to qi.
Now for the set R = cl(N \ L̃)/ ∼, by Lefschetz-Hopf theorem we get:

L(f̄ ′n) = ind(f̄ ′n, R) = ind(f̄ ′n, p) +
∑

qi∈Fix (f̄ ′
n

)

ind(f̄ ′n, qi).

Taking into account that f̄ ′n is equal to fn near p we obtain:

(3.1) ind(fn, p) = L(f̄ ′n)−
∑

qi∈Fix (f̄ ′
n

)

ind(f̄ ′n, qi).
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On the other hand, Hi(R; Q) = 0 for i > 2, thus by definition

(3.2) L(f̄ ′n) =
∞∑
k=0

(−1)ktrf̄ ′n∗k = 1− trf̄ ′n∗1 + trf̄ ′n∗2,

and finally:

(3.3) ind(fn, p) = 1−
∑

qi∈Fix (f̄ ′
n

)

ind(f̄ ′n, qi)− trf̄ ′n∗1 + trf̄ ′n∗2.

Remark 3.6. Notice that
∑

qi∈Fix (f̄ ′
n

) is a periodic sequence. Thus to prove
periodicity of indices we must show, by the formula (3.1), that {L(f̄ ′n)}n
(or {−trf̄ ′n∗1 + trf̄ ′n∗2}n by (3.3)) is periodic.

4. Jiang’s result

Before we state Jiang’s result we briefly recall the notions of Nielsen fixed
point class and Nielsen number (cf. [11], [13]). The set of fixed points of a
map f may be divided into disjoint union of fixed point classes. Two points
x and y belong to the same class if and only if there is a path ω which
joins them, such that ω and f(ω) are fixed end point homotopic. Because
each fixed point class F is isolated in the set of fixed points of f , ind(f,F) is
well-defined. A fixed point class which has non-zero index is called essential.
Nielsen number of f , denoted as N(f), is a homotopy invariant equal to the
number of essential fixed points classes of f and gives lower bound for the
number of fixed points in the homotopy class of f .

The following theorem was proved for surfaces by B. Jiang in [12].

Theorem 4.1. Let X be a connected compact surface with Euler character-
istic χ(X) < 0, and suppose f : X → X is a continuous map. Then:

(A) for every fixed point class F of f ind(f,F) ≤ 1.

(B) |L(f)− χ(X)| ≤ N(f)− χ(X).

In the proof of our main theorem we will also need the following lemma
of Babenko and Bogatyi (Theorem 2.2 in [1]):

Lemma 4.2. If the sequence of Lefschetz numbers of iterations {L(fn)}∞n=1

is bounded, then it is periodic.

5. Proof of Theorem 2.4

The fixed point p is neither a sink nor a source, so we choose its small
neighborhood V ⊂ U , such that for any compact neighborhood W ⊂ V

(5.1) neither f(W ) ⊂W nor f(W ) ⊃W.
Next, by Theorem 3.3 we find inside V a filtration pair (N,L) for which

we apply the identification described in Section 3, obtaining the space R
and its self-map f̄ ′.
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We prove Theorem 2.4 considering some cases and their subcases.

CASE (I) None of L̃i forms an annulus around p.

Under the above assumption the second homology group of R disappear,
and thus trf̄ ′n∗2 = 0 in the formula (3.3). Notice that R is also the disk with
holes and the number of holes in R is not greater than the numbers of holes
in N (cf. Remark 3.4 and the definition of R).

Now, for the three following subcases we prove part (1) and (2) of Theorem
2.4.
CASE (Ia) There are no holes in R. Then, in the formula (3.3) trf̄ ′n∗1 = 0,
so by Remark 3.6 the sequence of indices is periodic. On the other hand, let
us remind that if qi is the point of period n for f̄ ′ then

(5.2) ind(f̄ ′n, qi) = 1,

so
∑

qi∈Fix (f̄ ′
n

) ind(f̄ ′n, qi) ≥ 0. Thus, again by the formula (3.3), we get
immediately the needed bound for ind(fn, p).
CASE (Ib) There is one hole in R. Let us denote by D the hole in R, and
by d ∈ Z the number such that f̄ ′∗1(α) = dα, where α = ∂D is a generator
of H1(R; Q).

Notice that f̄ ′ has only finite number of periodic points, thus {N(f̄ ′n)}n
is bounded. On the other hand f̄ ′ is homotopy equivalent to a self-map g
of a circle with degree d. Homotopy equivalent maps have the same Nielsen
and Lefschetz numbers. Furthermore, the modulus of Lefschetz number is
equal to Nielsen number for self-maps of the circle, thus we obtain:

(5.3) |L(f̄ ′n)| = |L(gn)| = N(gn) = N(f̄ ′n),

so {L(f̄ ′n)}∞n=1 is bounded, and thus by Lemma 4.2 it is periodic. Finally,
by Remark 3.6 we get the periodicity of indices.

To prove part (2) of Theorem 2.4, we use the formula (3.3). Notice that
trf̄ ′n∗1 = dn. On the other hand, as Lefschetz numbers L(fn) = 1 − dn are
bounded, we get that d ∈ {−1, 0, 1}.

The formula (3.3) takes then the form:

(5.4) ind(fn, p) = 1−
∑

qi∈Fix (f̄ ′
n

)

ind(f̄ ′n, qi)− dn.

As a result, if d ∈ {0, 1} then by (5.2) ind(fn, p) ≤ 1. Let us consider
the case of d = −1. Then, by (5.3) N(f̄ ′) = |1 − d| = 2, so f̄ ′ has at least
two fixed points. One of them must be p, let us denote the other one as q.
Then:

(5.5) ind(fn, p) ≤ 1− ind(f̄ ′n, q)− (−1)n ≤ 1.

CASE (Ic) There are at least two holes in R. Theorem 4.1, as it is stated,
acts for surfaces, but from the proof ([12] Lemma B p. 476) it follows that
it is valid for a space which is homotopy equivalent to a graph. As this
situation holds in our case - R is homotopy equivalent to a graph with the
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same Euler characteristic and χ(R) < 0, the thesis of Theorem 4.1 holds for
R.

We remind that
Fix (f̄ ′n) ⊂ {p, q1, . . . , qm}.

Again, because there is only finite number of periodic points of f̄ ′, {N(f̄ ′k)}k
is bounded. As a result, by Theorem 4.1 (B) {L(f̄ ′k)}k is also bounded and
thus by Lemma 4.2 and Remark 3.6 the sequence of indices is periodic.

Now we prove part (2) of Theorem 2.4. Let us denote by Fn
p the fixed point

class of f̄ ′n which contains p. Then Fn
p = {p, q1, . . . , qs}, where 0 ≤ s ≤ m.

By the equality (5.2) we get:

(5.6) ind(f̄ ′n, {q1, . . . , qs}) = s.

Now let us observe that ind(f̄ ′n,Fn
p ) ≤ 1 by Theorem 4.1 (A). Thus due

to the equality (5.6) and the additivity of fixed point index, we get that
ind(fn, p) = ind(f̄ ′n, p) ≤ 1− s ≤ 1.

Now we prove part (3). We use the formula (3.3). Remind that trf̄ ′n∗2 = 0.
On the other hand trf̄ ′n∗1 = trAn, where A is some integral matrix. If A is
nilpotent, then trAn = 0 for all n, otherwise trAn > 0 for infinitely many n
[7], so in the second case the thesis is proved. Assume that trf̄ ′n∗1 = 0 for all
n, then if there exist some periodic points qi the theorem holds. The only
case we have to check is when there are no periodic points, so L = ∅. But
this case is impossible, because then f(N) ⊂ N , which contradicts (5.1).

This completes the proof in Case I.

CASE (II) Some of L̃i forms an annulus around p.

Assume that L̃1 is the closest to p of all L̃i that form an annulus around
p. Denote by D the open disk bounded by the annulus L̃1, let L̃2, . . . L̃k be
the set of all L̃i contained in D.

CASE (IIa) There are no holes in R. In this case we get that H1(R,Q) =
0, and f̄ ′ is a self-map of 2-dimensional sphere. Thus L(f̄ ′n) = 1 + dn, and
the formula (3.3) takes the form:

(5.7) ind(fn, p) = 1 + dn −
∑

qi∈Fix (f̄ ′
n

)

ind(f̄ ′n, qi).

Let us consider the following compact neighborhood of p: W = D̄ \⋃k
i=2 Int(L̃i). As p is not a source, by (5.1) W 6⊂ f(W ). This implies that

there exist q ∈W such that q 6∈ f(W ). In fact, by the compactness of W we
may choose q in the interior of W . As a consequence, the map f̄ ′ : S2 → S2

is not onto, so d = 0. Finally, indices are bounded from above by 1 and
7



by Remark 3.6 periodic. Because there is at least one periodic point of f̄ ′,
there must be infinitely many non-positive terms in {ind(fn, p)}∞n=1.

CASE (IIb) There are some holes in R. Then the situation reduces to
the Case I, which completes the proof of the whole theorem.

6. Existence of minimal maps on two dimensional sphere

The classical problem posed by Ulam (Problem 115 in [18]) asked whether
there exists minimal homeomorphism of multipunctured two-dimensional
sphere, or in other words whether there is a homeomorphism f of S2 \
{p1, . . . , pr}, such that the full orbit of every point x, {fk(x)}k=+∞

k=−∞, is dense.
Le Calvez and Yoccoz, using the formula (1.1) proved that there are no such
homeomorphisms.

We will consider the counterpart of Ulam problem for maps which may
not be injective, namely for a class of continuous self-maps of S2 with finite
number of periodic points, denoted as PerFin.

First of all, let us notice that there are a few alternative ways of expressing
the Ulam question for non-injective maps. We state below three versions of
it. We ask whether there exist a map f ∈ PerFin such that:

(I) ∀x∈S2\Per(f) each solution through x is dense.
(II) ∀x∈S2\Per(f) at least one solution through x is dense.

(III) ∀x∈S2\Per(f) the sum of solutions through x is dense.
It is obvious that the following implications hold:

(I)⇒ (II)⇒ (III).

We will demostrate that for maps in PerFin (I) is false (Theorem 6.1) and
(II) (and thus also (III)) is true (Theorem 6.5).

We start with showing non-existence of a map satisfying (I). Although
the general line of reasoning in the proof is similar to the one used in [15],
we must use much more subtle arguments then those which are valid for
homeomorphisms.

Theorem 6.1. There is no f ∈ PerFin such that each solution through each
point x ∈ S2 \ Per(f) is dense.

Proof. Conversely, suppose that for some map f each solution through each
point x ∈ S2 \ Per(f) is dense. Let G be the set of all periodic points of f ,
G = {p1, . . . , pr}. Let us take even k such that all points in G are fixed for
fk. Then, consider h = fk, the self-map of S2.

First of all we show that:
(1) each {pi} is an isolated invariant set for h,
(2) none of pi is

(2a) a sink for h,
(2b) a source for h.

To prove (1) assume contrary to our claim that for some point, say p1, in
every neighborhood of p1 there is a solution for h different from {p1}. Let
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us consider W ′i , a compact neighborhood of pi, so small that f t(W ′i ) ⊂ Wi

for t = 1, . . . , n − 1 and Wi are small compact neighborhoods of the points
in {p1, . . . , pr} disjoint for different pi ∈ G.

We find a solution for h contained in W ′1 which goes through some point
y. Then the solution through y for f must be contained in

⋃n
t=1Wi, so

cannot be dense, contradiction.

Now we will prove (2). In this part of the proof we will need the following
two facts proved in [8] and [2].

Lemma 6.2 ([8] Proposition 3.2). Let G be an isolated invariant set for f
and W be its isolated neighborhood. Let us take an x ∈ W and consider
{xk}+∞−∞ - a solution through x. If for all n ≥ 0 xn ∈ W , then ω(x) ⊂ G; if
for all n ≤ 0 xn ∈W , then α(x) ⊂ G.

Lemma 6.3 ([2] Theorem 5). Let X be a compact Hausdorff space without
isolated points. Let g : X → X be a continuous map and Dg denotes the set
of points x ∈ X whose forward orbit {xk}+∞k=0 is dense. Then either Dg = X
or IntX(Dg) = ∅.

(2a) Again, contrary to our claim, assume that there is p1 ∈ G which is
a sink. Let us notice that

⋃n
i=1W

′
i , which was defined in the proof of part

(1), constitutes an isolating neighborhood of G for the map f . For p1 let us
choose its compact neighborhood V1 ⊂ W ′1 such that h(V1) ⊂ V1. Then for
each y ∈ V1 and non-negative k there is:

(6.1) fk(y) ∈
n⋃
i=1

Wi = W.

Consider now x ∈ V1, which is different from p1. By (6.1) fk(x) ∈ W for
all k ≥ 0, so by Lemma 6.2 ω(x) ⊂ G. As G is finite, the solution through
x is dense if {xk}0k=−∞ is dense. On the other hand in such situation there
exist p > q > 0, such that x−q 6∈ W and x−p ∈ V1. The last statement
imply however that fp−q(x−p) = x−q 6∈ W , but by (6.1) fp−q(x−p) ∈ W ,
contradiction proves part (2a).

(2b) We use the notation from the proof of part (1). To obtain a con-
tradiction suppose that there is p1 ∈ G which is a source. Let us choose
compact neighborhood Z1 ⊂ W ′1 such that Z1 ⊂ h(Z1). Then for each
y ∈ Z1 \ {p1} there is a negative semi-solution through y for h, which is
contained in Z1. As a result, there is a negative semi-solution through y
for f , which is contained in W . Then, by Lemma 6.2 α(y) ⊂ G. As G is
finite, the solution through y for f is dense if the positive semi-orbit for f ,
{yk}∞k=0, is dense. Notice that this property should be satisfied for every
y ∈ Z1 \{p1}, thus the set Df (defined in Lemma 6.3 for g = f and X = S2)
has not empty interior. On the other hand, Df 6= S2 because p1 6∈ Df . We
get the contradiction with the thesis of Lemma 6.3.
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Now we are in a position to proof the theorem. We get: L(hn) = 1 + dn,
where d is the degree of h. On the other hand, by Lefschetz-Hopf theorem,
for each j > 0:

(6.2) L(hj) =
r∑
i=1

ind(hj , pi).

Thus, by Theorem 2.4 Lefschetz numbers are bounded. As a consequence
(k is even), d ∈ {0, 1}, which implies L(hj) ∈ {1, 2}. Now we show that the
sequence in the right hand-side of the formula (6.2) has infinitely many non-
positive terms, which will give us the contradiction. We apply the argument
of Franks used in [7]. Let us take the index pair for {pi}, isolated invariant
set of h, then identify every L̃i to one point q (instead to different ones qi
as we did in Section 3). This point is a sink and have indices of iterations
equal to one. Under such identification the counterpart of the formula (3.3)
for h takes the form:

(6.3) ind(hj , pi) = −trAji ,

where Ai is some integral matrix.
Now consider the matrix A =

⊕r
i=1Ai. We get:

r∑
i=1

ind(hj , pi) =
r∑
i=1

−trAji = −trAj .

On the other hand trAj ≥ 0 for infinitely many j > 0 [7], which proves that
in the sequence {

∑r
i=1 ind(hj , pi)}j there are infinitely many non-positive

terms. This gives the contradiction with the formula (6.2) and completes
the proof. �

Now we construct a map satisfying the condition (II).
Let us consider the standard tent map: T : [0, 1] → [0, 1], given by the

formula:

(6.4) T (x) =
{

2x if x ∈ [0, 1
2 ],

2(1− x) if x ∈ [1
2 , 1].

Notice that:

(6.5) ∀x∈[0,1]∀∆∃N∀n≥N∃t∈∆ Tn(t) = x,

where ∆ denotes any subinterval of [0, 1].

Lemma 6.4. Through each point x ∈ [0, 1] goes at least one solution for T
which is dense.

Proof. Let x and ∆ be fixed and t found by (6.5) for some n. Assume that
∆′ is another subinterval of [0, 1]. Then by (6.5) one may find natural n′

and t′ ∈ ∆′ such that Tn
′
(t′) = t.
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In this way we may inductively (taking smaller and smaller covers of [0, 1])
find in every subinterval an element of the negative semi-solution through
x. �

Theorem 6.5. There exists F ∈ PerFin such that through each point x ∈
S2 \ Per(f) goes at least one solution which is dense.

Proof. We define the map F : S2 → S2 in the following way. We will
represent the two-dimensional sphere S2 as the suspension of S1, i.e. S2 =
(S1 × [0, 1])/ ∼, where S1 × {0} ∼ ∗, S1 × {1} ∼ ∗, are contracted to
s = [S1 × 0] and n = [S1 × 1] South and North Pole respectively. We define
a map

F ([α, x]) = [(O(α), T (x))],
where O : S1 → S1 is an irrational rotation. Notice that Per(F ) = {s}.

Let ∆1 ⊂ S1, ∆2 ⊂ [0, 1] be arbitrary small closed intervals. Let us
consider Γ = (∆1 ×∆2)/ ∼ a subset of S2.

We will prove that

(6.6) ∀[α,x]∈S2\{s}∀Γ∃n∃[α′,t]∈Γ Fn([α′, t]) = [α, x].

Indeed, for a given x and ∆2 we find N satisfying (6.5). Next, there exists
n > N such that On(α′) = α for some α′ ∈ ∆1. Finally, by (6.5) we choose
t ∈ ∆2 such that Tn(t) = x.

Now, (6.6) implies, in the same manner as in the proof of Lemma 6.4, that
through each point [α, x] ∈ S2 \ {s} goes at least one negative semi-solution
for F which is dense. �

7. Final remarks

Our main Theorem 2.4 provides strong restrictions for sequences of indices
of iterations. An interesting question is whether there are further bounds
for the sequence {ind(fn, p)}∞n=1 for f belonging to the considered class of
planar maps.

In 1984 Albrecht Dold proved that every sequence of indices must satisfy
some congruences [5], called Dold relations:

(7.1)
∑
k|n

µ(n/k)ind(fk, p) ≡ 0 (mod n),

where µ is the classical Möbius function, i.e., µ : N → Z is defined by the
following three properties: µ(1) = 1, µ(k) = (−1)s if k is a product of s
different primes, µ(k) = 0 otherwise.

Notice that the conditions (1)− (3) of Theorem 2.4 does not imply Dold
relations. As a consequence, the formula (7.1) gives the further bounds for
indices. For example the sequence (0, 1, 0, 1, . . . , ) satisfies all three condi-
tions, but cannot be a sequence of local indices of iterations of any map f ,
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because Dold relations do not hold: 1 = ind(f2, p) 6≡ 0 (mod 2). The above
discussion lead us to the following conjecture.

Problem. Assume that {p} is an isolated invariant set for a planar map
f and p is neither a sink nor a source. Is that true that all restrictions for
{ind(fn, p)}∞n=1 are given by Dold relations and the conditions (1) − (3) of
Theorem 2.4?

Acknowledgements. The authors thank Professor Xuezhi Zhao for draw-
ing their attention to the Jiang’s paper [12].
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