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The multivariate exponential power family is considered for n-dimensional random vari-
ables, Z, with a known partition Z � ðY;XÞ of dimensions p and n� p, respectively, with
interest focusing on the conditional distribution YjX. An infinitesimal variation of any
parameter of the joint distribution produces perturbations in both the conditional and
marginal distributions. The aim of the study was to determine the local effect of kurtosis
deviations using the Kullback–Leibler divergence measure between probability distribu-
tions. The additive decomposition of this measure in terms of the conditional and marginal
distributions, YjX and X, is used to define a relative sensitivity measure of the conditional
distribution family fYjX ¼ xg. Finally, simulated results suggest that for large dimensions,
the measure is approximately equal to the ratio p=n, and then the effect of non-normality
with respect to kurtosis depends only on the relative size of the variables considered in the
partition of the random vector.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In modeling a phenomenon characterized by a random n-dimensional vector Z, very often not all the vector components
play symmetrical roles. In this case we consider a partition of the components of Z in two blocks, Y and X, with dimensions p
and n� p, respectively. Examples include regression, classification and Bayesian networks.

The multivariate normal distribution plays a central role in this setting because marginals and conditionals of multivar-
iate normal random variables are also normal. It has also several simplifying properties one of which is that it is uniquely
determined by the mean vector and the covariance matrix of the random variables, so it is characterized in terms of central
tendency and precision. With respect to the shape characteristics of skewness and kurtosis, it is a symmetric and unimodal
distribution and is considered as a reference for the degree of peakedness or flatness for other distributions. The use of kur-
tosis to describe departures from Gaussianity, often found for real-world data [6,16,22,12], goes back to Pearson [19], how-
ever many statistical procedures rely on Gaussianity assumptions and departures from these models can affect final results.
Thus a sensitivity analysis to deviations from Gaussianity should be performed.

In this work we investigate the impact of a change in the kurtosis of Z in the corresponding marginal and conditional dis-
tributions of some partition of the random variable. Thus, we introduce a measure to evaluate how the effect of heavy or light
tails (peakedness or flatness relative to the normal distribution) of the joint model is transmitted through the structure. We
focus on a family of distributions that is of particular interest in applications when the normality assumption is doubtful in
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the sense of kurtosis. This is a generalization of the multivariate normal distribution and introduces a parameter, b, that is a
measure of the non-normality of the distribution [7]. Members of the multivariate exponential power (MEP) family exhibit a
fairly broad spectrum of shapes for the probability density function, ranging from rectangular (short-tailed) to double expo-
nential (long-tailed), with a normal distribution as the central case.

Similar characteristics to the theoretical framework described here can be found in Gaussian Bayesian networks (GBNs), a
subclass of Bayesian networks (BNs) for which the joint distribution of Z is a multivariate normal distribution. A BN is a prob-
abilistic graphical model for which the information can be updated given some evidence. Therefore, two subsets of variables
are found in BNs: the evidential or known variables, corresponding to X, and the interest or unknown variables, correspond-
ing to Y in our context. The process for updating the information given evidence is known as evidence propagation.

After evidence propagation, the network output is given by the conditional distribution of the variables of interest for ob-
served values of the evidential variables, that is YjX ¼ xf g. A joint model deviation with respect to kurtosis of the distribution
of Z may entail a different network output. In particular, research in linear Causal models with continuous variables, also
known as Structural Equation Models (SEM) [4], is based on the assumption of Gaussian data, however if non-Gaussian data
are supposed, much stronger results can be obtained [13].

Summing up, in situations where the Gaussianity assumption is unjustified the evaluation of non-Gaussianity is crucial
because it can result in a positive or negative effect on the conclusions.

Thus, our aim is to analyze the sensitivity of the normal (b ¼ 1) conditional distributions to small deviations in b, using
the Kullback–Leibler (KL) divergence to measure the discrepancy between distributions. A known additive property of the KL
divergence leads directly to the definition of a relative sensitivity measure for the conditionals, taking values in ½0;1�.

In Section 2 the concepts to be used are presented. In Section 3 we derive the proposed relative sensitivity measure to
evaluate normality deviations, making a conjecture about its particular values based on simulation results and both compu-
tational and graphical procedures. Section 4 is devoted to a discussion and interpretation of the simulation results. Finally,
some conclusions are given in Section 5 while the calculations of the results observed by simulation are presented in Appen-
dix A.

2. The effect of non-normality

There are many reasons for the predominant role of the multivariate normal distribution in statistics. It results from some
of its most desirable properties, as that it represents a natural extension of the univariate normal distribution and provides a
suitable model for many real-life problems concerning vector-valued data. However, many studies have addressed non-nor-
mality in different contexts [5,21,18]. More recently, [9] study some statistics behavior as the kurtosis in the data varies and
[11] derive the asymptotic distribution of some known statistics and show they are robust against departure from normality.

As mentioned previously, we consider here some non-normal distributions with respect to kurtosis in the multivariate
case. To evaluate the effect of a kurtosis deviation with respect to a Gaussian model, we use the MEP distribution and KL
divergence to measure the difference between distributions.

2.1. MEP family

The density function of an n-dimensional MEP distribution with parameters l; R and b; MEPðl;R; bÞ is given by
f ðzjl;R;bÞ ¼ nCðn=2Þ
pn=2C 1þ n

2b

� �
21þ n

2b

jRj�1=2exp �1
2
½ðz� lÞTR�1ðz� lÞ�b

� �
;

where the vector l 2 Rn; R is a positive definite symmetric matrix and b is the kurtosis parameter b 2 ð0;1Þ. Thus, the non-
normality parameter is directly related to the shape of the distribution:
b
 Distribution
b ¼ 1
 multivariate normal

b ¼ 1=2
 multivariate double exponential

b!1
 multivariate uniform
The parameters l and R play a similar role to their counterparts in the normal case. It is well known [8] that if
Z ¼ ðY;XÞ � MEPnðl;R; bÞ, then YjX ¼ x � EnðlYjX;RYjX; g

ðbÞ
YjXðtÞÞ, an elliptical distribution with parameters:
lYjX ¼ lY þ RYXR�1
XXðx� lXÞ;

RYjX ¼ RYY � RYXR�1
XXRXY
and a density generator
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gðbÞYjXðtÞ ¼ exp �1
2
ðt þ qxÞ

b

� �
;

where qx ¼ ðx� lXÞ
TR�1

XXðx� lXÞ is the squared Mahalanobis distance from x to the center of the X distribution. The param-
eter b is a shape parameter, as the kurtosis depends only on it. Then the density function can be expressed as
fYjX yjxð Þ / RYjX
�� ���1

2 � gðbÞYjXððy � lYjXÞ
TR�1

YjXðy � lYjXÞÞ: ð1Þ
2.2. KL divergence

The KL divergence measure was introduced as a generalization of Shannon’s entropy and has been widely used in both
statistical inference and information theory. This divergence is a non-symmetric measure that provides global information
on the difference between two probability distributions [14].

The KL divergence between two probability densities f and g, defined over the same domain, is given by:
DKLðgjf Þ ¼
Z 1

�1
f ðwÞ ln f ðwÞ

gðwÞdw:
We consider a directed divergence measure because we have the normal distribution, f, as a reference. The following
equation relates the joint conditional and marginal divergences:
DKLðgY;XjfY;XÞ ¼ EX DKL gYjXjfYjX

� �h i
þ DKL gXjfXð Þ; ð2Þ
where f ; f YjX and fX represent the joint, conditional and marginal densities of the reference distribution and g; gYjX and gX

are the corresponding densities of the distribution to be compared.

3. Relative conditional sensitivity

Now we address our objective to measure, for an n-dimensional random vector Z ¼ Y;Xð Þ, the relative sensitivity of the
conditional distributions fYjX to infinitesimal changes d in the parameters of the joint density f Y;Xð Þ. Other studies have
assessed the local divergence of conditional distributions for different purposes. In particular, Blyth measured the local
association of the random variable Y with the covariates at X ¼ x using an appropriate limit of the divergence between
fYjX¼x and fYjX¼xþdx and proposed the use of these local divergences to measure the association between random variables
[3]. For GBNs, conditional divergence measures to evaluate the sensitivity of model output to parameter perturbations were
used in [10]. Formally, (2) is a decomposition into positive summands analogous to that of sums of squares in variance anal-
ysis. Then, with the aim of evaluating relative deviations between conditional distributions, relation (2) suggests considering
the corresponding ratio of divergences. Finally, the local aspect of this divergence measure is achieved by taking the limit
lim
d!0

EX DKL fYjX;djfYjX
� �	 


DKL f Y;Xð Þ;djf Y;Xð Þ
� � ;
where the notation f�;d represents the density associated with the perturbed parameter. With this methodology, some local
sensitivity measures can be applied to probabilistic structures where the interest is in the distribution of one set of variables
given the distribution of another set of variables, as is the case of GBNs, already mentioned in Section 2. This measure takes
its simplest form when applied to a Gaussian model with parameters l and R. Specifically, if Z ¼ Y;Xð Þ is a random vector
normally distributed with parameters
l ¼
lY

lX

� �
; R ¼

RYY RYX

RXY RXX

� �
and the location parameter lX is additively perturbed to lX þ d, this yields:
lim
d!0

EX DKL fYjX;djfYjX
� �	 


DKL f Y;Xð Þ;djf Y;Xð Þ
� � ¼ q2;
where q is the corresponding correlation coefficient for each of the following cases:

(i) If n ¼ 2 and p ¼ 1 (Y and X are unidimensional variables), then q is the simple correlation coefficient between X and Y.
(ii) If n > 2 and n� p ¼ 1, then q is the multiple correlation coefficient between X and Y.

(iii) If both Y and X are multidimensional variables and the limit is taken in a canonical direction, q represents the corre-
sponding canonical correlation coefficient.

The situation is more complicated when the perturbation affects R. In this case the results are not as easily interpreted
and the correlation plays a predominant role. For example, if n > 2 and
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Rd ¼
RYY RYX

RXY RXX þ dIn�p

� �
we obtain the following:

(i) If n� p ¼ 1, then
lim
d!0

EX DKL fYjX;djfYjX
� �	 


DKL f Y;Xð Þ;djf Y;Xð Þ
� � ¼ q2 2� q2� �

;

it can be pointed that q2 2� q2
� �

> q2 for �1 < q < 1 and the difference is q2 1� q2
� �

, reaching its maximum in q2 ¼ 0:5;
(ii) For n� p ¼ 2, it follows that
lim
d!0

EX DKL fYjX;djfYjX
� �	 


DKL f Y;Xð Þ;djf Y;Xð Þ
� � ¼ 1� RXX:Yj j

RXXj j

� �2 RXXj j � 1
2 tr2 RXXð Þ

RXX:Yj j � 1
2 tr2 RXX:Yð Þ

;

being RXX:Y ¼ RXjY , as usual in literature;
(iii) Finally, for n� p ¼ 3, the previous limit can be expressed as
1� RXX:Yj j
RXXj j

� �2

�
RXXj jtrðRXXÞ � 1

2 p RXXð Þ � c RXXð Þð Þ2

RXX:Yj jtrðRXX:YÞ � 1
2 p RXX:Yð Þ � c RXX:Yð Þð Þ2

;

where p �ð Þ is the sum of the products of the binary linear combinations in the argument diagonal matrix and c �ð Þ is the sum of
the squared elements in the upper triangle.

If instead of looking at l and R we focus on deviations from Gaussianity via kurtosis, the measure representation (3) is not so
direct. Calculations and manipulations to get results in this line, will be at the core of this work. Thus, if our interest is in cal-
culating the relative conditional sensitivity to small changes in kurtosis for the MEP family of distributions (3) has the form
limb!1

EX DKL f ðbÞYjXjfYjX

� �h i
DKLðf ðbÞjf Þ

: ð3Þ
where f ; f YjX and fX represent the joint, conditional and marginal densities for the normal distribution (b ¼ 1), respectively
and the superscript bð Þ denotes the density when b in the joint model is perturbed to b ¼ 1þ d and d is the deviation from
normality.

KL divergences for the numerator and denominator are non-negative and are set to zero for b ¼ 1 (Fig. 1). Moreover, the
first derivatives with respect to b of such divergences are zero at b ¼ 1 and the second derivatives are the Fisher information
with respect to b, evaluated at the baseline densities, fYjX and f, respectively. Then the limit in (3) will be the quotient of the
curvature values for both divergences. In any case, both the KL measure and the corresponding curvature are often intrac-
table. The numerator in (3) is the mathematical expectation of the random divergence between the conditional densities of
YjX ¼ x with respect to the density of X. One particular expression of such divergence as a function of x is [17]:
log

R1
0 tp=2�1 exp � 1

2 ðt þ qxÞ
b

n o
dt

2p=2C p
2

� � � 1
2

p� qb�p=2
x

2p=2 U a; b; sð Þ
" #

; ð4Þ
where U �ð Þ is the confluent hypergeometric function [1] for a ¼ p
2 ; b ¼ bþ p

2þ 1; s ¼ qx
2 , and qx is the squared Mahalanobis

distance from x to the center of the X distribution. Assuming that X has a multivariate normal distribution, the random var-
iable qX has a v2 distribution with degrees of freedom equal to the number of components of the variable X. In our notation,
qX is v2-distributed with n� p degrees of freedom. For the denominator in (3) direct calculations yield:
DKLðf ðbÞjf Þ ¼ log
2

n
2bC n

2b

� �
2

n
2C n

2

� �
b
� 1

2
n�

2bC n
2þ b
� �
C n

2

� �
 !

:

4. Computation of local sensitivity

Next we deal with determination of the limit. However, computation of the mathematical expectation in (3) presents
some difficulties. With respect to (4) and with some calculations given that qX is v2-distributed with n� p degrees of free-
dom, we obtain:
EqX

qb�p=2
X

2p=2 U
p
2
;bþ p

2
þ 1;

qX

2

� �" #
¼

2bC n
2þ b
� �
C n

2

� � :
Then, we have to determine the limit, as b! 1, of the quotient
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Fig. 1. Quadratic behavior of the simulated conditional KL divergence means (grey lines) and the joint KL divergences (black lines) for joint dimensions of
Z � ðY;XÞ; n ¼ 100;n ¼ 76 and several values of k ¼ p

n, the ratio of the dimension of Y to the joint dimension. The sample size is 100,000.

n

p

n=44 n=76 n=100

p=11

p=19
p=22
p=25

p=33

p=38

p=50

p=57

p=75

0.2516

0.43312
0.50119

0.75063

0.864

0.25076

0.33

0.50058

0.65385

0.75033

0.86861p=66

0.11061

0.19053

0.25055

0.38048

0.500041

0.66033

0.75025

p=(0.25) n

p=(0.5) n

p=(0.75) n

Fig. 2. Results obtained by numerical integration of the limit limb!1
EX ½DKL ðf

ðbÞ
YjX jfYjX Þ�

DKL ðf ðbÞ jf Þ
for n ¼ 44; n ¼ 76; n ¼ 100 and different component dimensions p given

by some values of k ¼ p
n in the grid, with n and p the dimensions of Z � ðY;XÞ and Y, respectively.

M.A. Gómez-Villegas et al. / Applied Mathematics and Computation 219 (2013) 10499–10505 10503
EqX
log

R1
0

tp=2�1 exp �1
2ðtþqxÞbf gdt

2p=2C p
2ð Þ

 �
� p

2þ 1
2

2bC n
2þbð Þ

C n
2ð Þ

 �

log
2

n
2bC n

2bð Þ
2

n
2C n

2ð Þb
� 1

2 n� 2bC n
2þbð Þ

C n
2ð Þ

� � : ð5Þ
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It is well known that, in general, the KL divergence between the baseline and a parameter with perturbed density can be
approximated by a quadratic function of the deviation [15]:
DKLðf ð1þdÞjf Þ �d!0 1
2

Fð1Þd2;
where FðbÞ is the Fisher information for f ðbÞ with respect to the parameter b and Fð1Þ is the Fisher information evaluated for
b ¼ 1. Then both the numerator and denominator in (5) can be approximated by a quadratic function of the deviation. As an
illustration of this behavior, Fig. 1 shows these functions around b ¼ 1 for some particular cases of n and k ¼ p=n. As men-
tioned above, the divergence DKLðf ðbÞYjXjfYjXÞ is a random variable given by a function of a v2 distribution with n� p degrees of
freedom. To evaluate the numerator in (5) for different values of n; k and b, 100,000 observations were simulated from a v2

distribution with n� p degrees of freedom and further transformed by (4) to obtain an approximation of the mean value. For
the calculations, the open source programming language and environment for statistical computing and graphics R [20], is
used

Thus, the limit in (3) can be obtained using second derivatives:
lim
b!1

EX DKL f ðbÞYjXjfYjX

� �h i
DKLðf ðbÞjf Þ

¼
d2

db2 EX DKL f ðbÞYjXjfYjX

� �h i���
b¼1

d2

db2 DKLðf ðbÞjf Þjb¼1

: ð6Þ
The limit in (6) gives the ratio of the local curvature of KL divergence between the baseline and perturbed densities. Some
details on the calculations and regularity conditions for differentiation under the integral sign are given in Appendix A. This
calculations can be computed by numerical integration. Some values are shown in Fig. 2.

The conjecture that measure (3) tends to a constant value of k ¼ p=n as n; p!1 is illustrated in Fig. 2. This implies that
local deviations from normality in the MEP family affect the conditional distribution to a degree proportional to the dimen-
sion of the group of variables considered. In the context of GBNs, this result is intuitively clear, because it implies that net-
work output is greatly affected by normality deviation as the dimension of the evidence variables decreases. Thus, if the set
of evidence variables is larger than the set of interest variables, the local effect of normality deviations on network output is
minimal.

5. Conclusions

A relative sensitivity measure was proposed for evaluating local effects of kurtosis deviations using the KL divergence
measure. We focused on the MEP family, a generalization of the multivariate normal distribution, including distributions
with different tails whose variation is controlled by a scalar parameter. Using Monte Carlo simulations of the random
quantities involved, an asymptotic result on the relative sensitivity measure was obtained. This limit corresponds to the ratio
between the dimensions of the conditional and the joint distributions.
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Appendix A

The second derivative with respect to b of the numerator integrand in b ¼ 1 for each q > 0 is given by
d2

db2 DKL f ðbÞYjXjfYjX

� �h i�����
b¼1

¼ c nð Þ þ
� 1

4

R1
0 t

1
2kn�1e�

1
2q�1

2t ln qþ tð Þð Þ qþ tð Þdt
� �2

R1
0 t

1
2kn�1e�

1
2q�1

2tdt
� �2

þ
1
4

R1
0 t

1
2kn�1e�

1
2q�1

2t ln2 qþ tð Þ
� �

qþ tð Þ qþ t � 2ð ÞdtR1
0 t

1
2kn�1e�

1
2q�1

2tdt
� �2 �

Z 1

0
t

1
2kn�1e�

1
2q�1

2tdt;
where c nð Þ ¼ n
2 ln 2þ w n

2

� �
þ 2

n

� �2 þ nw n
2 ;1
� �

� 4
n and w xð Þ is the digamma function, w xð Þ ¼ d

dx ln C xð Þ and w x;1ð Þ is the trigamma
function, the first derivative of the digamma function [1].

It is evident that as long as the regularity conditions hold [2], because of the nature of the integrals involved, interchange
between derivative and integral signs is allowed and thus
d2

db2 EX DKL f ðbÞYjXjfYjX

� �h i�����
b¼1

¼
Z 1

0

d2

db2 DKL f ðbÞYjXjfYjX

� ����
b¼1

 !
fv2
ð1�kÞy
ðqÞdq:
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Furthermore, the second derivative with respect to b ¼ 1 for the denominator is
d2

db2 DKLðf ðbÞjf Þ
�����
b¼1

¼ n ln 2þ w
n
2

� �� �
þ n2

4
w

n
2
;1

� �
þ 1þ c nð Þ:
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