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ABSTRACT

In this paper the problem of testing if r populations have the same distribution from a Bayesian per-

spective is studied using r× s contingency tables and ε−contaminated priors. A procedure to build a mixed

prior distribution is introduced and a justification for this construction based on a measure of discrepancy is

given. A lower bound for the posterior probabilities of the homogeneity null hypothesis, when the prior is in

the class of ε−contaminated distributions, is calculated and compared numerically with the usual p-value.

Examples show that the discrepancy between both is more acute when the mass assigned to the null in the

mixed prior distribution is 0.5.

1. INTRODUCTION

1.1 ε−CONTAMINATED CLASS

To carry out a Bayesian analysis concerning an unknown parameter, θ, it’s necessary to model our prior

information about θ through a prior distribution. Frequently, the prior information is diffuse and the initial

opinion can not be expressed in terms of a concrete probability distribution. This absence of precision is the

reason why, often, the prior information is expressed in terms of a class of distributions, Γ, where all possible

prior distributions about θ are included. Furthermore, while considering a class of prior distributions instead

of a concrete prior it looks reasonable to compare the posterior probability of the null hypothesis with the

usual p-value since the p-value does not use prior information. Therefore, if there is statistical coherence, a
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Bayesian which uses the class of all prior distributions must reach the same decision as a frequentist.

An interesting way to describe deviations of our prior opinions about the parameter of interest involves

considering the ε−contaminated class, for instance, see Gómez-Villegas and Sanz (2000). Let q0 = q0(θ) be

a known prior distribution that summarizes the initial opinion about the parameter θ and Q be a class of

probability distributions q = q(θ) which represents the possible (and reasonable) deviations from q0. When

a fixed and known degree of contamination ε is introduced into q0 by the statistician, with 0 < ε < 1, the

ε−contaminated class Γ is the class of all distributions π = π(θ) built from a convex combination of q0 and

q ∈ Q,

Γ ≡ {π = (1− ε) q0 + εq, q ∈ Q} . (1)

Note that if ε = 0, no contamination is introduced in q0, and Γ ≡ q0.

We can take into account several possibilities for the class Q. We are going to work with the class of all

probability distributions. Huber (1973), Sivaganesan (1988), Gómez-Villegas and Sanz (2000) and Gómez-

Villegas and González-Pérez (2008) use this class in other contexts. Berger and Berliner (1986), Berger

(1985, 1994) and Sivaganesan and Berger (1989) give relevant information about other choices.

In subsection 2 we introduce a procedure to make up a mixed prior distribution to approach the homo-

geneity testing problem from a Bayesian viewpoint and in subsection 3 a justification of this construction is

provided. In subsection 4 we introduce the notation and in subsection 5 we expose the focus of the paper.

1.2 THE PROBLEM

We suppose that independent random samples are drawn from r sufficiently large populations, and their

each member belongs to one and only one of the s exclusionary classes C1, · · · , Cs. The sample number i,

i = 1, · · · , r, is of size ni and yields nij units in Cj , j = 1, · · · , s. The data are displayed in Table 1.

Table 1. Data in the r × s table.

Class 1 Class 2 . . . Class s Total

Sample 1 n11 n12 . . . n1s n1

Sample 2 n21 n22 . . . n2s n2

...
...

...
...

...
...

Sample r nr1 nr2 . . . nrs nr

Total m1 m2 . . . ms N

Then, we can model this situation as follow: let Xi, i = 1, · · · , r, be independent multinomial random

variables, MB (ni, pi), with pi = (pi1, · · · , pis−1) ∈ Θ, where
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Θ =
{
p = (p1, · · · , ps−1) ∈ (0, 1)s−1

,
∑s−1

i=1
pj ≤ 1

}

and ps = 1−∑s−1
i=1 pj .

The problem involves testing if r populations have the same distribution, which can be arbitrary, when

we observe the random variable (X1, . . . , Xr). That is to say, we consider the homogeneity testing problem

H0 : p1 = · · · = pr versus H1 : pi 6= pj , for some i 6= j. (2)

In the point null testing problem H0 : θ = θ0 versus H1 : θ 6= θ0 is usual to model our prior opinion

about the parameter of interest θ by means of a mixed distribution π∗(θ), assigning mass π0 to the null and

spreading the remainder, 1− π0, over the alternative according to a density π(θ). Gómez-Villegas and Sanz

(2000) study the unidimensional problem of testing a point null hypothesis by choosing π0 =
∫
|θ−θ0|≤δ

π(θ)dθ,

with an arbitrary contamination π(θ) ∈ Γ (see expression (1)) and q0(θ) known. They introduce a procedure

to determine the mixed prior distribution and give a justification for their construction based on the Kullback-

Leibler measure of discrepancy. They calculate and compare numerically a lower bound for the posterior

probability of the point null with the p-value, when the sample model is normal in two cases: when the base

prior distribution q0(θ) is normal with both mean and variance known, and when q0(θ) is Cauchy(0, 2). In

the light of their results, they propose lower bounds to use as Bayesian evidence measures for a suitable

value of δ. Examples shows that the value of δ must be chosen, in general, by making the lower bound agrees

numerically with the p-value when the p-value varies in (0.01, 0.1), the usual interval where the significance

level α varies. Furthermore, it seems that the discrepancy observed in testing point null hypothesis between

frequentist and Bayesian approaches becomes more acute by using π0 = 0.5 in the mixed distribution.

Note that the homogeneity null hypothesis in (2) is not completely specified. This is due to the fact

that if we denote the common proportions vector under the null by p0 = (p01, · · · , p0s−1) ∈ Θ, then p0 is an

unknown vector. Gómez-Villegas and González-Pérez (2008) study this problem when p0 is known and

π∗ (p1, · · · ,pr) = π0IH0 (p1, · · · ,pr) + (1− π0)π (p1, · · · ,pr) IH1 (p1, · · · ,pr) .

In this situation, they compute a lower bound of the posterior probability of the null when π (p1, · · · ,pr) ∈ Γ,

with an arbitrary contamination. Examples show that the bound is close to the p-value for a suitable value

of π0, by making the lower bound agree numerically with the p-value in (0.01, 0.1) (or equivalently, of δ com-

puted from π0 =
∫

B(θ0,δ)
π (θ) dθ, with θ0 = (p0, · · · ,p0) ∈ Θr and B (θ0, δ) ≡

{
θ = (p1, · · · ,pr) ∈ Θr,

∑r
i=1

∑s−1
j=1 (pij − p0j)

2 ≤ δ2
}

).

Furthermore, the discrepancy between both approaches using π0 = 0.5 is bigger. Note that π0 =
∫

B(θ0,δ)
q0 (θ) dθ

when ε = 0 and if independent uniform prior distributions on Θ are assigned to each pi, i = 1, · · · , r, then
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π0 =
π

r(s−1)
2 δr(s−1)

Γ
(

r(s−1)
2 + 1

) ,

the volume of the sphere of radius δ in Θr = [0, 1]r(s−1), for δ sufficiently small.

For testing H0 : θ = θ0 versus H1 : θ 6= θ0 from a Bayesian perspective, when θ0 = (p0, · · · ,p0) ∈ Θr

and p0 ∈ Θ, the common proportions vector under the null, is unknown with a fixed prior density π0(p0).

Let us suppose that the prior distribution about θ = (p1, · · · ,pr) ∈ Θr is

π∗ (θ) = π0π
0 (p0) IH0 (θ) + (1− π0)π (θ) IH1 (θ) , (3)

where π0 is the prior mass assigned to H0 and π(θ) = π (p1, · · · ,pr) ∈ Γ, where Γ is the ε−contaminated

class defined in (1).

We propose to compute the value of π0 in (3) as

π0 =
∫

C(δ)

π (θ)dθ, (4)

with C(δ) ≡ ⋃
p0∈Θ B (θ0, δ) and a value of δ > 0 sufficiently small.

With this choice, if ε = 0 and an independent uniform prior distributions on Θ is assigned to each pi,

i = 1, · · · , r, we can remark that π0 = 2
√

2δ + 2δ2 − 4
√

2δ3, the area of C(δ) in [0, 1]2 for δ sufficiently small

and 2× 2 tables. These are the prior specifications for comparisons in section 3.

Generalizing the method introduced by Gómez-Villegas and Sanz (2000), this construction is inspired

on the supposition that if a density π(θ) represents our prior beliefs about θ, as to test (1) is not possible

with π(θ), we approach (1) by

H0δ : θ ∈ C(δ) versus H1δ : θ /∈ C(δ), (5)

choosing an appropriate value of δ.

1.3 JUSTIFICATION

The choice of π0 as in (4) is basic for the next calculations. A way of justifying this construction is by

using the Kullback-Leibler information measure

D(π∗|π) =
∫

Θr

π(θ)ln
[

π(θ)
π∗(θ)

]
dθ,

as a discrepancy measure between π and π∗. However, π(θ) is a density function and the mixed distribution

π∗(θ) given in (3) is not a density. Therefore there is a problem.
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It is important to remark the differences between these two probability measures on (IRr,Br). For

instance, if µ and µ∗ denote the probability measures defined by π and π∗ then

µ(A) =
∫

A

dπ(θ) =
∫

A

π(θ)dθ

and

µ∗(A) =
∫

A

dπ∗(θ) =





π0

∫
A∩H0

π0(p0)dp0 + (1− π0)µ(A) if A ∩H0 6= Ø

(1− π0)µ(A) if A ∩H0 = Ø
,

for all A ∈ Br.

It is easy to prove that µ is absolutely continuous with respect to µ∗ (µ ¿ µ∗), so the Radon-Nikodym

derivative of µ with respect to µ∗, dµ
dµ∗ , exists. Furthermore, it is straightforward to see that

dµ

dµ∗
(θ) =





0 if θ ∈ H0

1
1−π0

if θ /∈ H0

. (6)

Thereby we can sort out the raised problem by defining the discrepancy between µ and µ∗ as

D(π∗|π) =
∫

Θ

ln

[
dµ

dµ∗
(θ)

]
dµ(θ), (7)

because of µ ¿ µ∗. Then D(π∗|π) = −ln(1− π0).

Several comments are in order. First, when δ goes to zero then, according to (4), π0 goes to zero too

and consequently D(π∗|π) goes to zero. This is a justification of the choice for π0 as in (4) and to replace

(2) by (5). Secondly, when we use π0 = 0.5 instead of using the value of π0 given in (4), the discrepancy

between µ and µ∗ is perhaps a high discrepancy, D(π∗|π) = 0.693.

At this point we want to remark that the suitable choice of δ, which depends on the problem we are

dealing with, may be more intuitive for a non statistician than just selecting an arbitrary value of π0 in the

following sense. It is easier for a non statistician to give us a value of δ based on thinking about a small

region C(δ) where θ0 is included. That is to say, he tells us, for instance: “I agree θ = θ0 when θ ∈ C(δ)

for δ = 0.3”. Therefore, from this way he is able to determine a value of δ and the statistician uses this

value to compute π0 as in (4) and develop a Bayesian test based on the precise hypothesis H0 : θ = θ0, by

using the mixed prior distribution π∗(θ) introduced in (3). Furthermore, sometimes choosing π0 as in (4)

allows the computation of an exact expression of a lower bound for the posterior probability which is easy to

implement. For instance, see Gómez-Villegas, Máın and Sanz (2004) for the multivariate point null testing

problem, between others.

1.4 NOTATION

We denote the likelihood function by
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f (n11, . . . , nrs|θ) =
∏r

i=1

ni∏s
j=1 nij !

∏s

j=1
p

nij

ij

which is considered as a function of θ for the observed value of (X1, . . . , Xr) = (n11, . . . , nrs). If the marginal

distribution of (X1, . . . , Xr) with respect to the prior distribution π ∈ Γ is denoted by m (n11, . . . , nrs|π),

then

m (n11, . . . , nrs|π) = (1− ε) m (n11, . . . , nrs|q0) + εm (n11, . . . , nrs|q) .

Assuming the existence of q0 (θ|n11, . . . , nrs) and q (θ|n11, . . . , nrs), the posterior distribution of θ with

respect to π ∈ Γ is

π (θ|n11, . . . , nrs) =

λ (n11, . . . , nrs) q0 (θ|n11, . . . , nrs) + (1− λ (n11, . . . , nrs)) q (θ|n11, . . . , nrs) ,

where

λ (n11, . . . , nrs) =
(1− ε) m (n11, . . . , nrs|q0)

m (n11, . . . , nrs|π)
.

From (4) we have π0 = (1− ε)π0
q0

+ επ0
q , where

π0
q0

=
∫

C(δ)

q0 (θ)dθ and π0
q =

∫

C(δ)

q (θ)dθ. (8)

Then, the posterior probability of the homogeneity null hypothesis admits the following expression

P (H0|n11, . . . , nrs) =

[ ∫
Θ

f (n11, . . . , nrs|θ0)π0(p0)dp0∫
Θ

f (n11, . . . , nrs|θ0)π0(p0)dp0 + 1−π0
π0

m (n11, . . . , nrs|π)

]−1

=


1 +

1− π0

π0

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij π (θ) dθ

∫
Θ

∏s
j=1 p

∑r

i=1
nij

0j π0(p0)dp0



−1

. (9)

A frequentist measure of evidence against the null, which depends on our observations, is the p-value.

As usual, we use the discrepancy between the observed and expected values under the null, in the terms

of Pearson’s χ2 statistic, as frequentist measure of the evidence to test (1). Then, the test statistic is the

random variable

Λ = N

(∑r

i=1

∑s

j=1

n2
ij

nimj
− 1

)
.

If λ0 = Λ(n11, . . . , nrs) denotes the value of Λ evaluated in the data point, then {Λ ≥ λ0} is a possible critical

region and the corresponding p-value is
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p(n11, . . . , nrs) = P
(
χ2

(r−1)(s−1) ≥ λ0

)
. (10)

1.5 THE FOCUS

In the same way of Berger and Sellke (1987), we seek to minimize the posterior probability of the precise

null H0 : θ = θ0, P (H0|n11, . . . , nrs), to compute a lower bound over the class Γ given in (1), as Bayesian

evidence measure for the homogeneity testing problem introduced in (2).

A reason to take the infimum is that the null hypothesis must be rejected for a small infimum according

to the interpretation of the p-value. Moreover, this development is similar to Casella and Berger (1987)

reasoning in order to reconcile Bayesian and frequentist evidence in the one-sided testing problem.

The following works, among others, have been realized to study the discrepancy between both methods in

testing problems. Delampady and Berger(1990), Ghosh and Mukerjee (1992), McCulloch and Rossi (1992),

Gómez-Villegas and Gómez (1992), Mukhopadhyay and DasGupta (1997), Berger, Boukai and Wang (1997,

1999), Gómez-Villegas and Sanz (1998, 2000), Sellke, Bayarri and Berger (2001), Gómez-Villegas, Máın

and Sanz (2002), Gómez-Villegas, Máın, Sanz and Navarro (2004), De la Horra (2005), Gómez-Villegas and

González-Pérez (2005, 2006).

As in Gómez-Villegas and Sanz (2000) and Gómez-Villegas and González-Pérez (2008), our interest is

to compare numerically the lower bound of the posterior probability of the point null with the p-value. The

focus involves in finding a suitable value of π0 (or equivalently, of δ, see subsection 1.3) which makes both

values approximately equal in the range (0.01, 0.1) and showing how the discrepancy between both is more

acute when π0 = 0.5 in the mixed prior distribution.

In section 2 a lower bound for the posterior probabilities of the homogeneity null hypothesis, when the

prior is in the ε−contaminated class, is calculated. In section 3 this lower bound is compared numerically

with the usual p-value. A possible generalization of the proposed methodology for p0 with known functional

form, p0 = p0(ω), is given in section 4. Finally, in section 5 some comments are included.

2. LOWER BOUND FOR THE POSTERIOR PROBABILITY

In this section we obtain in Theorem 1, a lower bound for the posterior probability of the null hypothesis

to test (2) when the prior distribution π∗ is (3) with π0 computed according to (4). Theorem 2 establishes

sufficient conditions in order to achieve the infimum of the posterior probability when π ∈ Γ.

Theorem 1. Consider the hypothesis introduced in (2), an arbitrary prior distribution π ∈ Γ as in (1) and

a mixed prior distribution as in (3) with assigned mass to the null hypothesis according to (4).

Then
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P (H0|n11, . . . , nrs) ≥
[
1 +

1− (1− ε) π0
q0

(1− ε)π0
q0

ηε (n11, . . . , nrs)

]−1

, (11)

where

ηε (n11, . . . , nrs) = (1− ε) η(n11, . . . , nrs) + ε
supθ/∈H0

f(n11, . . . , nrs|θ)
∫
Θ

∏s
j=1 p

∑r

i=1
nij

0j π0(p0)dp0

,

with

η(n11, . . . , nrs) =

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij q0 (θ) dθ

∫
Θ

∏s
j=1 p

∑r

i=1
nij

0j π0(p0)dp0

.

Proof. Computing a lower bound of the posterior probability of H0 is just like computing an upper bound

of 1−π0
π0

m (n11, . . . , nrs|π) when π ∈ Γ. By the construction of π∗ (θ), π0 depends on q ∈ Q through π0
q given

in expression (8). Then, that lower bound can be computed as the supremum in q ∈ Q of

1− π0

π0
m (n11, . . . , nrs|π) =

[
1

(1− ε)π0
q0

+ επ0
q

− 1
]

[(1− ε) m (n11, . . . , nrs|q0) + εm (n11, . . . , nrs|q)] . (12)

With π0
q0

and π0
q given in expression (8), and as the supremum of (14) when q ∈ Q is always less than

or equal to the product of

sup
q∈Q

[
1

(1− ε)π0
q0

+ επ0
q

− 1
]

=
1

(1− ε)π0
q0

− 1

and

sup
q∈Q

[(1− ε)m (n11, . . . , nrs|q0) + εm (n11, . . . , nrs|q)] ,

where

m (n11, . . . , nrs|q) =
∫

Θr

f(n11, . . . , nrs|θ)q (θ) dθ ≤ sup
θ/∈H0

f(n11, . . . , nrs|θ),

then, we obtain (11).

Theorem 1 gives a lower bound for the posterior probability of the homogeneity null hypothesis to test

(2). The first question arises when the infimum is achieved by a distribution of the class Γ defined in (1).

The answer is given by the following theorem.
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Theorem 2. Let θ̂ be the maximum likelihood estimator of θ when θ ∈ H1. If θ̂ /∈ C (δ) and, for fixed ρ,
∫

B(θ̂, ρ) f (n11, . . . , nrs|θ)dθ is approximated by π
r(s−1)

2 ρr(s−1)

Γ
(

r(s−1)
2 +1

) f
(
n11, . . . , nrs|θ̂

)
, then the distribution given

by π̃ (θ) = (1− ε) q0 (θ) + εq̃ (θ), where q̃ (θ) is uniform in B
(
θ̂, ρ

)
, satisfies

infπ∈ΓPπ (H0|n11, . . . , nrs) = Pπ̃ (H0|n11, . . . , nrs)

=

[
1 +

1− (1− ε) π0
q0

(1− ε)π0
q0

ηε (n11, . . . , nrs)

]−1

, (13)

where π0
q0

and ηε (n11, . . . , nrs) are both as in Theorem 1.

Proof. For (10), we need to compute π0 and m (n11, . . . , nrs|π̃). Given that for π̃,

π0 =
∫

C(δ)

π̃ (θ)dθ = (1− ε)
∫

C(δ)

q0 (θ)dθ + ε

∫

C(δ)

q̃ (θ)dθ = (1− ε) π0
q0

and m (n11, . . . , nrs|π̃) = (1− ε)m (n11, . . . , nrs|q0) + εm (n11, . . . , nrs|q̃), where

m (n11, . . . , nrs|q̃) =
∫

Θr

f (n11, . . . , nrs|θ) q̃ (θ) dθ

=
1

π
r(s−1)

2 ρr(s−1)

Γ
(

r(s−1)
2 +1

)

∫

B(θ̂, ρ)
f (n11, . . . , nrs|θ) dθ ≈ f

(
n11, . . . , nrs|θ̂

)
,

then we obtain (13).

Observe that the maximum likelihood estimator for θ = (p1, . . . ,pr) is θ̂ = (p̂1, . . . , p̂r), where p̂i =

(p̂i1, . . . , p̂is), with p̂ij = nij

ni
, j = 1, . . . , ni, i = 1, . . . , r.

To remark that the real restriction in this theorem is θ̂ /∈ C (δ) is of interest, since C (δ) ∩ B(θ̃, ρ) = Ø

and the approximation of the integral is always possible by choosing a sufficiently small value of δ. In other

words, (14) is a strict inequality.

We can note that the Bayes factor is a procedure which could be considered as an alternative to the

posterior probability. Perhaps, the Bayes factor has the problem especially concerning what gauge gives

enough evidence to reject H0. This is the reason why we prefer to use posterior probabilities, which do

not have this inconvenience, instead of Bayes factors. Definitely, the Bayes factor depends on the posterior

probability.

3. COMPARISONS

In parametric testing point null hypothesis, it is known that Bayesian and frequentist procedures can

give rise to different decisions, see Lindley (1957), Berger and Delampady (1987) and Berger and Sellke
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(1987), amongst others. In multinomial tests of point null hypothesis H0 : p = p0 (a specified point),

Delampady and Berger (1990) compute lower bounds on Bayes factors in favour of H0, for two different

classes of densities (conjugate priors with mean p0 and unimodal and symmetric priors about p0). In most

of the Bayesian approaches the infimum of the posterior probability of the null hypothesis or the Bayes

factor, over a wide class of prior distributions, is considered and usually this infimum is substantially larger

than the corresponding p-value. It is necessary to point out that in all these situations the mass assigned

to the simple null hypothesis is 1/2. On the other hand, Casella and Berger (1987) show that there is no

discrepancy in the one-sided testing problem.

Table 2. data in the 2×2 table.

Successes Failures Total

Sample 1 a b n1

Sample 2 c d n2

Total m1 m2 N

For numerical comparisons between the lower bound for the posterior probability computed in Theorem

1 and the usual p-value given in expression (10), we are going to consider 2× 2 tables (see Table 2). In this

situation, we want to test if the proportion of successes in the first population, p1, is the same as in the

second, p2, that is

H0 : p1 = p2 versus H1 : p1 6= p2. (14)

Then the usual test statistic is the random variable

Λ = {ad− bc}2 N

n1n2m1m2

and, when Λ(a0, c0) = λ0 is observed, the evidence used is the p-value,

p = P (Λ ≥ λ0|p1 = p2) = P
(
χ2

1 ≥ λ0

)
.

For simplifying we consider ε = 0. Furthermore, we suppose for convenience that p1 and p2 have

independent uniform prior distributions and the unknown common value under the null p0 has a uniform

distribution too. Then, from our Bayesian viewpoint, the lower bound for the posterior probability is obtained

evaluating expression (11) in

η(a, c) =
Γ (N + 2)

Γ (m1 + 1)Γ (m2 + 1)
Γ (a + 1) Γ (b + 1)

Γ (a + b + 2)
Γ (c + 1)Γ (d + 1)

Γ (c + d + 2)
.

Table 3 shows the values of this lower bound for some specific values of Λ and some π0. We can observe

that the values of the lower bound are close to the respective p-values by choosing an adequate value of π0.
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For instance, if we take πq0 ∈ (0.10, 0.14), we can check that this lower bound is approximately equal to

the p-values. We can also observe that the discrepancy is more acute by using πq0 = 0.5 in the mixed prior

distribution.

A way to choose πq0 is to make the lower bound in (11) equal to the p-value in (10) and obtain π0
q0

from

the expression

p(n11, . . . , nrs) =

[
1 +

1− (1− ε) π0
q0

(1− ε)π0
q0

ηε (n11, . . . , nrs)

]−1

.

However, this implies that

π0
q0

=
1

1− ε

[
1 +

1− p(n11, . . . , nrs)
p(n11, . . . , nrs)ηε(n11, . . . , nrs)

]−1

(15)

and the prior probability depends on the data.

A possibility to avoid this data dependence is to use the significance level of the test α instead of

p(n11, . . . , nrs). Moreover, if the value selected for π0
q0

is close to the one obtained by (15), then we get that

the p-value and the infimum of the posterior probability of the null hypothesis to test (2) are close, since

the infimum is a continuous function of π0
q0

(see expression (13)). In this sense, we propose to use a value

of π0
q0

close to the result of this equalization which provides, by a simple data analysis as Table 3 shows, a

value numerically equal from both points of view.

Table 3. lower bounds of the posterior probability of H0 : p1 = p2 for tables (a, c) with P {Λ ≥ λ0| (p0, p0)}
close to 0.1, 0.05 and 0.01, q0 (p1, p2) = I(0,1) (p1) I(0,1) (p2), π0(p0) = I(0,1) (p0) and ε = 0.
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P {Λ ≥ λ0| (p0, p0)} 0.1127 0.0980 0.0510 0.0455 0.0111 0.0086

π0
q0

= 0.5 0.4658 0.3904 0.2957 0.3325 0.0936 0.0711

π0
q0

= 0.2 0.1790 0.1380 0.0950 0.1107 0.0252 0.0188

π0
q0 = 0.15 0.1333 0.1015 0.0690 0.0808 0.0179 0.0133

π0
q0 = 0.14 0.1243 0.0944 0.0640 0.0750 0.0165 0.0123

π0
q0 = 0.13 0.1153 0.0873 0.0590 0.0693 0.0152 0.0113

π0
q0 = 0.12 0.1063 0.0803 0.0542 0.0636 0.0139 0.0103

π0
q0 = 0.11 0.0973 0.0734 0.0493 0.0580 0.0126 0.0094

π0
q0 = 0.10 0.0873 0.0664 0.0446 0.0524 0.0113 0.0084

π0
q0 = 0.09 0.0794 0.0596 0.0399 0.0470 0.0101 0.0075

π0
q0 = 0.08 0.0705 0.0528 0.0352 0.0415 0.0089 0.0066

π0
q0 = 0.07 0.0616 0.0460 0.0306 0.0361 0.0077 0.0057

λ0 2.5155 2.7375 3.8095 4.0000 6.4509 6.9139

4. GENERALIZATIONS

Another important problem (see Lindley, 1988) is when p0 = p (ω), with p: Ω → Θ, being

Ω = {ω = (ω1, · · · , ωq) , p (ω) = (p1 (ω) , · · · , ps (ω)) ∈ Θ} ⊂ Rq

and q < s fixed.

As usual, from a frequentist viewpoint we can use Pearson’s χ2 statistic as a test statistic,

Λ =
r∑

i=1

s∑

j=1

n2
ij

nipj (ω̂)
−N,

where ω̂ is the maximum likelihood estimator of ω. If λ0 is the value of Λ in the data point of Table 1, then

{Λ ≥ λ0} is a possible critical region and the used evidence is the p-value,

p = P
(
χ2

rs−1−q ≥ λ0

)
.

In this context, for comparisons between frequentist and Bayesian evidence measures, we propose to use

the following appropriate prior distribution

π∗ (θ) = π0π
0 (ω) IH0 (θ) + (1− π0) π (θ) IH1 (θ) ,

where π0 is the prior mass assigned to H0 : p1 = · · · = pr = p (ω), π0(ω) is a fixed prior, π (θ) is chosen in

the class of ε−contaminated prior distributions, Γ, given in (1) and
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π0 =
∫

C(δ)

π (θ)dθ,

with C(δ) =
⋃

ω∈Ω B (θ0, δ) and θ0 = (p (ω) , . . . ,p(ω)) ∈ Θr.

In this case, the posterior probability of the null hypothesis, when the data of Table 1 has been observed,

is

P (H0|n11, . . . , nrs) =


1 +

1− π0

π0

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij q0 (θ) dθ
∫
Ω

∏s
j=1 pj(ω)

∑r

i=1
nij π0(ω)dω



−1

.

Finally, we can note that the extension of the previous results to this situation is easy using a similar

methodology.

5. COMMENTS

The obtained results are the consequence of the methodology based on the relation between the point

null in (2) and the interval null hypothesis in (5). The discrepancy measure between π(θ) and π∗(θ) defined

in (6) justifies the choice of π0 as in (4) with an appropriate value of δ. According to this procedure the

mixed prior distribution π∗(θ), used in the homogeneity null testing problem, is close to the density π(θ)

used in the interval null testing problem

When π (θ) is in the class of ε−contaminated distributions, the lower bound of the posterior probability

of the point null hypothesis computed in (11) can be close to the usual p-value. Gómez-Villegas and Sanz

(2000) obtain similar results in a different context.

Furthermore, in the light of our results, it seems that the discrepancy observed in homogeneity testing

problems between Bayesian and frequentist approaches becomes more acute by using π0 = 0.5 in the mixed

prior distribution.

Finally, the methodology proposed can be used to approach from a Bayesian viewpoint and compare with

frequentist methods other point null hypothesis testing problems. For instance, to test the homogeneity of

independent multinomial distributions with r×s tables when the functional form of p0 is known, p0 = p0 (ω).
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Gómez-Villegas, M. A. and Gómez, E. (1992). Bayes Factor in Testing Precise Hyphoteses. Commun.

Statist-Theory Meth., 21, 1707-1715.
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