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e A multivariate copula is a multivariate cdf defined on [0, 1]¢ with
uniform U(0, 1) marginals.

o Consider a n-dimensional joint cdf F with marginals Fy, ..., Fy.

There exists a copula C, such that

F(x1,...,xq) = C(Fi(x1), ..., Fa(xq))

for all x; in [—00,00], i =1,...,d.
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Elliptical copulas

CR(ur, .. ug) = OR(®H(wn), .., ®*(ug))

C,gt (ury ..., uq) = F,Qf’ft(thl(ul), . thl(ud))

WV

Gi ian copula t(5)-copula t(2)-copula

o 0.02
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Figure: Contours of bivariate distributions with the same marginal standard
normal
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Archimedean copulas

Common Bivatiate Archimedean Copulas:
C(u1, u2) = ¢~ H(un) + ¢(u2))

Clayton (1978) Frank (1979) Gumbel (1960)
a>0 a>0 a>1
- _ 7cyt_1 _
p()=1"—1 p(t) = —InSa=2  o(t) = (~Int)
7 Clayton copula 7 Frank copula “°7 Gumbel copula

Figure: Contours of bivariate distributions with the same marginal standard
normal
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Vine copula: C-vine, D-vine, R-vine (Aas et al., 2009)

T T T3
12 1312 14123
" " /12 |13 \14 132\2433
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Figure: D-vine and Canonical vine copula
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Factor copulas

oo AL,

Figure: One factor and two factor copula models (Krupskii and Joe, 2013)
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Bifactor and nested factor copulas

Figure: Bifactor copulas with d = 12 and G = 3 (Krupskii and Joe, 2015)

Figure: Nested factor copulas with d = 12 and G = 3 (Krupskii and Joe, 2015)
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Posterior inference

Assuming that we have specify a factor copula structure together with
bivariate linking copula in each tree layers.

@ We are interested in the inference on the collection of latent
variables and copula parameters {v, 0} based on the observables {u}

@ The posterior is
p(v, 0, u)

p(v, 0l = P

e One factor copula, for example

i, vol0
p(vo.Blun, . ug) ox Hp(“ 2% o )e(0)
i=1

0.8 H Cu,-,vg(uh V0|0)p(0)

i=1
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Posterior inference

For bifactor copula, we derive the posterior using the properties for vine
copula,

G dg
p(vo, Vi, ..., vG,0lur, ..., ug) H H c(ui,, vo, vg|0)p(0)

g=1i=1

G dg
X H H Cufg,vo(ufg7 V0|9)

g=1i=1

G dg
X H H Cu"g’vgl"O(u’Ig‘VO’ Vg|9)p(9)

g=1i=1

where u; |, = F(u;g|vO). Thus, it is computational expensive. We
approximate the posterior by a proposal g(v, 0|\*).

q(v,0|\") = p(v,0|u)

Hoang Nguyen Variational Inference for high dimensional factor copulas



Outline INTRODUCTION TO COPTU VARIATIONAL INFERENCE SIMULATI Empirical Illustration

00®000000

Kullback Leibler divergence

Variational Inference measures the different between two distributions
using Kullback Leibler divergence:

q(x)
KL(Q||P :/qxlo dx >0
(@17 = [ atog T
gil T— T T 1 7T g T T 1 T T 7T

Note that: KL(Q||P) # KL(P||Q) >0
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Objective function

We specify a family Q of densities as the proposal distribution
q(v,0|\") = arg)\min KL(g(v,0)||p(v,0]u))

KL(q(v,0)[|p(v.0lu)) = Eq[Logq(v,0)] — Eq[Logp(v,0]u)]
KL(q(v,0)[p(v.0|u)) = Eq[logq(v,0)] — Eq[logp(v, 0, u)] + Logp(u)
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Objective function

We specify a family Q of densities as the proposal distribution
q(v,0|\") = arg)\min KL(g(v,0)||p(v,0]u))
KL(q(v,0)|p(v,0|u)) = Eq[1ogq(v,0)] — Eq[Logp(v, b|u)]
KL(q(v,0)||p(v.0lu)) = Eq[logq(v,0)] — Eq[logp(v. 0, u)] + Logp(u)

Because we cannot compute the KL, we optimize an alternative objective
(Evidence lower bound) that is equivalent to the KL up to an added
constant:

ELBO(q) = Eq[logp(v. 0, u)] — Eq[logq(v,0)]
= logp(u) — KL(q(v,0)||p(v.0lu)) < Logp(u)

when g(v,8) = p(v, 0|u), we obtain ELBO = logp(u)
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Mean field variational family

In mean-field variational family, the latent variables are mutually
independent and each governed by a distinct factor in the variational

density.
#latents

H qv/Hq

Exact Posterior

X2 Mean-field Approximation

X1
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Black Box Variational Inference

We specify a family Q of densities over the latent variables.

At = arg;“aXEq(v,e)[logP(V, 0, u)] = Eq(v.0)[Logq(v, 0)]
such that supp(q(v,0|\)) € supp(p(v,0|u))

o We could propose directly a density approximation g(v,0|\) and
take the derivative wrt. A
@ Update A = X\ + Step * Gradient
,/// /?
4/

E

iy

N J /

@ However, this direct approach produces noisy evaluations of the
gradient, V (Eq(, 0)[Logp(v, 6, u)] — Eq(v.0)[Logq(v, 0)]).
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Black box variational inference

An automated algorithm (ADVI) to solve the optimization problem based
on continuous transformations of the parameters (Kucukelbir, 2016).

@ Define a one-to-one differentiable function.
T : supp(p(v, 0|u)) — R¥

@ Any continuous transformation could be possible:
o Correlation constrain: T(#) = atanhf = 1 log (%)
Positive constrain: T(6) = log(0)
Lower constrain: T(0) = log(f — L)
Lower and upper bound constrain: T(0) = logit%
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Variance reduction technique

The optimization becomes:

p*,o" =argmaxEy, o) [Logp(v, 0, u)] — Enguo)[Logg(v,0)]

o

e Draw M samples  ~ N(0, /).

@ Obtain xx = ux + Nkok.

e Obtain (vk,0k) = T 1(xk)

@ Average over M samples for the ELBO.

@ Similar approach to calculate the gradient of ELBO. Update p, o

@ This algorithm is guaranteed to converge to a local maximum of the
ELBO under certain conditions on the step-size sequence.

@ Because o > 0, we optimize over w = log o instead

Hoang Nguyen Variational Inference for high dimensional factor copulas
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Automatic Differentiation Variational Inference in Stan

Algorithm 1: Automatic differentiation variational inference
Data: Copula Data U = {u;}

Result: The value p,w

Initialization p(© = 0,w(©® = 0;

while Any change in copula types do

while Change in ELBO is above some threshold do

Draw M samples 0, ~ N(0,1);

Invert the standardized x,, = %) + exp(w)nm;
Approximate the noisy gradient V,ELBO and VELBO ;
Update p(*1) < p0) 4+ o0V, F ;

Update w(t1) « wl) 4 o0V F

Incremental iteration (i) ;

end
Select best bivariate copula v; and v based on AIC,BIC ;
Reassign the copulas and estimate ;

end
Return Copula structure and the parameters of proposal distribution;
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One factor copula model

We generate a sample of d = 100 variables with T = 1000 time
observations. Bivariate copula types are Gaussian, Student, Clayton,
Gumbel, Frank, Joe (and their rotation 90, 180, 270 degree) and Mix
copulas. Time is report in seconds using one core Intel i7-4770 processor.

Table: Time of Computation and Copula selection

Frank Joe Mix

Copula type Gaussian  Student  Clayton  Gumbel
Initial at correct structure

Time estimated (s) 6 322 18 24

ELBO 31181 35490 78769 67530
Initial at random structure

Time estimated (s) 303 625 325 258

Selection iteration 3 3 4 2

% correction 98% 78% 62% 100%

ELBO 31191 35410 78767 67539

5 9 59
58375 76254 58438

316 308 382

3 4 4
100% 57% 88%
58383 76277 58449

(about 100 - 200 paramters / 100 bivariate copulas / 1 latent factor)
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One factor copula model
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Figure: Posterior means of v and 6 versus true values
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Figure: Mixed copula estimation with a correct vs random initial structure
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Nested factor copula model

We generate the nested factor copula with d = 100 variables, N = 1000
observations and G = 5 groups of latent factors.

Table: Time of Computation and Copula selection

Copula type Gaussian  Student  Clayton Gumbel  Frank Joe Mix
Initial at correct structure

Time estimated (s) 7 334 18 27 9 11 80

ELBO 24731 25351 69358 59615 47988 69989 41796
Initial at random structure

Time estimated (s) 379 1045 354 417 333 380 481

Selection iteration 4 5 5 5 4 6 5

% correction 2% 2% 70% 97% 97% 58% 79%

ELBO 22595 25209 68966 57550 46157 69993 41804

(about 105 - 210 paramters / 105 bivariate copulas / 6 latent factors )
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Gaussian factor copua Student facor copuia Clayton factorcopula Gumbel facor copua Frank factor copula Joe factor copua
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Figure: Posterior means of vp, vz and @ versus true values
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Bifactor copula model

We generate the bifactor copula with d = 100 variables, T = 1000 time
observations and G = 5 groups of latent factors.

Table: Time of Computation and Copula selection

Copula type Gaussian  Student Clayton  Gumbel  Frank Joe Mix

Initial at correct structure

Time estimated (s) 59 1212 119 102 56 100 515

ELBO 50413 83977 136734 117332 96655 135002 93867
Initial at random structure

Time estimated (s) 1589 4317 857 1028 743 718 1025

Selection iteration 4 6 6 4 6 5 6

% correction Tree 1 99% 69% 82% 100% 99% 48% %

% correction Tree 2 97% 79% 76% 57% 98% 44% 66%

ELBO 51260 83917 136508 111419 99575 134895 96287

(about 200 - 300 paramters / 200 bivariate copulas / 6 latent factors )
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copula model

Gaussian factor copula Student actor copula Giayton factor copul

SIMULATION
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Gumbe factor copula Frank factor copula o factor copula

‘Gaussian factor copula Student factor copula Glayton facto copula

Gumbel factor copula Frank factor copula Joe factor copula

4

Gaussian factor copula Student actor copula Clayton facto copua

Gumbe fctor copula Frank factor copula

a “ a

‘Gaussian factor copula Student factor copula Glayton facto copula

“ a “

Gumbel factor copula Frank factor copula Joe factor copula

Figure: Posterior means of

Hoang Nguyen

vg and 6 versus true values
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Financial return dependence

We illustrate an empirical example using d = 100 stock returns divided
into G = 10 groups from 01/01/2010 to 31/12/2013 of the companies
listed in S&P 500 index. The daily data contain T = 1000 observation
days. We use AR(1)-GARCH(1,1)to marginalize each stock returns:

e = Ci + Pirfie—1 + air
ajt = OjtNit

2 2 2
O =W +Qj1d; ;1 + ﬂilgi,t—l

with skewed Student-t innovation, n;. Then, the dependence structure of
innovations is modelled by a factor copula function

Mty - Nde ~ F(M1es -5 Ndt)
~ C(F(nlt)a ) F(’r]dt)w’ V)
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Financial return dependence

Table: Time of Computation and Copula selection

Structure One factor Nested factor Two factor Bifactor copula
Time estimated (s) 1559 2225 4812 5059
ELBO 33340 34232 35051 36070
Selection iteration 3 5 6 4
# bivariate links 100 110 200 200
% Gaussian 0 4 1 12
% Student 94 90 71 92
% Clayton (rotated) 0 0 0 1
% Gumbel (rotated) 6 16 29 13
% Frank (rotated) 0 0 95 61
% Joe (rotated) 0 0 0 1
% Independence 0 0 3 12
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Conclusion

@ Fast variational inference for factor copula model in high dimentions.

o Copula bivariate selection based on VI estimation performs well with
simulation data.

@ Compared to MCMC, variational inference tends to be faster and
easier to scale to large data.

@ VI generally underestimates the variance of the posterior density.
However, the relative accuracy of variational inference and MCMC is
still unknown. But we obtain quite reasonable result with factor
copula models with limited time.
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Sensitivity to Transformations

Consider a posterior density in the Gamma family, with support over R.,. Figure 9 shows three con-
figurations of the Gamma, ranging from Gamma(1,2), which places most of its mass close to 6 = 0, to
Gamma(10, 10), which is centered at 6 = 1. Consider two transformations T, and T,

T,:0—log(0) and T,:0 — log(exp(0)—1),

both of which map R., to R. ADvI can use either transformation to approximate the Gamma posterior.
Which one is better?

Figure 9 show the Apbvi approximation under both transformations. Table 2 reports the corresponding KL
divergences. Both graphical and numerical results prefer T, over T;. A quick analysis corroborates this.
T, is the logarithm, which flattens out for large values. However, T, is almost linear for large values
of 6. Since both the Gamma (the posterior) and the Gaussian (the Apvi approximation) densities are
light-tailed, T, is the preferable transformation.

—— Exact Posterior

2 —— ADVI with T}
a —_ ith T
R 1 1 ADVI with T,
[=]
0 1 2 0 1 2 0 1 2 0
(a) Gamma(1,2) (b) Gamma(2.5,4.2) (¢) Gamma(10,10)

Figure 9: ApvI approximations to Gamma densities under two different transformations.
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