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ABSTRACT

We develop a Bayesian procedure for the homogeneity testing problem of r populations

using r× s contingency tables. The posterior probability of the homogeneity null hypothesis

is calculated using a mixed prior distribution. The methodology consist of choosing an

appropriate value of π0 for the mass assigned to the null and spreading the remainder,

1 − π0, over the alternative according to a density function. With this method, a theorem

which shows when the same conclusion is reached from both frequentist and bayesian points

of view is obtained. A sufficient condition under which the p-value is less than a value α and

the posterior probability is also less than 0.5 is provided.

1. INTRODUCTION

The display of the data by means of contingency tables is used for discussing differ-

ent approaches to both frequentist and Bayesian Inference. For instance, when we want to

investigate the behavior of a characteristic Y common to r large populations. In this situa-

tion, to get information about Y , independent random samples, (Yi1, . . . , Yini
), i = 1, . . . , r,

∑r
i=1 ni = N , are drawn, respectively, from each population. Our objective is to test if the

data gives us enough evidence to reject the homogeneity null hypothesis, that is, we want to

decide if r populations have a common distribution F (y). To do this, we divide the common

sample space into an arbitrary number, s, of exclusionary classes, Cj, i = j, . . . , s. Now,
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we denote by nij the observed frequency in Cj (j = 1, . . . , s) of the sample i (i = 1, . . . , r).

Then, the data can be displayed in Table 1.

Table 1. Data in the r × s table.

Class 1 Class 2 . . . Class s Total

Sample 1 n11 n12 . . . n1s n1

Sample 2 n21 n22 . . . n2s n2

...
...

...
...

...
...

Sample r nr1 nr2 . . . nrs nr

Total m1 m2 . . . ms N

In this situation a quantitative measure of the strength of the evidence that the data gives

in support or in rejection of the hypothesis that the proportion of elements belonging to Cj

(j = 1, . . . , s) is the same in all the populations (i = 1, . . . , r), that is to say, p1j = . . . = prj,

for each j = 1, . . . , s.

There are of course a number of variations on this problem. In this contex, some impor-

tant Bayesian references are given next.

Howard (1998) gives a Bayesian discussion of the homogeneity problem for 2 × 2 tables.

He advocates for the more frequent use of unilateral tests, considering as hypotheses of

interest p2 < p1 and p1 < p2, where p1 and p2 are the proportion of successes in the first

and second population, respectively. He gives a quantitative measure of the strength of

the evidence in support of the more likely hypothesis, assuming that p1 and p2 will not be

exactly equal, and that neither will be 0 or 1. Given independent samples from two binomial

distributions, he notes that the posterior probability that p2 < p1 can be estimated from the

standard (uncorrected) χ2 significance level. In order to reach this result, he has to suppose

independent Jeffreys priors about the two populations, that is to say,

π (p1, p2) ∝ p
−1/2
1 (1 − p1)

−1/2 p
−1/2
2 (1 − p2)

−1/2 .

Moreover, he introduces a conjugate family of priors which incorporate dependence between

beliefs about the two populations.
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In this same line of work, with unilateral hypotheses like p1 > p2, other Bayesian ap-

proaches to the problem of comparing two proportions for a 2×2 table can be mentioned;

log-odds-ratio methods and inverse-root-sine methods, which calculate the posterior proba-

bility that Λ1 − Λ2 > 0 for beta priors, where Λi = log pi (1 − pi)
−1, and Λi = arcsen

√
pi,

i = 1, 2, respectively, as measures of the degree in which two populations are homogeneous

(see Lee, 2004, pages 152-154).

Quintana (1998) postulates a nonparametric Bayesian model for assessing homogeneity

in r × s contingency tables with fixed right margin totals. The vectors of classification

probabilities are assumed to be a sample from a distribution F , and the prior distribution of

F is assumed to be a Dirichlet process, centered on a probability measure α and with weight

c. He also assumes a prior distribution for c and proposes a Bayes factor.

Lindley (1988) gives a probability model for the formation of genotypes from two alleles.

The alleles are A and a, and the genotypes are AA, Aa and aa (it is a standard notation).

The model can be expressed in terms of two parameters, α = [log(4p1p3/p
2
2)] /2 and β =

[log(p1/p3)] /2. A Bayesian test of the hypothesis that α = 0 versus α 6= 0, based on a Bayes

factor, is considered, where α = 0 is the null hypothesis of Hardly-Weinberg equilibrium,

H0 : p2, 2p (1 − p) , (1 − p)2, p being the proportion of A’s.

The equality of cell probabilities null hypothesis in contingency tables may be considered

as a special simple hypothesis. In parametric testing of a simple null hypothesis, it is known

that frequentist and Bayesian procedures can give rise to different decisions, see Lindley

(1957), Berger and Sellke (1987) and Berger and Delampady (1987), among others. On the

other hand, Casella and Berger (1987) show that there is no discrepancy in the one-sided

testing problem.

It is needed to remark that, in the literature, the comparison between frequentist and

Bayesian methods, for a particular testing problem, is usually carried out by searching for a

prior distribution which does p-values approximately equal to posterior probabilities. In most

of the Bayesian approaches the infimum of the posterior probability of the null hypothesis or

the Bayes factor, over a wide class of prior distributions, is considered and it is then obtained
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that the infimum is substantially larger than the corresponding p-value. It is necessary to

point out that in all these situations the mass assigned to the simple null hypothesis is 1/2.

However, Lindley (1957) introduces this discrepancy for normal distributions with respect

to the decision derived from both analysis. He produces an example to show that, if H is a

simple hypothesis and x the result of an experiment, the following two phenomena can occur

simultaneously: “a significance test for H reveals that x is significant, at, say, the 5% level”

and “the posterior probability of H, given x, is for quite small prior probabilities of H, as

high as 95%”.

Motivated in Lindley’s paradox our objective is to show when and how, to test (1), there

is no discrepancy between the decision derived from frequentist and Bayesian approaches

when a single prior distribution is used.

Recently, Gómez-Villegas and González-Pérez (2005) have developed a Bayesian proce-

dure to test equality of proportions of independent multinomial distributions when the com-

mon proportions are known. Their approach to the homogeneity testing problem consists of

working directly with the simple null hypothesis and calculating its posterior probability. To

do this, they follow the methodology used by Gómez-Villegas, Máın and Sanz (2004) for the

multivariate point null testing problem. This methodology is based on choosing an appropri-

ate value of π0 for the probability of the point null and distributing the remaining probability

over the alternative with a prior density. Furthermore, Gómez-Villegas and González-Pérez

(2005) calculate posterior probabilities of the null hypothesis with respect to a mixture of a

point prior on the null and an independent Dirichlet prior on the proportions. They reconcile

frequentist and Bayesian evidence in terms of a sufficient condition under which the same

decision is reached with both methods. To do this they introduce an appropriate value of

π0 which verifies that the p-value is less (or higher) than α and the posterior probability is

also less (or higher) than 0.5.

Usually, we only want to investigate the equality of cell probabilities, without knowing

anything about the common value under the null. In this work, we develop three Bayesian

methods to test equality of proportions of independent multinomial distributions when the
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common proportions are unknown, generalizing the results obtained by Gómez-Villegas and

González (2005). Three Bayesian evidence measures are calculated, using appropriate mixed

prior distributions, and conditions under which the p-value is less (or higher) than α and the

posterior probability is also less (or higher) than 0.5. This is a new approximation because

it permits one to reach the same decision from both points of view.

Table 2. Pearson’s example.

Successes Failures Total

Sample 1 3 15 18

Sample 2 7 5 12

Total 10 20 30

Section 2 formulates the problem in a precise way. In section 3, three Bayesian methods

to test the homogeneity null hypothesis with r × s, when the common proportions vector

under the null is unknown, are developed. Section 4 reconciles frequentist and Bayesian

approaches in terms of a sufficient condition and Pearson’s (1947) data (see Table 2) is used

to illustrate the procedure. Section 5 provides a summary of conclusions.

2. THE PROBLEM

Let Xi, i = 1, · · · , r, be independent multinomial random variables, MB (ni, pi), with

pi = (pi1, · · · , pis) ∈ Θ, where Θ = { p = (p1, · · · , ps) ∈ (0, 1)s ,
∑s

i=1 pj = 1} ⊂ Rs−1.

In this situation, we wish to test

H0 : p1 = · · · = pr, versus H1 : ∃i 6= j, pi 6= pj. (1)

Therefore, a mixed prior distribution is needed to test (1).

Consider that our prior opinion about P = (p1, · · · ,pr) ∈ Θr ⊂ Rr(s−1) is given by means

of the density π (P) =
∏r

i=1 π (pi).

Denote by p0 = (p01, · · · , p0s) ∈ Θ the unknown value under the null. Therefore, if we

denote by P0 = (p0, · · · ,p0) ∈ Θr ⊂ Rr(s−1), then H0 : P = P0 is the null hypothesis in (1).

Now, we are going to consider the more realistic precise hypotheses,
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H0δ : P ∈ C(δ) versus H1δ : P /∈ C(δ),

with C(δ) =
⋃

p0∈Θ B (P0, δ),

B (P0, δ) =
{

P ∈ Θr,
∑r

i=1

∑s−1

j=1
(pij − p0j)

2 ≤ δ2
}

and a value of δ > 0 sufficiently small.

We propose to assign a prior mass, π0, to the null by means of averaging,

π0 =
∫

C(δ)
π (P)dP. (2)

3. THREE BAYESIAN APPROACHES

In this section we develop three Bayesian methods to test (1).

3.1. FIRST METHOD

If the prior opinion about p0, the unknown value of the common proportions under

the null in (1), is given by π(p0), then, to test (1), we propose the following mixed prior

distribution:

π∗ (P) = π0π (p0) IH0
(P) + (1 − π0) π (P) IH1

(P) ,

with π0 = π0(δ) as in (2).

We can note that the prior probability assigned to H0 by means of π∗ (P) and to H0δ by

means of π (P) are the same thing.

In this situation, the posterior probability of H0, when the data of Table 1 has been

observed, is

π0

∫

Θ

∏s
j=1 p

∑r

i=1
nij

0j π (p0) dp0

π0

∫

Θ

∏s
j=1 p

∑r

i=1
nij

0j π (p0) dp0 + (1 − π0)
∏r

i=1

∫

Θ

∏s
j=1 p

nij

ij π (pi) dpi

.

Consider αi = (αi1, · · · , αis), with αij > 0, j = 1, · · · , s, i = 1, · · · , r and assign to

each pi a Dirichlet prior distribution of parameter αi, D (αi), i = 1, · · · , r, (see Ghosh and

Ramamoorthi, 2003, chapter 3),
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π (pi) =
Γ
(

∑s
j=1 αij

)

∏s
j=1 Γ (αij)

∏s

j=1
p

αij−1
ij , pi = (pi1, · · · , pis) ∈ Θ, i = 1, · · · , r.

In this case, the posterior probability of H0 is

∫

Θ

∏s

j=1
p
∑r

i=1
nij

0j π (p0) dp0 =
Γ
(

∑s
j=1 α0j

)

∏s
j=1 Γ (α0j)

∫

Θ

∏s

j=1
p

mj+α0j−1
0j dp0

=
Γ
(

∑s
j=1 α0j

)

∏s
j=1 Γ (α0j)

∏s
j=1 Γ (mj + α0j)

Γ
(

N +
∑s

j=1 α0j

) .

Therefore, such posterior probability can be expressed as

B1 (π0) =
[

1 +
1 − π0

π0

η1

]−1

, (3)

where

η1 =

∏s
j=1 Γ (α0j)

Γ
(

∑s
j=1 α0j

)

Γ
(

N +
∑s

j=1 α0j

)

∏s
j=1 Γ (mj + α0j)

∏r
i=1 Γ

(

∑s
j=1 αij

)

∏r
i=1

∏s
j=1 Γ (αij)

∏r
i=1

∏s
j=1 Γ (nij + αij)

∏r
i=1 Γ

(

ni +
∑s

j=1 αij

)

is a statistic which quantifies the strength of the evidence against H0.

With this procedure we reject H0 when B1 > 1/2.

3.2. SECOND METHOD

Gómez-Villegas and González-Pérez (2005) calculate the posterior probability of H0 when

P0 ∈ Θ is a known value using the mixed prior distribution

π∗ (P|p0) = π0IH0
(P) + (1 − π0) π (P) IH1

(P) .

In this situation, if we assign to each pi a Dirichlet prior distribution of parameter αi,

i = 1, · · · , r, this posterior probability is

P (H0|n11, . . . , nrs,p0) =
[

1 +
1 − π0

π0

η2

]−1

, (4)

where
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η2 = η2(p0) =
∏s

j=1
p
−mj

0j

∏r
i=1 Γ

(

∑s
j=1 αij

)

∏r
i=1

∏s
j=1 Γ (αij)

∏r
i=1

∏s
j=1 Γ (nij + αij)

∏r
i=1 Γ

(

ni +
∑s

j=1 αij

) .

If the prior opinion about p0 is given by π(p0), then, the following Bayesian evidence

measure to test (1) can be considered:

B2 =
∫

Θ
P (H0|n11, . . . , nrs,p0) π (p0) dp0.

From this Bayesian viewpoint we reject H0 when B2 > 1/2.

3.3. THIRD METHOD

In the same context of the second method, the idea is to consider the supremum value of

P (H0|n11, . . . , nrs,p0) when p0 ∈ Θ as a Bayesian quantitative measure to test (1).

In this situation, if we assign to each pi a Dirichlet prior distribution of parameter αi,

i = 1, · · · , r, as the infimum of
∏s

j=1 p
−mj

0j when p0 ∈ Θ is reached in p̂0j = mj/N , j = 1, · · · , s,
such a measure would be

B3 =
[

1 +
1 − π0

π0

η3

]−1

, (5)

where

η3 = NN
∏s

j=1
m

−mj

j

∏r
i=1 Γ

(

∑s
j=1 αij

)

∏r
i=1

∏s
j=1 Γ (αij)

∏r
i=1

∏s
j=1 Γ (nij + αij)

∏r
i=1 Γ

(

ni +
∑s

j=1 αij

) .

Therefore, with this method we reject H0 when B3 < 1/2.

4. RECONCILIATION BETWEEN FREQUENTIST AND BAYESIAN APPROACHES

From the frequentist viewpoint, instead of considering the observed data (n11, . . . , nrs) in

Table 1 as fixed values and permitting that P changes, the point P0 of the null hypothesis is

fixed and later, the probability of observing a point in some extreme region which includes

(n11, . . . , nrs) is calculated. That is to say, instead of calculating the posterior probability of

the null hypothesis, the p-value is calculated. (The idea is basically that or H0 is false, or

an event with very small probability has occurred.)
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As usual, we are going to use as frequentist measure of the evidence, the discrepancy

between the observed and expected values under H0, in the terms of Pearson’s χ2 statistic.

Therefore, the test statistic is the random variable

Λ = N

(

∑r

i=1

∑s

j=1

n2
ij

nimj

− 1

)

.

If λ0 is the value of Λ at an observed point, Λ (nij0, i = 1, · · · , r, j = 1, · · · , s) = λ0, then

{Λ ≥ λ0} is a possible critical region and the corresponding p-value is

p (λ0) = sup
p0∈ΘP (Λ ≥ λ0|p1 = · · · = pr = p0) = P

(

χ2
(r−1)(s−1) ≥ λ0

)

.

With this procedure, the decision of accepting or rejecting H0 depends on the size of the

p-value. For instance, H0 is rejected when p (λ0) < α, where α ∈ (0, 1) is a sufficiently small

value (the significance level of the test).

We can note that the three Bayesian evidence measures given in expressions (3), (4) and

(5), respectively, depends on π0 = π0(δ) given in (2).

The value of π0 which verifies

Bk(π0) =
p

2p∗
(k = 1, 2, 3) (6)

satisfies P (H0|n11, . . . , nrs) > 1
2

when p(n11, . . . , nrs) > p∗. Therefore, using the value of π0

which is obtained from (6), the same conclusion would be reached with both approaches. If

we denote this value by π0
k0, we can note that

π∗
k0 =

ηkp

ηkp + 2p∗ − p
, k = 1, 3,

while, with the second method, π∗
20 must be calculated numerically.

Notwithstanding, this reconciliation is too strict, since π∗
k0 (k = 1, 2, 3) depends on the

data. In this sense, we do not affirm that the procedure to obtain the agreement has to be

done by means of equaling both expressions but using of a value next to the result of this

equalization. Consequently, the value of π0, and accordingly the value of δ, which obtains

the agreement must decrease when p∗ increases.
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The desirable reconciliation is to formulate the agreement so that if for example p∗ ∈
(0.05, 0.1), then there exists an interval of values of π0(δ) ∈ (ℓ1, ℓ2), for some ℓ1, ℓ2 ∈ (0, 1),

ℓ1 < ℓ2, such that the decision obtained using the p-value to test (1) is the same as the

conclusion reached with some Bayesian measure.

In order to eliminate the dependence of the data, we consider the sample space formed

by all of the possible r × s tables to ni, i = 1, . . . , r fixed and known.

Remember that the three Bayesian evidence measures given in expressions (3), (4) and

(5) depend on π0 = π0(δ) given in (2).

Let πk
0 = πk

0 (δk) the value of π0 which verifies Bk (π0) > 1/2 when π0 > πk
0 , k = 1, 2, 3.

For example, πk
0 = ηk(ηk + 1)−1, when k = 1, 3.

Fixed p∗, denote by means of

ℓk
1 = ℓk

1 (p∗, n1, · · · , nr) = max
(nij), p>p∗

πk
0 ,

ℓk
2 = ℓk

2 (p∗, n1, · · · , nr) = min
(nij) p≤p∗

πk
0 ,

k = 1, 2, 3.

The following theorem shows how and when it is possible to achieve a reconciliation in

the exposed terms.

Theorem 3.1. Let ni, i = 1, . . . r and p∗ be fixed and known.

If p∗ satisfies ℓk
1 ≤ ℓk

2 with the k−Bayesian method (k = 1, 2, 3), then there exists an

interval of values of π0, Ik = Ik (p∗, n1, . . . nr) =
(

ℓk
1, ℓk

2

)

, such that one and only one of the

two following postulates is verified:

“p(n110, · · · , nrs0) > p∗ & Bk (π0|n110, · · · , nrs0) > 1/2”,

“p(n110, · · · , nrs0) ≤ p∗ & Bk (π0|n110, · · · , nrs0) ≤ 1/2”,

whatever (n110, · · · , nrs0) may be.
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Proof. The three Bayesian evidence measures given in expressions (3), (4) and (5) verifies

that Bk(π0) is an increasing function of π0 and Bk(π0) > 1/2, when π0 > πk
0 , k = 1, 2, 3.

Moreover, if λ1 < λ2, then p (λ1) = P {Λ ≥ λ1|θ0} ≥ P {Λ ≥ λ2|θ0} = p (λ2).

Let λ∗ and λ∗ be

λ∗ = min
(n11,···,nrs), p(λ)≤p∗

Λ,

λ∗ = max
(n11,···,nrs), p(λ)>p∗

Λ.

Thereby, λ∗ ≤ λ∗.

Furthermore, if p∗ satisfies ℓk
1 ≤ ℓk

2, then (ℓk
1, ℓk

2) is an interval of values in (0, 1).

Fixed π0 ∈
(

ℓk
1, ℓk

2

)

and (n11, · · · , nrs) such that Λ (n11, · · · , nrs) = λ, with λ < λ∗, then

π0 > ℓk
1 ≥ πk

0(n11, . . . , nrs) and P {Λ ≥ Λ (x1, · · · , xn)|θ0} > p∗.

On the other hand, fixed π0 ∈
(

ℓk
1, ℓk

2

)

and (n11, · · · , nrs) such that λ ≥ λ∗, then π0 <

ℓk
2 ≤ πk

0(n11, . . . , nrs) and P {Λ ≥ Λ (x1, · · · , xn)|θ0} ≤ p∗.

Therefore, ℓk
1 ≤ ℓk

2 is a sufficient condition to reach the same conclusion to test (1) with

the p-value, using p∗, and the k−Bayesian method (k = 1, 2, 3), using a value of δk with

π0(δk) ∈ (ℓk
1, ℓ

k
2) in the corresponding mixed prior distribution.

Table 3. Data in the 2×2 table.

Successes Failures Total

Sample 1 a b n1

Sample 2 c d n2

Total m1 m2 N

To illustrate the procedure, we are going to consider 2 × 2 tables (see Table 3). In this

case, we want to test if the proportion of successes in the first population, p1, is the same as

in the second, p2, that is

H0 : p1 = p2, versus H1 : p1 6= p2. (7)
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In this situation, the usual test statistic is the random variable

Λ = {ad − bc}2 N

n1n2m1m2

.

and, when a data point λ0 = Λ(a0, c0) is observed, the evidence used is the p-value,

p = P (Λ ≥ λ0|p1 = p2) = P
(

χ2
1 ≥ λ0

)

.

From a Bayesian viewpoint, when p0, p1 and p2 have uniform prior distributions, respec-

tively, the Bayesian evidence measures given in expressions (3), (4) and (5) are obtained

evaluating such expressions in

η1 =
Γ (N + 2)

Γ (m1 + 1) Γ (m2 + 1)
γ (a, b, c, d) ,

η2 = η2 (p0) = p−m1

0 (1 − p0)
−m2 γ (a, b, c, d) ,

η3 = NNm−m1

1 m−m2

2 γ (a, b, c, d) ,

where γ (a, b, c, d) = Γ(a+1)Γ(b+1)
Γ(a+b+2)

Γ(c+1)Γ(d+1)
Γ(c+d+2)

.

Moreover, this measures depends on π0 = π0(δ) given in (2). In this case, π0 = 2
√

2δ +

2δ2 − 4
√

2δ3, when δ is sufficiently small.

It is necessary to point out that none of the statistics Λ, η1 and η3 are sufficient statistics.

A summary of results to Pearson’s data (see Table 2) is displayed in Table 4. We observe

that the value of π∗
k0 = π∗

k0(δk) (k = 1, 2, 3) which gets strict agreement by (6) decreases

when p∗ increases. Furthermore, the third Bayesian method is the most conservative with

respect to the H0 in (7), whereas the second is the least. For instance, if π0 = 1
2
, the three

Bayesian methods reject H0, but B3 = 0.4484, B1 = 0.1463 and B2 = 0.111. Thereby, as

we see in Table 4, π∗
30 < π∗

10 < π∗
20. As the values of δ∗2 are close to the values of δ∗1 and the

computational cost is higher, we propose to use the first method or, with a more conservative

point of view, the third.
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Table 4. Summary of results for Pearson’s data, with π(p0) = I(0,1)(p0) and

π (p1, p2) = I(0,1) (p1) I(0,1) (p2).

Classical Method

Λ p

5,625 0,017706

Bayesian Methods

Methods ηk Bk (1/2) πk
0 δk

Method 1 5,8347 0,1463 0,8537 0,2913

Method 2 0,110919 0,995416 0,3514

Method 3 1,2301 0,4484 0,5516 0.1836

Methods Strict Values p∗ = 0, 5 p∗ = 0, 1 p∗ = 0, 05 p∗ = 0, 01

π∗
k0 0,09516 0,3617 0,5566 0,9782

Method 1 δ∗k 0,03294 0,1211 0,1852 0,3435

p (2p∗)−1 0,017706 0,08853 0,17706 0,8853

π∗
k0 0,098975 0,41969 0,690015 0, 911882

Method 2 δ∗k 0,034244 0,14001 0,23088 0,3535

p (2p∗)−1 0,017706 0,08853 0,17706 0,8853

π∗
k0 0,02169 0,1067 0,2093 0, 9047

Method 3 δ∗k 0,00763 0,03686 0,07114 0,3117

p (2p∗)−1 0,017706 0,08853 0,17706 0,8853

To eliminate the dependence on the data, we have generated a total of 247 possible 2×2

tables with n1 = 18 and n2 = 12. These tables are organized in ascending order carried out

according to the values of η1 and η3 (see Figure 1 and 2), respectively. It may be checked that

it is not possible to express B1 and B3 in terms of Λ. However, there exist non-monotonous

functions hk : R+ → R+, such that Λ = hk (ηk), k =1, 3 (see Figures 1 and 2). Therefore,

the critical region may be expressed in terms of η1 and η3. Also, we observe that h3 is

more irregular than h1. Moreover, it is clear that the existence of values of p∗ which satisfy

13



the sufficient condition that ensures the agreement between both methods depends on the

increasing tendency which we can observe in the functional relationship that exists between

both statistics, Λ = hk (ηk) (k = 1, 3), although this relationship is not strictly monotonous.

A summary of results to Pearson’s data (see Table 2) is displayed in Table 4. We observe

that the value of π∗
k0 = π∗

k0(δk) (k = 1, 2, 3) which gets strict agreement by (6) decreases

when p∗ increases. Furthermore, the third Bayesian method is the most conservative with

respect to the H0 in (7), whereas the second is the least. For instance, if π0 = 1
2
, the three

Bayesian methods reject H0, but B3 = 0.4484, B1 = 0.1463 and B2 = 0.111. Thereby, as

we see in Table 4, π∗
30 < π∗

10 < π∗
20. As the values of δ∗2 are close to the values of δ∗1 and the

computational cost is higher, we propose to use the first method or, with a more conservative

point of view, the third.

23858.0769230769

1754.2703619910

279.0884666804

86.1746844487

34.4272394272

15.3622693096

7.1561145303

4.7668485361

2.3815282692

1.9861868900

1.1469567584

.8685590725

.7241306370

.5995455783

.4870743034

.4396667574

.4151201449

.3406114010

.1255060729

40

30

20

10

0

Figure 1: Bars Diagram (η1 (a, c) , Λ (a, c)) for 2 × 2 tables with n1 = 18, n2 = 12, π(p0) =

I(0,1)(p0) and π (p1, p2) = I(0,1) (p1) I(0,1) (p2).
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By means of an easy data analysis, we can check that to test (7), with n1 = 18 and

n2 = 12, using π (p0) = I(0,1) (p0) and π (p1, p2) = I(0, 1) (p1) I(0, 1) (p2), there are values of

p∗ which satisfy the sufficient condition of Theorem 1. For instance, the highest value of

p∗ which is in agreement with the first method is p∗ = 0.0635, while with the second this

value is p∗ = 0.008, because the third method is more conservative than the first. Moreover,

when p∗ ∈ (0.0635, 0.0637) or p∗ ∈ (0.008, 0.0085), using the first method, respectively,

with δ ∈ (0.2222, 0.223) (that is π0 ∈ (0.6651, 0.6675)) or δ ∈ (0.3218, 0.3252) (that is π0 ∈
(0.9288, 0.9368)), the obtained Bayesian decision is the same as the one obtained with the

classical method. With the third method, this also happens when p∗ ∈ (0.08, 0.0085) using

δ ∈ (0.2478, 0.2503) (that is π0 ∈ (0.73769, 0.74455)). However, there is not agreement

when p∗ = 0.5, p∗ = 0.1, p∗ = 0.05 o p∗ = 0.01 with neither of them.

5327.3687385886

388.2987451779

61.2052953844

18.1670039704

7.5742207677

3.3190437038

1.5232087087

.9396490916

.4884170138

.3501515108

.2262813200

.1768751231

.1382373155

.1171483391

.0967644853

.0892229007

.0772004222

.0523791335

.0040485830

40

30

20

10

0

Figure 2: Bars Diagram (η3 (a, c) , Λ (a, c)) for 2 × 2 tables with n1 = 18, n2 = 12, π(p0) =

I(0,1)(p0) and π (p1, p2) = I(0,1) (p1) I(0,1) (p2).
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5. CONCLUSIONS AND COMMENTS

Using r× s tables and appropriate mixed prior distributions, when independent samples

are drawn from r multinomial populations, three Bayesian measures, Bk, (k = 1, 2, 3) of the

strength of the evidence given by the data against the homogeneity null hypothesis to test

(1) can be calculated (see expressions (3), (4) and (5)).

Choosing appropriate values of π0, the prior mass assigned to H0 given in expression (2),

it is possible to reach the same decision with frequentist and Bayesian methods. Indeed,

fixing ni, i = 1, · · · , r and p∗ ∈ (0, 1) (the value used by a frequentist statistician to quantify

the usual p-value), Theorem 3.1 gives a sufficient condition by which a reconciliation between

both measures is possible. That is, when ℓk
1 ≤ ℓk

2 (ℓk
1 and ℓk

2 as in Theorem 3.1) is satisfied

to any of the proposed Bayesian approaches in section 3 (k = 1, 2, 3), a Bayesian statistician

choosing π0 ∈ (ℓk
1, ℓ

k
2) in the corresponding mixed prior distribution and quantifying Bk with

1/2, takes the same decision to test (1) as a frequentist statistician who uses p∗ to quantify

the usual p-value, whatever the data point may be.

The generalization of the previous results to the homogeneity testing problem of indepen-

dent multinomial populations, when the common proportions under the null have a known

functional form, p0 = p (ω), is possible following a similar reasoning.
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