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Abstract The display of the data by means of contingency tables is used for dis-
cussing different approaches to statistical inference. We develop a Bayesian proce-
dure for the homogeneity testing problem of r populations using r × s contingency
tables. The posterior probability of the homogeneity null hypothesis is calculated us-
ing a mixed prior distribution. The methodology consists of assigning an appropriate
prior mass, π0, to the null and spreading the remainder, 1 − π0, over the alternative
according to a density function. With this method, it is possible to prove a theorem
which shows when the p-value and the posterior probability can give rise to the same
conclusion.
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1 Introduction

The r × s table is used for discussing different approaches to statistical inference.
For example, suppose that we want to investigate the behavior of a characteristic Y

common to r large populations. To get information about Y , independent random
samples, (Yi1, . . . , Yini

), i = 1, . . . , r ,
∑r

i=1 ni = N , are drawn, respectively, from
each population. Our objective is to test if the data gives enough evidence to reject
the null hypothesis of homogeneity, that is, we want to decide if r populations have a
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Table 1 Data in the r × s table

Class 1 Class 2 . . . Class s Class s + 1 Total

Sample 1 n11 n12 . . . n1s n1 − ∑s
j=1 n1j n1

Sample 2 n21 n22 . . . n2s n2 − ∑s
j=1 n2j n2
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.

.

Sample r nr1 nr2 . . . nrs nr − ∑s
j=1 nrj nr

Total m1 m2 . . . ms N − ∑s
j=1 mj N

common distribution F(y). To do this, we divide the common sample space into an
arbitrary number, s+1, of exclusionary classes, Cj , j = 1, . . . , s+1. Now, we denote
by nij the observed frequency in Cj (j = 1, . . . , s +1) of the sample i (i = 1, . . . , r).
The data is displayed in Table 1.

In this situation a quantitative measure of the strength of the evidence that the data
gives in support or in rejection of the hypothesis that the proportion pij of elements
belonging to Cj (j = 1, . . . , s + 1) is the same in all the populations (i = 1, . . . , r),
that is to say, H0 : p1j = · · · = prj , for any j = 1, . . . , s + 1. Three cases can be
considered for testing the homogeneity of r multinomial distributions. If we denote
by p0j the common value under the null H0 of the proportion corresponding to the
cell j (j = 1, . . . , s + 1), such vector of proportions can be known, unknown or with
a functional form depending on q < s + 1 parameters.

There are of course a number of variations, and many approaches to this problem.
Some important Bayesian references are [26, 31], [24, pp. 152–154] and [29]. Fur-
thermore, this is one of the more elemental problems that can be used to show clear
differences between frequentist and Bayesian approaches, see [10], and also between
different types of frequentist analysis.

Lower bounds on Bayes factors and posterior probabilities in favour of point null
hypotheses, H0, have been discussed in the literature. The startling feature of these
results is that Bayesian and frequentist procedures can give rise to different decisions,
see [4, 31] and [5], among others. In most of the Bayesian approaches the infimum
of this Bayesian evidence measures of H0, over a wide class of prior distributions, is
considered and it is then established that the infimum is generally substantially larger
than the corresponding p-value. It is necessary to point out that in all these situations
the mass assigned to the simple null hypothesis is 1/2. On the other hand, [8] show
that there is no discrepancy in the one-sided testing problem.

Other important references are [2, 3, 7, 9, 11–13, 15–21, 23–26, 32–34, 37–39].
Reference [10] compute lower bounds on Bayes factors in favour of the null hy-

pothesis in multinomial tests of point null hypothesis H0 : p = p0 (a specified point),
for two different classes of densities (conjugate priors with mean p0 and unimodal
and symmetric priors about p0). Their general conclusion is that the lower bounds
tend to be substantially larger than chi-squared p-values, raising serious questions
concerning the routine use of moderately small p-values (e.g., 0.05) to represent sig-
nificant evidence against the null hypothesis.

Reference [29] gives a Bayesian discussion of the homogeneity problem in
2 × 2 tables (see Table 2). He advocates for the more frequent use of unilateral tests,
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Table 2 Data in the 2×2 table
Successes Failures Total

Sample 1 a b n1

Sample 2 c d n2

Total m1 m2 N

considering as hypotheses of interest H1 : p2 < p1 and H2 : p1 < p2, where p1 and
p2 are the proportion of successes in the first and second population, respectively. He
gives a quantitative measure of the strength of the evidence in support of the more
likely hypothesis, assuming that p1 and p2 will not be exactly equal, and that nei-
ther will be 0 or 1. Given independent samples from two binomial distributions, he
notes that the posterior probability that p2 < p1 can be estimated from the standard
(uncorrected) χ2 significance level. He has to suppose independent Jeffreys priors
on the two populations, that is, π(p1,p2) ∝ p

−1/2
1 (1 − p1)

−1/2p
−1/2
2 (1 − p2)

−1/2,
in order to get this result. Moreover, he introduces a conjugate family of priors which
incorporate dependence between beliefs about the two populations.

In this paper, we consider in detail testing equality of proportions of independent
multinomial distributions when the common proportions under the null are known.
Next we indicate how a generalization can be obtained when such vector of propor-
tions are unknown or with functional form known. Our approach to the problem of
homogeneity consists of working directly with the simple null hypothesis and calcu-
lating its posterior probability. To do this, we follow the method used by [21, 22],
based on assigning an appropriate initial mass π0 to the null hypothesis and distrib-
uting the remaining probability in the points of the alternative with a prior density.
Posterior probabilities of the null hypothesis are calculated with respect to a mixture
of a point prior on the null and independent Dirichlet priors on the proportions.

As usual in the literature, the comparisons between frequentist and Bayesian meth-
ods are studied by searching prior distributions for which posterior probabilities and
p-values are numerically equal. The innovation of this paper is to show when p-values
for the chi-squared test of fit and posterior probabilities can give rise to the same de-
cision in the following sense. Fixed a level of significance α ∈ (0,1), when there
exist an interval of values of π0 (defined by �1 < �2), such that (whatever observed
data), a Bayesian who rejects H0 when P(H0|data) < 1/2 (for convenience, this is
not a restriction) by using π0 ∈ (�1, �2) (as the mass of the null for the mixed prior
distribution to compute the posterior probability) reaches the same conclusion as a
frequentist who uses α as level of significance?

Section 2 formulates the problem in a precise way and calculates an exact ex-
pression of the posterior probability that the proportion of elements belonging to Cj

(j = 1, . . . , s + 1) is the same in the r populations, and equal to a known common
value p0j . In Sect. 3, Theorem 3.1 provides the required constructions of �1 and �2

and the data of [36] (see Table 3) is used to illustrate the procedure. Section 4 con-
siders a possible change of the parameter space. Section 5 generalizes the results of
Sect. 2 to different versions of the homogeneity testing problem. Section 6 gives a
summary of conclusions.
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Table 3 Pearson’s example
Successes Failures Total

Sample 1 3 15 18

Sample 2 7 5 12

Total 10 20 30

2 A Bayesian approach

Let Xi ∼ MB(ni,pi ), i = 1, . . . , r , be independent multinomial random variables,
with unknown cell probabilities pi = (pi1, . . . , pis) ∈ �, where

� =
{

p = (p1, . . . , ps) ∈ (0,1)s,

s∑

i=1

pj ≤ 1

}

and ps+1 = 1 − ∑s
j=1 pj . In this situation, we wish to test

H0 : p1 = · · · = pr = p0, versus H1 : ∃i �= j,pi �= pj , (1)

where p0 = (p01, . . . , p0s) ∈ � is a specified value and p0s+1 = 1 − ∑s
j=1 p0j .

To develop a Bayesian analysis about an unknown parameter, P = (p1, . . . ,pr ),
indicating the prior beliefs about P through a prior distribution of probability is nec-
essary. It is clear that a mixed prior distribution is needed to test (1). Assume that
our prior opinion about P under the alternative H1 is given by means of the den-
sity π(P) = π(p1, . . . ,pr ) = ∏r

i=1 π(pi ). The main problem here is the selection of
appropriate initial mass π0 of the null H0.

A precise null hypothesis is often better understood by a non statistician as an
approximation to a situation where the parameter (vector) of interest resides in a very
small ball in the parameter space. Let us to consider the hypotheses

H0δ : P ∈ B(P0, δ) versus H1δ : P /∈ B(P0, δ),

B(P0, δ) =
{

P ∈ �r,

r∑

i=1

s∑

j=1

(pij − p0j )
2 ≤ δ2

}

,

P0 = (p0, . . . ,p0), δ > 0.

At this point, we want to remark that the suitable choice of δ, which depends on
the problem we are dealing with, may be more intuitive for a non statistician than
just selecting an arbitrary value of π0 in the following sense. It is easier for a no
statistician gives us a value of δ based on thinking about a small region C(δ) where
θ0 is included. That is to say, he tells us, for instance: “I agree θ = θ0 when θ ∈ C(δ)

for δ = 0.3”. From a Bayesian viewpoint, we propose to use the following mixed
prior distribution to test (1):

π∗(P) = π0IH0(P) + (1 − π0)π(P)IH1(P),

π0 = π0(δ) =
∫

B(P0,δ)

π(P)dP. (2)
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We can note that the prior probability assigned to H0 by means of π∗(P) and
to H0δ by means of π(P) are the same thing. For the multivariate point null testing
problem, [21, 22] give several reasons to justify the choice of π0 as in (2), despite of
the usual value taken for π0 = 1/2. Basically the principal reason is that the Kullback-
Leibler measure of discrepancy between π and π∗,

D(π∗|π) =
∫

�

π(P) ln

[
π(P)

π∗(P)

]

dP,

goes to zero when δ goes to zero with this choice. This is a consequence of the
following reasoning.

Remarking the differences between these two probability measures is important.
For instance, if θ is the parameter of interest, and μ and μ∗ denote the probability
measures defined by π and π∗, then

μ(A) =
∫

A

dπ(θ) =
∫

A

π(θ)dθ

and

μ∗(A) =
∫

A

dπ∗(θ) =
{

π0 + (1 − π0)μ(A) if θ0 ∈ A,
(1 − π0)μ(A) if θ0 /∈ A.

It is easy to prove that μ is absolutely continuous with respect to μ∗ (μ 	 μ∗), so
the Radon-Nikodym derivative of μ with respect to μ∗, dμ

dμ∗ , exists. Furthermore, it
is straightforward to see that

dμ

dμ∗ (θ) =
{

0 if θ ∈ H0,
1

1−π0
if θ /∈ H0.

Thereby we can sort out the raised problem by defining the discrepancy between μ

and μ∗ as

D(π∗|π) =
∫

�

ln

[
dμ

dμ∗ (θ)

]

dμ(θ),

because of μ 	 μ∗. Then D(π∗|π) = − ln(1 − π0).
Several comments are in order. First, when δ goes to zero then, according to (2),

π0 goes to zero too and consequently D(π∗|π) goes to zero. This is a justification for
choosing π0 as in (2) and consequently the replacement of (3) by (4) is reasonable.
Secondly, when we use π0 = 1/2 instead of using the value of π0 given in (2), the
discrepancy between μ and μ∗ is perhaps a high discrepancy, D(π∗|π) = 0.693.
Finally, the suitable choice of δ, which depends on the problem we are dealing with,
may be more intuitive than just selecting an arbitrary value of π0.

Therefore, from this way the statistician is able to determine a value of δ and
uses this value to compute π0 as in (2) and develop a Bayesian test based on the
precise hypothesis H0 : P = P0, by using a mixed prior distribution π∗(P). In this
sense our theorems are going to be formulated in terms of π0 and are independent of
the possible way of its selection by δ (although δ may be a useful tool in practical
situations where the statistician has difficulties to determine π0.)
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Furthermore, sometimes the choice of π0 as in (2) allows to compute a exact ex-
pression of a lower bound for the posterior probability which is easy to implement.
For instance, see [21] for the multivariate point null testing problem, between others.
This is not the case of this paper because of we are going to work with the posterior
probability for a concrete mixed prior distribution. For lower bounds and numerical
comparisons between frequentist and Bayesian approaches with r ×s tables, see [18].

Consider αi = (αi1, . . . , αi(s+1)), with αij > 0 for all j = 1, . . . , s + 1 and all
i = 1, . . . , r . If we assign to each pi a Dirichlet prior distribution of parameter αi ,
D(αi), i = 1, . . . , r (see [14, Chap. 3]), namely,

π(pi ) = 	(
∑s+1

j=1 αij )
∏s+1

j=1 	(αij )

s+1∏

j=1

p
αij −1
ij ,

pi = (pi1, . . . , pis) ∈ � and pi(s+1) = 1 − ∑s
j=1 pij , i = 1, . . . , r .

Then

P(H0|data) =
[

1 + 1 − π0

π0
η

]−1

, (3)

where

η =
s+1∏

j=1

p
−mj

0j

∏r
i=1 	(

∑s+1
j=1 αij )

∏r
i=1

∏s+1
j=1 	(αij )

∏r
i=1

∏s+1
j=1 	(nij + αij )

∏r
i=1 	(ni + ∑s+1

j=1 αij )

is the Bayes factor. References [26] and [27] also considers Bayes test for multino-
mial problems with Dirichlet priors in other contexts.

One possibility is to assign a uniform prior distribution on � to each pi , i =
1, . . . , r , then

π0 = π
r(s−1)

2 δr(s−1)

	(
r(s−1)

2 + 1)
,

the volume of the sphere of radius δ in Rr(s−1), for δ sufficiently small and the pos-
terior probability of the null hypothesis can be obtained evaluating expression (3)
in

η =
s+1∏

j=1

p
−mj

0j 	(s)r
{∏r

i=1
∏s+1

j=1 	(nij + 1)
∏r

i=1 	(ni + s)

}

.

With this procedure, the decision of accepting or rejecting H0 : P = P0 depends
on the size of the posterior probability given in expression (3).

Jeffreys procedure is not the only Bayesian testing method. Treating the problem
as a decision problem by introducing an appropriate loss function and minimizing its
expected value, is an alternative which does not require the use of a mixed prior (see
[1] and [6], between others.) Absolute error loss, which corresponds with Neyman-
Pearson theory, leads to 0–1 Bayes solutions, for instance see [30]. Furthermore,
a mixed prior distribution allows to connect the level of significance with π0, as we
see in theorems. For this reasons and as the aim of the research presented here is to
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connect frequentist and Bayesian evidence, let us assume that H0 is rejected when
P(H0|data) < 1/2. However, we can consider other Bayesian evidence measures,
such as the Bayes factor η or a more restrictive threshold b∗ instead of 1/2.

Note that values of (δ which correspond with) π0 > η(η+1)−1 give P(H0|data) >

1/2. This fact will be used in the proof of the theorem in Sect. 3. Moreover,
P(H0|data) = (η + 1)−1 for (δ such that) π0 = 1/2.

For instance, to test H0 : p1 = p2 = 1/2 with the data of Table 3 we obtain
η = 6.7265 and, if π0 = 1/2 (δ = 1/

√
2π ), then P(H0|a, c) = 0.1294, so that H0

is rejected. Moreover, to accept H0 with Pearson’s data, π0 > 0.8706 (δ > 0.53905).

3 Comparison with the p-value

From the frequentist viewpoint, instead of calculating the posterior probability of the
null hypothesis, the p-value is computed. The idea is basically that or H0 is false, or
an event with very small probability has occurred.

The most popular approach is to use as frequentist measure of the evidence the
discrepancy between the observed and expected values under H0, under the terms of
Pearson’s χ2 test statistic,

� =
r∑

i=1

s+1∑

j=1

n2
ij

nip0j

− N. (4)

If λ0 denotes the value of � evaluated at the observed data point of Table 1, then
{� ≥ λ0} is a possible critical region and the corresponding p-value is

p = p(data) = P(� ≥ λ0|p0) = P(χ2
r(s−1) ≥ λ0).

With this procedure, the decision of accepting or rejecting H0 depends on the size
of the p-value. For instance, H0 is rejected when p < p∗, where p∗ ∈ (0,1) being is
a sufficiently small value (the significance level of the test α).

For p0 = 1/2 and the data of Table 3 we obtain λ0 = 8.33 and a p-value p(a, c) =
0.0155. Observe that H0 is rejected for p∗ = 0.05, but when p∗ = 0.01 there is not
enough evidence to reject it, and in that sense H0 is accepted.

Our goal is to show when and how there is no discrepancy between the decisions
derived from this frequentist and Bayesian approaches to test (1) for a specified sig-
nificance level.

We can note that the Bayesian evidence measure given in expression (3) depends
on π0 = π0(δ) given in (2). When it may be possible to calculate the value of π0,

π0 = π0(data) = ηp

ηp + 2p∗ − p
, (5)

which verifies

P(H0|data) =
[

1 + 1 − π0

π0
η(data)

]−1

= p(data)

2p∗ ,
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the same conclusion would be reached with both approaches (if π0 is as in (5), then
P(H0|data) < 1/2 when p(data) < p∗).

Let p∗ be fixed and denote by means of

�1 = �1(p
∗, n1, . . . , nr ) = max

tables,p>p∗ η(η + 1)−1,

�2 = �2(p
∗, n1, . . . , nr ) = min

tables,p≤p∗ η(η + 1)−1.

Reference [35] revisit the issue of the apparent irreconcilability for testing a point
null with iid observations from a multivariate normal distributions. They consider the
threshold value of π0 required for the smallest posterior probability (over appropriate
families of priors on the alternative) and the p-value to coincide (although we can do
it by π∗

0 = 1/2 in the last equation, but in this case the goal is different on taking the
same decision, typically, the p-value and the posterior probability are exactly equal).
Reference [35] compute then the null distribution of the threshold (which depends
on the data through the standardized z = √

nx̄) for shedding light on the issue of the
criticality of the π0 = 1/2 assumption made in the existing literature.

Naturally, the threshold value computed by (5) will be different from different
data, since the p-value p and the Bayes factor η depends on the data. In this sense,
we do not affirm that the procedure to obtain the agreement (same decision not nu-
merical equality) has to be done by means of equaling both expressions, but the use of
a value next to the result of this equalization can lead to the value of π0 which we are
looking for. For instance, if π0 (non depending on the data) exists, we think that this
value of π0 (and accordingly δ) which achieves the agreement must decrease when
p∗ increases (note that this property which is verified by (5), is very intuitive). Fur-
thermore, we ask for the following question, when there exists an interval of values
(�1, �2) such that, whatever data, the decision derived from the posterior probability
to text (1) (depending on P(H0|data) ≤ or ≥ 1/2, see expression (3)) computed with
π0 ∈ (�1, �2) is the same taken by a frequentist who uses p∗ as the level of signifi-
cance to quantify the p-value?

To eliminate the dependence on the data, we consider the sample space formed by
all of the possible r × s tables with ni , i = 1, . . . , r fixed and known. For instance, in
the context of Pearson’s example (see Table 3), the entries are n1 = 18 and n2 = 12,
and a total of 247 possible tables have been generated. Pearson’s data is organized in
table 95 in the ascending order carried out according to the values of η (see Fig. 1).

The following theorem gives a response to the question introduced previously.

Theorem 3.1 Let ni, i = 1, . . . , r and p∗ be fixed and known. If p∗ satisfies that
�1 ≤ �2, then there exists an interval of values of π0, I = I (p∗, n1, . . . , nr ) = (�1, �2),
such that one and only one of the two following postulates is verified (whatever data)

“p(data) > p∗&P(H0|data) > 1/2”,

“p(data) ≤ p∗&P(H0|data) ≤ 1/2”.
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Fig. 1 Bars diagram (η(a, c),�(a, c)) to test H0 : p1 = p2 = 1/2 using 2 × 2 tables with n1 = 18,

n2 = 12 and π(p1,p2) = I(0,1)(p1)I(0,1)(p2). There is a non-monotonous function, h : R+ → R+ ,
such that � = h(η)

Proof Denote by κ the value of η in the observed data point. The posterior probability
given in expression (3) verifies that

P(H0|κ) =
[

1 + 1 − π0

π0
κ

]−1

> 1/2, when π0 > π0(κ),

where π0(κ) = κ(κ + 1)−1 is a strictly increasing function.
Moreover, if λ1 < λ2, then p(λ1) = P {� ≥ λ1|θ0} ≥ P {� ≥ λ2|θ0} = p(λ2).
Let κ∗, κ∗ and λ∗ be

κ∗ = min
tables,p≤p∗ η, κ∗ = max

tables,p>p∗ η,λ∗ = min
tables,p≤p∗ �.

Thereby, if p∗ satisfies �1 ≤ �2, the critical region {� ≥ λ∗} = {η ≥ κ∗} and it is
verified that κ∗ ≤ κ∗ and

π0(κ∗) = max
tables,p>p∗ π0(η) = �1 ≤ �2 = min

tables,p≤p∗ π0(η) = π0(κ∗).

Fixed π0 ∈ (�1, �2) and (n11, . . . , nrs) a data point such that η(data) = κ , with
κ < κ∗, then π0 > �1 > κ(κ + 1)−1 and P {� ≥ �(data)|θ0} > p∗.

On the other hand, fixed π0 ∈ (�1, �2) and a data point such that κ ≥ κ∗ ≥ κ∗, then
π0 < �2 ≤ κ(κ + 1)−1 and P {� ≥ �(data)|θ0} ≤ p∗. �
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Table 4 Summary of results for 2 × 2 tables with n1 = 18, n2 = 12, p0 = 1/2 and π(p1,p2) =
I(0,1)(p1)I(0,1)(p2)

p∗ ∈ (0.46,0.513) (0.087,0.143) (0.045,0.052) (0.0095,0.0138)

δ ∈ (0.221,0.23) (0.353,0.4) (0.453,0.462) (0.5528,0.5675)

π0 ∈ (0.153,0.167) (0.391,0.506) (0.643,0.673) (0.893,0.914)

Theorem 3.1 provides the required constructions of �1 and �2 (depending only
on the level of significance and the sample sizes.) Therefore, �1 ≤ �2 is a suffi-
cient condition to achieve the same conclusion to test (1) with the p-value (with a
fixed significance level p∗) and the posterior probability (with a value of δ such that
π0(δ) ∈ (�1, �2) in the corresponding mixed prior distribution). For these construc-
tions to be useful, one needs to verify that �1 ≤ �2. The existence of values p∗ which
satisfy this condition depends on the functional relationship that exists between the
statistics � and η, � = h(η), for some function h : R+ → R+. It is easy to check
that if h is an increasing function, �1 ≤ �2 is always verified for any p∗. However,
for 2 × 2 tables, if n1 = 18 and n2 = 12, to test (1) with p0 = 1/2 and indepen-
dent uniform priors, there exists a non-monotonous function h : R+ → R+ for which
� = h(η) (see Fig. 1).

By means of an easy data analysis, we can check that there are values of p∗, for
example p∗ = 0.5, p∗ = 0.1, p∗ = 0.05, p∗ = 0.01, such that we can find an interval
of values of π0, I = I (p∗, n1 = 18, n2 = 12), which verifies that the result obtained
with the proposed Bayesian method to test (1), with p0 = 1/2 and a uniform prior
distribution, using a value π0 ∈ I , is the same as the result obtained with Pearson’s
χ2 test of fit (see Table 4). Hence, there exists an agreement between both methods.
Notwithstanding, there are also values of p∗, for example p∗ = 0.015, such that this
is not possible. Moreover, it can be verified that the value of π0 (and thereby the
value of δ), such that the previous reconciliation between both methods is possible,
decreases when p∗ increases. This fact is very intuitive. To illustrate this procedure,
when the data point is Pearson’s table (see Table 2), we can check (see Table 4)
that, if p∗ = 0.01, choosing a value of π0 = 0.9, H0 is accepted with both methods.
However, if p∗ = 0.05, choosing a value of π0 = 0.65, H0 is rejected with both
approaches. Observe that π0 = 0.5 correspond to p∗ = 0.1.

We have mentioned that the reconciliation is possible for some p∗ but not all.
Observe that, for δ fixed the posterior probability in expression (3) is a decreasing
function on η (the inverse of Bayes factor of H0 relative to H1) which can be used
as a test statistic to built a critical region {η ≥ υ}, for some υ . In this case, the condi-
tion of Theorem 3.1 is verified for any p∗ and the reconciliation is always possible.
Furthermore, it can be checked numerically that the values of p∗ and π0 for which
a reconciliation is possible when � is the test statistic are very similar to the corre-
sponding calculations for η. When we detect a value of p∗ for which the condition
of Theorem 3.1 is not verified, is due to its associate critical region can not translate
into {η ≥ υ}, for some υ (see Fig. 1). The idea is that the agreement is reached when
the discrepancy between the two statistics involved in can be eliminated.
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4 Change of the parameter space

As we have indicated, sometimes the statistician have difficulties for determining the
prior mass π0 in the mixed prior distribution. In this circumstances thinking about δ

(the radius of a sphere centered in the null point) may be more convenient for this
purpose and then computing π0 = π0(δ) as in (2). It has been already indicated that
one possibility is to assign a uniform prior distribution on � to each pi , i = 1, . . . , r .
In this case, π0(δ) is the volume of the sphere of radius δ in Rr(s−1), B(P0, δ), for δ

sufficiently small. When the value of δ is not sufficiently small, B(P0, δ) is not con-
tained in the parameter space [0,1]r(s−1). This situation can be a nuisance in practice
when we want to calculate the value of π0 corresponding to δ. The computational
difficulty is higher when the parameter dimension space increases.

In r ×2 tables this computational problem can be eliminated by means of a change
of the parameter space which transforms [0,1]r in Rr . Instead of using independent
uniform prior distributions, another suggestion is to consider independent Haldane’s
prior distributions [28], which is the following improper density:

π(p1, . . . , pr) ∝
r∏

i=1

p−1
i (1 − pi)

−1,

where pi is the proportion of successes in the population i (i = 1, . . . , n). It is easy
to check (by the usual change of variable argument) that Haldane’s prior is equiv-
alent to a prior uniform in the log-odds θi = log[pi(1 − pi)

−1] ∈ R (i = 1, . . . , r),
π(θ1, . . . , θr ) ∝ 1.

Therefore, with this change of the parameter space, the null hypothesis in (1) is

H0 : θ1 = · · · = θr = θ0,

where θ0 = log[p0/(1 − p0)
−1] ∈ R is a known value.

Note that when an improper prior is used in testing, π0 (the prior probability
of H0δ) has no meaning whatsoever. Any multiple of the prior density, and hence
that of π0 serves the same purpose in deriving the posterior probabilities. However,
whenever we observe at least one success and one failure in each population, the pos-
terior probability which is obtained using independent Haldane’s priors is proper. For
instance, for 2 × 2 tables, when n1 = 18 and n2 = 12, there exists 187 tables which
verifies the previous condition. On the other hand, thinking more carefully about the
prior distribution and choosing a proper density for π(θ) which models the initial
opinion in a more precise way are needed.

Let us to use as a Bayesian measure of evidence

P(H0|n11, . . . , nr2) =
[

1 + 1 − π0

π0
ηH

]−1

,

where

ηH (n11, . . . , nr2) =
∫

Rr f (n11, . . . , nr2|θ1, . . . , θr )dθ1, . . . , θr

f (n11, . . . , nr2|θ0, . . . , θ0)
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Table 5 Summary of results for 2 × 2 tables with n1 = 18, n2 = 12, p0 = 1/2 and π(p1,p2) ∝
p−1

1 (1 − p1)−1p−1
2 (1 − p2)−1

p∗ ∈ (0.46,0.51) (0.087,0.143) (0.045,0.052) (0.006,0.0094)

δ ∈ (0.501,0.507) (0.5473,0.5536) (0.5585,0.5602) (0.5636,0.5639)

π0 ∈ (0.788,0.807) (0.941,0.963) (0.981,0.986) (0.9981,0.999)

= p
−m1
0 (1 − p0)

−m2

r∏

i=1

	(ni1)	(ni2)

	(ni)
,

π0 ∈ (0,1) and δ such that

π0 =
∫

B((θ0,...,θ0),δ)

dθ1 . . . dθr = π
r
2 δr

	( r
2 + 1)

,

the volume of the sphere of radius δ in Rr .
We can note that, when we use independent uniform prior distributions over the

parameters pi , i = 1, . . . , r , the posterior probability of the null depends on the sta-
tistic

ηU(n11, . . . , nr2) = p
−m1
0 (1 − p0)

−m2

r∏

i=1

	(ni1 + 1)	(ni2 + 1)

	(ni + 2)
< ηH .

Consequently, PU(H0|n11, . . . , nr2) > PH (H0|n11, . . . , nr2).
Table 5 calculates some values of δ which reach agreement in the terms of the

Theorem 3.1 to test (1) when n1 = 18, n2 = 12, p0 = 1/2 and independent Haldane’s
prior distributions are assigned. We can observe that these values of π0 are higher
than the corresponding values when independent uniform priors are used. More-
over, by means of an easy data analysis it is easy to check that when π0 = 1/2,
PH (H0|a, c) < 1/2, whatever (a, c) may be, even more, PH (H0|a, c) < p(a, c).
Thereby, as PH (H0|a, c) is an increasing function of π0, to increase the value of
π0 is needed to reach agreement for p∗ fixed.

5 Generalizations

The obtained results can be generalized when p0 is unknown or with known func-
tional form by choosing an appropriate mixed prior distribution.

The most typical situation in homogeneity testing problem is when p0 is unknown.
In this case, we only want to test if r populations have the same distribution which
can be any one. Therefore the problem of interest is to test the hypothesis

H0 : p1 = · · · = pr , versus H1 : ∃i �= j,pi �= pj . (6)
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The usual frequentist approximation uses Pearson’s χ2 test statistic

� = N

(
r∑

i=1

s+1∑

j=1

n2
ij

nimj

− 1

)

.

When the value of � in the observed data point is λ0 then {� ≥ λ0} is a possible
critical region and

p = p(data) = P(χ2
(r−1)(s−1) ≥ λ0)

is the observed p-value.
Theorem 3.1 holds for this case, too, since the posterior probability of the null is

monotonically decreasing in the inverse of Bayes factor using an appropriate mixed
prior distribution. One option is

π∗(P) = π0π(p0)IH0(P) + (1 − π0)π(P)IH1(P),

where π(P) = ∏r
i=1 π(pi ), π0 = ∫

C(δ)
π(P)dP, C(δ) = ⋃

p0∈� B(P0, δ).
Assume that π(pi ) have a Dirichlet density with parameter αi = (αi1, . . . , αi(s+1)),

i = 0,1, . . . , r (αij > 0, j = 1, . . . , s + 1). Then

P(H0|data) =
[

1 + 1 − π0

π0
η

]−1

,

where

η =
∏s+1

j=1 	(α0j )

	(
∑s+1

j=1 α0j )

	(N + ∑s+1
j=1 α0j )

∏s+1
j=1 	(mj + α0j )

×
{∏r

i=1 	(
∑s+1

j=1 αij )
∏r

i=1
∏s+1

j=1 	(αij )

}

×
{∏r

i=1
∏s+1

j=1 	(nij + αij )
∏r

i=1 	(ni + ∑s+1
j=1 αij )

}

.

For calculations, testing (6) using 2 × 2 with n1 = 18, n2 = 12 and π(p1,p2) =
I(0,1)(p1)I(0,1)(p2), π(p0) = I(0,1)(p0) is considered. By means of an easy data
analysis, we can check that there is not agreement when p∗ = 0.5, p∗ = 0.1,
p∗ = 0.05, p∗ = 0.01. However, for p∗ ∈ (0.0635,0.0637) o p∗ ∈ (0.008,0.0085)

we can find an interval of values of π0, I = I (p∗, n1 = 18, n2 = 12), where the suffi-
cient condition of the natural extension of Theorem 3.1 is verified (see Table 6). The
existence of values p∗ for which the agreement is possible depends on the functional
relationship, in terms of h that exists between the statistics � and η (see Fig. 2).

Another important problem is when p0 = p(ω), with p: � → �, being

� = {
ω = (ω1, . . . ,ωq),p(ω) = (p1(ω), . . . , ps(ω)) ∈ �

} ⊂ Rq
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Table 6 Summary of results for 2 × 2 tables with n1 = 18, n2 = 12, p0 unknown and π(p1,p2) =
I(0,1)(p1)I(0,1)(p2), π(p0) = I(0,1)(p0)

p∗ ∈ (0.0635,0.0637) (0.008,0.0085)

δ ∈ (0.222,0.223) (0.322,0.325)

π0 ∈ (0.665,0.667) (0.738,0.744)

Fig. 2 Bars diagram (η(a, c),�(a, c)) to test H0 : p1 = p2(= p0 unknown) using 2 × 2 tables with
n1 = 18, n2 = 12 and π(p1,p2) = I(0,1)(p1)I(0,1)(p2), π(p0) = I(0,1)(p0). There is a non-monotonous
function, h : R+ → R+ , such that � = h(η)

and q < s fixed. In this context, we propose

π∗(P) = π0π(ω)IH0(P) + (1 − π0)π(P)IH1(P),

where π0 is the prior probability assigned to H0 : p1 = · · · = pr = p(ω) and
π(p1, . . . ,pr ) = ∏r

i=1 π(pi ).
Theorem 3.1 holds for this case, too, since the posterior probability of the null is

monotonically decreasing in the inverse of Bayes factor.

6 Conclusions

The posterior probability of the null hypothesis of homogeneity of independent
multinomial populations in r × s tables, when p0 is known, for a mixed prior distribu-
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tion that assigns an initial probability π0 to H0 : p1 = · · · = pr = p0 and distributes in
a continuous way the remaining probability in the points of the alternative hypothesis
by means of a Dirichlet prior density, can be expressed as

[

1 + 1 − π0

π0
η

]−1

,

where η = η(n11, . . . , nrs) is a statistic that measures the strength of the evidence
in support of the more likely hypothesis, � = h(η) is the test statistic for Pear-
son’s χ2 classical method, and h : R+ → R+ is a non-monotonous function. The
Kullback-Leibler discrepancy justifies the choose of π0 = π0(δ) as in (2). The choice
of π0 is polemic, we think that this election as a function of δ can be a good idea to
help us in his practical determination and interpretation. Furthermore, literature show
how this choice leads us to explicit expressions of infimum of posterior probabilities
that with other selections need to be approximated by simulation (see for example,
[5, 19, 20, 38]). Anyway, Theorem 3.1 does not need of this particular choice and
provides the construction of an interval of values of π0 (independently of δ) where
the agreement is achieved (depending only on the level of significance and the sample
sizes.)

The innovation with respect to other works about comparing frequentist and
Bayesian approaches in testing problem consists of investigating when the same deci-
sion is reached with both methods instead of comparing numerically the p-value with
the posterior probability or the Bayes factor. Fixing ni , i = 1, . . . , r and p∗ ∈ (0,1),
�1 < �2, where �1 and �2 are defined similarly as in Theorem 3.1, gives a sufficient
condition by which the reconciliation between both methods is possible. That is to
say, if p∗ satisfies that �1 ≤ �2, then to any δ such that π0 = π0(δ) ∈ (�1, �2), what-
ever the observed data point may be, it is verified that we accept with the two methods
or we reject with the two methods.

The existence of values p∗ which satisfy the condition depends on the functional
relationship, in terms of h, that exists between the statistics � and η. Thereby, the
reconciliation between both methods is possible in that sense. For example, for 2×2
tables with n1 = 18 and n2 = 12, when p∗ ∈ (0.087,0.143) the agreement is obtained
for π0 ∈ (0.391,0.506), that is δ ∈ (0.353,0.4).

The generalization of the previous results for the problem of testing the homo-
geneity of independent multinomial populations when p0 is unknown, or with known
functional form, p0 = p(ω), is possible following a similar reasoning.
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