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Recently, the field of multiple hypothesis testing has experienced a great expansion,
basically because of the new methods developed in the field of genomics. These
new methods allow scientists to simultaneously process thousands of hypothesis
tests. The frequentist approach to this problem is made by using different testing
error measures that allow to control the Type I error rate at a certain desired
level. Alternatively, in this article, a Bayesian hierarchical model based on mixture
distributions and an empirical Bayes approach are proposed in order to produce
a list of rejected hypotheses that will be declared significant and interesting for
a more detailed posterior analysis. In particular, we develop a straightforward
implementation of a Gibbs sampling scheme where all the conditional posterior
distributions are explicit. The results are compared with the frequentist False
Discovery Rate (FDR) methodology. Simulation examples show that our model
improves the FDR procedure in the sense that it diminishes the percentage of false
negatives keeping an acceptable percentage of false positives.

Keywords Empirical Bayes methods; False discovery rate; Gibbs sampler;
Mixture models; Multiple hypothesis testing.

Mathematics Subject Classification Primary 62F15; Secondary 62F03.

1. Introduction

In this article, we are interested in the problem of multiple hypothesis testing where
it is required to test more than one hypothesis at the same time. It is well known
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Bayesian Analysis with Applications 2277

that if the number of hypotheses is very large and each single hypothesis is tested
individually, there will be always a number of rejected hypotheses, even in the case
that all of them are true. Thus, the probability of a false positive increases with the
number of tests. For example, if the significance level is fixed at 0.05, for each single
test, and a set of a hundred hypotheses are tested separately, the expected number of
false positives will be five. Consequently, five hypothesis are expected to be rejected
simply by chance.

Therefore, the multiple testing problem has been widely studied in very different
fields in the literature, as Shaffer (1995) pointed out. Some recent references are
Efron and Tibshirani (2007), Gordon et al. (2007), and Sun and Cai (2007).
Recently, the field of genomics and, in particular, the DNA microarray experiments
have influenced in the revitalization of multiple hypothesis testing procedures due
to the requirement of testing thousands of hypotheses simultaneously. With DNA
microarray experiments it is possible to obtain large data bases concerning the
measurements of expression levels for thousands of genes simultaneously. One of
the main objectives of these experiments is the identification of those genes that are
differentially expressed, that is, those genes that vary their expression level according
to the type of analyzed tissue. This situation can be formulated as a multiple
hypothesis testing problem in which each individual hypothesis is associated with
one single gene and the interest is to test simultaneously which of the thousands
of genes are statistically significant. For a review on multiple hypothesis testing in
microarrays experiments; see, e.g., Dudoit et al. (2003).

From a frequentist point of view, the procedure to carry out a multiple
hypothesis test is based on controlling a particular measure related with the Type I
error rate in order to produce a list of rejected hypotheses. This extends the case of a
single hypothesis test where the rejection region is based on the control of the Type
I error rate. The possible outcomes that may occur when testing multiple hypotheses
simultaneously are resumed in Table 1, as proposed by Benjamini and Hochberg
(1995), where N is the known number of hypotheses to test, NT and NF are the
unknown number of true and false hypotheses, respectively, U� V� T , and S are non-
observable random variables and R is an observable random variable representing
the number of rejected hypotheses according to some significant rule.

Different measures concerning the Type I error rate have been proposed for
the multiple hypothesis problem, including the family wise error rate, the per-
comparison error rate and the per-family error rate (see, e.g., Dudoit et al., 2003;
Shaffer, 1995). Most of these procedures are usually very conservative or ignore
the multiplicity of the problem. Benjamini and Hochberg (1995) stated that, in
some situations, it may be reasonable to assume a number of Type I errors, that
is, rejected hypotheses that are actually true, provided they are only a few when

Table 1
Possible outcomes in a multiple hypothesis

testing problem

No accepted No rejected Total

True U V NT

False T S NF

W R N
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2278 Ausín et al.

compared with the number of rejected hypotheses. For this reason, these authors
introduced a less conservative measure, the False Discovery Rate (FDR), which is
defined as the expected proportion of Type I errors among the rejected hypotheses,

FDR = E

[
V

R

∣∣∣∣R > 0
]
Pr�R > 0��

where V and R are defined in Table 1. Benjamini and Hochberg (1995) also derived
a procedure to control the FDR at a certain level, �� for independent test statistics,
which is based on the rejection of those null hypotheses corresponding to the
ordered p-values, p�1� ≤ p�2� ≤ · · · ≤ p�k�, where

k = max�i � p�i� ≤ i�/N��

In the context of microarray experiments, multiple hypothesis tests are usually
performed in an initial exploratory step. In this initial step, it is mainly interesting
to identify a number of gene subgroups that may be associated with important
biological processes and might be potential candidates for a deeper posterior
analysis. Therefore, the presence of a small number of false positives would not
be important in this initial step of the analysis provided as many significant genes
as possible can be obtained. Considering this fact, it seems reasonable to be more
interested in reducing the Type II error, that is, no rejected hypotheses that are
actually false, instead of minimizing the Type I error. These arguments make
FDR one of the most popular error types considered in microarray experiments.
However, although the FDR is less conservative than other approaches, the number
of significant hypothesis obtained with the FDR procedure is still too small.

Bayesian procedures constitute an important class of methods for the
identification of differentially expressed genes and whose applications in microarray
data analysis can be found in the earlier work of Waller and Duncan (1969), Storey
(2003) who discussed Bayesian interpretations of the p-value, Newton et al. (2001),
Barbieri and Berger (2004), Lönnstedt and Britton (2005), Scott and Berger (2006),
and Bansal (2007), among others. In Bayesian methods, the criterion for identifying
differentially expressed genes is based on the posterior probability that a particular
gene is differentially expressed given the data for all genes. Do et al. (2005) use a
nonparametric Bayesian probability model for the distribution of gene intensities
under different conditions.

The empirical Bayes approach, introduced by Robbins (1956, 1964), is used to
make an analysis of microarray data as can be seen in Efron (2003). Empirical
Bayes models in the context of microarray data have been developed by Efron et al.
(2001), Kendziorski et al. (2003), and Datta and Datta (2005), among others. Casella
(2001) estimates the hyperparameters by Gibbs sampling, using an empirical Bayes
approach.

In this article, we propose a Bayesian approach in order to address the multiple
hypothesis problem. We assume that a test statistic has been observed for each
hypothesis. Thus, the test statistics follow a mixture of two distributions, one for
each of the two hypotheses in the test. Assuming prior distributions for the model
parameters, we are interested in estimating of the posterior probability that each
hypothesis is true. This can be addressed using data augmentation techniques where
indicator variables are introduced to simplify the likelihood and the derivation of
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Bayesian Analysis with Applications 2279

the posterior distributions. In particular, we implement a straightforward Gibbs
sampling for testing multiple means under Gaussianity. Note that the Gaussian
assumption is frequently imposed in the context of microarray experiments when
data are usually preprocessed and normalized in order to compare gene expression
information obtained from different sources. We also develop a detailed sensitivity
analysis for the choice of the prior, propose an empirical Bayes model and compare
our results with the frequentist FDR procedure.

The rest of this article is organized as follows. Section 2 proposes a full
parametric Bayesian approach for multiple hypothesis testing. Section 3 applies the
proposed approach for a multiple hypothesis test where the interest is in the means
of Gaussian populations, which is the usual framework in microarray experiments.
We define a Gibbs sampling algorithm and illustrate it using simulated data. A
sensitivity analysis for the choice of prior distribution is also carried out. Section 4
deals with an empirical Bayes model that simplifies and improves the final results,
with a couple of examples included to show how the methodology works. Section 5
includes some discussion and presents the final conclusions.

2. A Bayesian Approach

Consider the problem of multiple hypothesis testing which is given by,

H0i � 	i ∈ 
0 vs. H1i � 	i ∈ 
1�

for i = 1� 2� � � � � N , where a test statistic Ti = Ti�Xi1� � � � � Xin� is observed for each
test i = 1� � � � � N . Suppose that under the null H0i, the test statistic follows a density
Ti ∼ f�ti � 	i ∈ 
0� ��, while under H1i, the test statistic follows Ti ∼ f�ti � 	i ∈ 
1� ��,
where 	i is the parameter of interest and � is a nuisance parameter. Observe that
for simplicity, we assume that � is the same for all the hypotheses.

Furthermore, a natural Bayesian approach is to assume that there is a common
prior probability p that 	i ∈ 
0, for all i. Then, it can be observed that p is also the
unknown proportion of the true null hypotheses.

From now on we will note, Ti �H0i ∼ f0�ti� and Ti �H1i ∼ f1�ti�. Thus, the test
statistics, Ti, comes from a mixture of both densities:

f�ti �p� �i� �� = pf0�ti�+ �1− p�f1�ti�� (1)

for i = 1� � � � � N . Then, assuming that the Ti are i.i.d. random variables, the
likelihood can be written as,

l�� � t� =
N∏
i=1

f�ti �p� 	i� �� =
N∏
i=1

�pf0�ti�+ �1− p�f1�ti�
 � (2)

where � = �p� �� 	1� � � � � 	N �, t = �t1� � � � � tN � and ti = Ti�xi1� � � � � xin�.
In order to carry out Bayesian inference, we also need to define a prior

distribution, ����, for the set of model parameters, �. Given this prior and the
likelihood (2), it is in general not easy to obtain an analytical expression for the
posterior distribution, ��� � t� ∝ l�� � t�����. However, Bayesian inference may be
performed using Markov Chain Monte Carlo (MCMC) methods, (for an overview
see Robert and Casella, 2004). Under mild conditions, given an initial value, ��0�, the
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2280 Ausín et al.

MCMC approach can produce a Markov chain ���j� � j = 1� � � � �M�, where ��j� =
�p�j�� ��j�� 	

�j�
1 � � � � � 	

�j�
N �, which has equilibrium distribution, ��� � t�. The MCMC

algorithm is carried out by cycling repeatedly through draws of each parameter
conditional on the remaining parameters.

Then, in order to specify a model and a prior distribution ���� for making
possible inferences via MCMC we introduce, as it is usually done in mixtures, iid
latent variables zi such that P�zi = 0 �p� = p and P�zi = 1 �p� = 1− p. Furthermore,
we suppose that 	i are iid variables with prior density ��	i ��� being zi and 	i
independents whatever i� j. The model specification is completed by defining the
conditional distribution of ti given zi = 0, 	i and � as a member of f�t � 	� �� for
some 	 ∈ 
0, and the conditional distribution of ti given zi = 1, 	i and � as a
member of f�t � 	� �� for some 	 ∈ 
1.

For simplicity, the conditional distributions f�ti � zi = 0� 	i� �� and f�ti � zi =
1� 	1� �� will be denoted by f0�ti� and f1�ti�, respectively. The Bayesian specification
will be completed by choosing a prior distribution for p, ��p�, and �, ����. Using
this latent variables, the likelihood (2) can be written as

l�� � z� t� = f�t � z� �−p�f�z �p� = pN0�1− p�N1
∏

i� zi=0

f0�ti�
∏

i� zi=1

f1�ti�� (3)

where �−p = ��� 	1� � � � � 	N �, N0 =
∑

i I�zi = 0� ∼ Bin�N� p� is the amount of
observations from the first component of the mixture and N1 =

∑
i I�zi = 1� ∼

Bin�N� 1− p� those from the second component. In fact, N = N0 + N1.
Then, the posterior distribution for ��� z� is given by

���� z � t� ∝ l�� � z� t����� (4)

and from (4) we can obtain the marginal posterior means for the parameters of
interest.

3. The Gaussian Model: An Application to Microarrays

In this section, we address an application of the previous problem to the analysis
of microarrays. In this context, as it was pointed out in the introduction, data are
usually normalized and the interest is in the means of Gaussian distributions. In
particular, each Gaussian variable might represent the measured expression of a
certain gene from a DNA microarray. Then, we are interested in classifying the
genes as active, when the mean is different from zero, and inactive, when the mean
is equal to zero.

Thus, we consider the multiple hypothesis test problem given by,

H0i � �i = 0 vs. H1i � �i �= 0� i = 1� � � � � N�

where the sample mean statistic Ti = �Xi1 + · · · + Xin� /n is observed for each
test i = 1� � � � � N . Under the null, the sample mean statistic follows a Gaussian
distribution, Ti �H0i ∼ N �0� 1/��, with zero mean and precision, �� which is the
inverse of the variance. Under the alternative, the sample mean statistic is Ti �H1i ∼
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Bayesian Analysis with Applications 2281

N��i� 1/��� where �i �= 0. Then, under this Gaussian model, the likelihood (3) for
the parameter � = �p� �� �1� � � � � �N � is given by:

l�� � z� t� ∝
[ ∏
i�zi=0

(
p�1/2 exp

(
−�

2
t2i

))]

×
[ ∏
i�zi=1

(
�1− p��1/2 exp

[
−
(
�

2
�ti − �i�

2
)])]

∝ pN0 �1− p�N1 �
N
2 exp

(
−�

2

∑
i�zi=0

t2i

)
exp

[
−
(
�

2

∑
i�zi=1

�ti − �i�
2

)]
� (5)

Let us assume the following natural conjugate prior distributions (see Gelman
et al., 2004),

p ∼ Beta��� ��� (6)

� ∼ Gamma�a/2� b/2�� (7)

�i �� ∼ N�0� 1/�ci���� i = 1� � � � � N� (8)

Then, given these prior densities and the likelihood (5), we derive the
conditional posterior distribution of each model parameter in order to construct the
MCMC chain. Firstly, the conditional posterior probability that the statistic ti has
been generated by the first mixture component is,

Pr �zi = 0 � ti� p� �� �i� =
p exp

(−�

2 t
2
i

)
p exp

(−�

2 t
2
i

)+ �1− p� exp
(
−�

2 �ti − �i�
2
)
�

(9)

and by the second mixture component, Pr�zi = 1 � ti� p� �� �i� = 1− Pr�zi = 0 �
ti� p� �� �i�.

Also, it is easy to see that the conditional posterior distribution of p given the
data and the rest of parameters is

��p � t� z� ∼ Beta�N0 + �� N1 + ��� (10)

And, the conditional posterior distribution of � given the data and the rest of
parameters is

��� � t� z� �1� � � � � �N � ∼ Gamma

(
a+ 2N

2
�
1
2
K

)
� (11)

where K = b +∑N
i=1 ci�

2
i +

∑
i�zi=0 t

2
i +

∑
i�zi=1�ti − �i�

2.
Finally, for i = 1� � � � � N� the conditional posterior distribution of �i given the

data and the rest of parameters depends on the value of zi and is given by

���i � ti� zi = 0� �� ∼ N

(
0�

1
ci�

)
� (12)
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2282 Ausín et al.

whereas

���i � ti� zi = 1� �� ∼ N

(
ti

1+ ci
�

1
�1+ ci��

)
� (13)

It can be observed that the conditional posterior distributions (9), (10), (11),
(12), and (13) are explicit, and this allows us to implement a straightforward Gibbs
sampling algorithm as follows.

1. Specify initial values ��0� =
(
p�0�� ��0�� �

�0�
1 � � � � � �

�0�
N

)
.

2. Update z
�j�
i , for i = 1� � � � � N , by sampling from (9).

3. Update p�j� by sampling from (10).
4. Update ��j� by sampling from (11).
5. Update �

�j�
i for i = 1� � � � � N by sampling from (12) if z�j�i = 0 and from (13) if

z
�j�
i = 1.

6. Go to step 2.

Given an MCMC sample,
{
p�j�� ��j�� �

�j�
1 � � � � � �

�j�
N

}M
j=1

� obtained from the Gibbs

sampling algorithm, we can obtain estimates of the posterior marginal means by

p̂ = E�p � t
 ≈ 1
M

M∑
j=1

p�j�� (14)

�̂ = E�� � t
 ≈ 1
M

M∑
j=1

��j�� (15)

and, for each i = 1� � � � � N ,

�̂i = E��i � t
 ≈
1
M

M∑
j=1

�
�j�
i � (16)

Using the posterior sample of the model parameters, we can also approximate
the posterior probability of the alternative hypothesis by

Pr �H1i � t� = Pr��i �= 0 � t� = Pr�zi = 1 � t� ≈ 1
M

M∑
j=1

I�z
�j�
i = 1�� (17)

for i = 1� � � � � N .
Observe that we can use these posterior probabilities to solve the multiple

hypothesis test problem. For example, we might consider rejecting the null
hypothesis H0i if Pr�zi = 1 � t� > 0�5, for i = 1� � � � � N . Using this criterion, the
percentage of rejected hypotheses will be

R% =
∑N

i=1 I �Pr�zi = 1 � t� > 0�5�
N

× 100� (18)

When the parameters �i are known, as they are with simulated data, we can compute
the percentage of false positives (FP%) or Type I errors and the percentage of false
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negatives (FN%) or Type II errors in order to show the behavior of our approach.
Both percentages are given by the following expressions

FP% =
∑N

i=1 I �Pr�zi = 1 � t� > 0�5�× I ��i = 0�∑N
i=1 I ��i = 0�

× 100� (19)

FN% =
∑N

i=1 I �Pr�zi = 1 � t� ≤ 0�5�× I ��i �= 0�∑N
i=1 I ��i �= 0�

× 100� (20)

3.1. Simulation Results and Sensitivity Analysis

In this section, we develop a simulation experiment to examine the performance of
our approach. We simulate a microarray experiment with data on the expression
levels of N = 5�000 genes, with n = 5 observations per gene, simultaneously tested
in order to analyze which genes are differentially expressed.

In this context, the data are generated from a mixture of two Gaussian
distributions, such that xij ∼ N �0� 1� with probability p = 0�9 and xij ∼ N ��i� 1�
with probability 1− p = 0�1� for i = 1� � � � � 5�000 and j = 1� � � � � 5� with �i taking
different values in the interval �−4� 4
. Thus, the data on sample mean statistics, ti =
�xi1 + · · · + xi5� /5� have been simulated from a mixture of two normal distributions,
0�9× N �0� 1/5�+ 0�1× N ��i� 1/5�, for i = 1� � � � � 5�000.

Given these simulated data, we apply our Gibbs sampling procedure using
different values for the parameters of the prior distributions in order to develop a
sensitivity analysis as follows.

• For the parameters ��� �� given in (6), we take the values �1� 25�, �1� 1�, and
�25� 1�.

• For the parameters �a� b� given in (7), we take the values �0� 0�, �1� 10�, and
�10� 1��

• For the parameter ci given in (8), we take the values 0�00001, 0�0001, 0�001,
0�01, 0�1, 0�2, and 0�4 for i = 1� � � � � 5�000�

Table 2 presents the estimated posterior means of p and �, obtained using (14)
and (15), respectively. Table 2 also shows the percentage of rejected hypothesis (R%)
that is, the percentage of differentially expressed genes, obtained using (18), and
the percentage of false positives (FP%) and false negatives (FN%), obtained using
(19) and (20), respectively, for different values of �� � and c = ci� for i = 1� � � � � N�
and a noninformative gamma prior for � with parameters �a� b� = �0� 0�. It can be
observed that for a fixed value of c� the estimations p̂ and �̂� and the values of R%�
FP%, and FN% are robust with respect to the prior distribution of p� because they
take similar values for different choices of the prior parameters � and ��

However, it seems that the parameter ci = c� defined in (8), has a great influence
on the results since we can observe significant differences in the estimations obtained
for different values of c. Moreover, for very small or very large values of c, the
percentage of rejected hypotheses is much smaller than 10% and the percentage of
false negatives is very large. Therefore, it seems that a value of c around 0�1 would
be appropriate, since it produces a small value for FN%, keeping a reasonable value
for FP%. Then, we conclude that there is sensitivity to the choice of c, which implies
a sensitivity to the choice of the prior variance for the means �i. In order to solve
this problem, we will develop in the next section an empirical Bayesian model to
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Table 2
Estimated posterior means of p and �, percentage of rejected hypothesis (R%) and

percentage of false positives (FP%) and false negatives (FN%) using a non
informative gamma prior distribution for the nuisance parameter, �� with a = 0

and b = 0

c

��� �� 0.00001 0.0001 0.001 0.01 0.1 0.2 0.4

�1� 25� p̂ 0�94 0�93 0�92 0�89 0�82 0�80 0�77
�̂ 3�95 4�50 5�01 5�60 4�88 3�90 2�96
R% 5�28 6�22 6�88 7�92 9�02 8�22 7�70
FP% 0 0�02 0�07 0�36 1�08 0�58 0�22
FN% 51�91 43�53 37�89 30�78 26�59 29�87 31�69

�1� 1� p̂ 0�95 0�94 0�92 0�90 0�83 0�81 0�79
�̂ 3�89 4�46 4�99 5�54 4�81 3�86 2�93
R% 5�20 6�16 6�88 7�78 8�76 8�04 7�56
FP% 0 0�02 0�07 0�27 0�90 0�47 0�16
FN% 52�64 44�08 37�89 31�33 27�50 30�60 32�42

�25� 1� p̂ 0�95 0�94 0�93 0�90 0�83 0�82 0�79
�̂ 3�91 4�47 4�99 5�54 4�80 3�85 2�93
R% 5�24 6�22 6�86 7�80 8�70 8�00 7�54
FP% 0 0�02 0�07 0�29 0�88 0�45 0�16
FN% 52�28 43�53 38�07 31�33 27�87 30�78 32�60

select an appropriate value for c, which will lead to adequate values for R%, FN%,
and FP%.

Firstly, in order to explore the influence of the choice of the gamma prior
distribution for �� given in (7), Tables 3 and 4 show the estimated posterior means
of p and �, the percentage of rejected hypothesis and percentage of false positives
and false negatives for the same values of �� �, and c considered in Table 2 and two
gamma prior distributions for � with parameters �1� 10� and �10� 1�, respectively.
It can be observed that there is no much sensitivity to the choice of the gamma
prior parameters, �a� b�, because the estimations obtained in Tables 3 and 4 are very
similar to those obtained in Table 2.

4. An Empirical Bayes Model

In this section, we consider the same Gaussian model defined in the previous
section where � = �p� �� �1� � � � � �N � is the set of parameters of interest, whose prior
distributions are given by (6), (7), and (8), respectively. We illustrated in the previous
section that there is no sensitivity to the choice of the prior parameters, except for
the choice of ci.

In order to solve the lack of robustness to the choice of ci we could
consider a hierarchical Bayesian model where for example ci ∼ Gamma �e� f� � for
i = 1� � � � � N� However, we have observed in practice that the results are highly
dependent on the selection of the hyperparameters �e� f� �
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Table 3
Estimated posterior means of p and �, percentage of rejected hypothesis (R%) and

percentage of false positives (FP%) and false negatives (FN%) using a gamma
prior distribution for the nuisance parameter, �� with a = 1 and b = 10

c

��� �� 0.00001 0.0001 0.001 0.01 0.1 0.2 0.4

�1� 25� p̂ 0�94 0�93 0�92 0�89 0�82 0�80 0�77
�̂ 3�86 4�44 4�94 5�50 4�81 3�86 2�94
R% 5�18 6�2 6�84 7�82 8�86 8�14 7�66
FP% 0 0�02 0�07 0�29 0�99 0�49 0�18
FN% 52�82 43�72 38�25 31�15 27�32 29�87 31�69

�1� 1� p̂ 0�95 0�94 0�93 0�90 0�83 0�81 0�79
�̂ 3�86 4�41 4�91 5�46 4�74 3�82 2�91
R% 5�18 6�16 6�80 7�76 8�68 8�02 7�60
FP% 0 0�02 0�07 0�27 0�88 0�47 0�18
FN% 52�82 44�08 38�62 31�51 28�05 30�78 32�24

�25� 1� p̂ 0�95 0�94 0�93 0�90 0�84 0�82 0�79
�̂ 3�82 4�41 4�91 5�45 4�73 3�81 2�90
R% 5�14 6�18 6�76 7�74 8�58 7�98 7�48
FP% 0 0�02 0�04 0�27 0�79 0�43 0�16
FN% 53�19 43�90 38�80 31�69 28�23 30�78 33�15

Table 4
Estimated posterior means of p and �� percentage of rejected hypothesis (R%) and

percentage of false positives (FP%) and false negatives (FN%) using a gamma
prior distribution of the nuisance parameter, �� with a = 10 and b = 1

c

��� �� 0.00001 0.0001 0.001 0.01 0.1 0.2 0.4

�1� 25� p̂ 0�94 0�93 0�92 0�89 0�82 0�80 0�77
�̂ 3�93 4�52 5�03 5�61 4�88 3�91 2�97
R% 5�24 6�22 6�88 7�90 9�04 8�30 7�70
FP% 0 0�02 0�07 0�34 1�10 0�65 0�22
FN% 52�28 43�53 37�89 30�78 26�59 29�69 31�69

�1� 1� p̂ 0�95 0�94 0�92 0�90 0�83 0�81 0�78
�̂ 3�90 4�48 4�99 5�55 4�82 3�87 2�94
R% 5�2 6�22 6�82 7�80 8�78 8�08 7�56
FP% 0 0�02 0�07 0�29 0�92 0�47 0�16
FN% 52�64 43�53 38�43 31�33 27�50 30�24 32�42

�25� 1� p̂ 0�95 0�94 0�92 0�90 0�83 0�81 0�79
�̂ 3�91 4�48 4�99 5�55 4�81 3�86 2�93
R% 5�24 6�22 6�88 7�84 8�74 8�04 7�56
FP% 0 0�02 0�07 0�31 0�90 0�47 0�16
FR% 52�28 43�53 37�89 31�15 27�69 30�60 32�42
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Alternatively, in this section, we use an empirical Bayes approach to estimate
the parameter c = ci� for i = 1� � � � � N� Once we obtain an estimated value, ĉ� we
can generate samples of the posterior distribution, ��� � t� �� �� a� b� ĉ�� and obtain
the corresponding estimators of the posterior marginal means of p, � and �i, for
i = 1� � � � � N� through (14), (15), and (16), respectively, by using the Gibbs sampling
algorithm defined in the previous section, as proposed by Casella (2001).

Our proposal, to estimate the parameter c, is to obtain by maximum likelihood
the value ĉ such that

ĉ = argmax
c

m�t � �� �� a� b� c�

where

m�t � �� �� a� b� c� =
∫

l�� � t���� � t� �� �� a� b� c�d�

=
∫ N∏

i=1

f�ti � ����� � t� �� �� a� b� c�d�� (21)

where f �ti � �� is given in (1).
It is not easy to evaluate analytically the integral given in (21). However, it

can be approximated using posterior samples obtained from the Gibbs sampling
algorithm defined in the previous section. For each value of c, we can obtain a
posterior sample,

{
��j��c�

}M
j=1

=
{
p�j�� ��j�� �

�j�
1 � � � � � �

�j�
N

}M
j=1

and then use the following Monte Carlo approximation of (21),

m̂�t � �� �� a� b� c� = 1
M

M∑
j=1

N∏
i=1

f
(
ti � ��j��c�

)
�

Therefore, our estimation of c is given by

ĉ = argmax
c

1
M

M∑
j=1

N∏
i=1

f
(
ti � ��j��c�

)
�

Observe that in the maximization process it is required to run a Gibbs sampling
for every evaluation of the function to maximize. However, this is not an important
problem in terms of computational cost because the proposed Gibbs sampling, being
completely explicit, is very fast. For example, less than one minute is required to
run 20,000 iterations (discarding the first 10,000 as burning iterations).

Table 5 shows the maximum likelihood estimator of c computed for each
case, together with the estimated values of p and � and the percentage of rejected
hypotheses computed from (18), the estimated FDR and the estimated FNR. The
results show, in coherence with those obtained in Tables 2, 3, and 4, that our
approach seems to select appropriate optimal values for c� leading to adequate
numbers of rejected hypotheses and small percentages of false negatives and
positives as it is shown with the estimated values of FDR and FNR.
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Table 5
Maximum likelihood estimator of c, estimated posterior means of p and ��

percentage of rejected hypothesis (R%) and estimated FDR (F̂DR) and estimated
FNR (F̂NR), using different priors for p ∼ Beta��� �� and � ∼ Gamma�a/2� b/2�

�a� b� ��� �� ĉopt p̂ �̂ R% F̂DR F̂NR

�0� 0� �1� 25� 0�0860 0�83 5�06 9�14 0�130 0�291
�1� 1� 0�0739 0�84 5�15 8�90 0�111 0�296
�25� 1� 0�0911 0�84 4�91 8�74 0�103 0�303

�1� 10� �1� 25� 0�0865 0�83 4�97 8�90 0�113 0�298
�1� 1� 0�0673 0�85 5�15 8�74 0�103 0�303
�25� 1� 0�0792 0�84 4�99 8�66 0�098 0�307

�10� 1� �1� 25� 0�0865 0�83 5�06 9�16 0�130 0�289
�1� 1� 0�0735 0�84 5�17 8�90 0�1019 0�296
�25� 1� 0�0705 0�84 5�19 8�88 0�109 0�296

Figure 1. Diagnostic check: histograms are of normalized differences from simulated data
from the Gaussian–Gamma model with the fitted predictive density, for different parameter
values.
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The data were simulated from the Gaussian–Gamma model. The histograms
and the fitted densities are shown in Fig. 1.

In comparison with the FDR procedure, Table 6 shows the percentage of
rejected hypotheses together with the estimated values of FDR and FNR obtained
by the empirical Bayes approach, using a Gamma�0� 0� and a Beta�1� 1� as priors
for � and p, respectively, and the corresponding maximum likelihood estimator for
c (ĉMLE). It can be observed that the estimated percentage of rejected hypotheses
is closer to the percentage simulated in the mixture (10%) than the percentages
estimated by the FDR method with the levels usually used in the literature for
control the FDR. Moreover, the estimated FNR is significantly smaller than the
FNR obtained with the FDR procedure, whereas the estimated FDR is acceptable.
Moreover, it has been included another two estimated values of c in order to
compare our results with those obtained by the FDR procedure.

4.1. Application to Microarrays

In this section, the proposed procedure is applied to the data set of colon
cancer from Alon et al. (1999) to identify differentially expressed genes. Alon
et al. (1999) used Affymetrix oligonucleotide arrays to monitor expressions of
over 6,500 human gene expressions in 40 tumor and 22 normal colon tissue
samples. The samples were taken from 40 different patients, with 22 patients
supplying both a tumour and a normal tissue sample. They focused on the
2,000 genes with highest minimal intensity across the samples. Further details
available at http://www.stat.ucla.edu/∼wxl/research/microarray/DBC/index.htm
and http://microarray.princeton.edu/oncology/.

Thus, the microarray data matrix for this set has 2,000 rows and 62 columns.
In Alon et al. (1999), the tissues are not listed consecutively, but here we have
rearranged the data so that the normal tissues are labeled from 1 to 22 and the
tumour tissues from 23–62.

Table 7 shows, for different values of the hyperparameters �, �, a, and b, the
maximum likelihood estimator of c, together with the estimations of p, � and the
percentage of rejected hypotheses. It can be shown that, just like the simulated data,
these results are robust with respect to the choice of prior distribution parameters.

Using Gamma�0� 0� and Beta�1� 1� distributions as priors for � and p,
respectively, and the corresponding maximum likelihood estimator for c, it can

Table 6
Percentage of rejected hypothesis and estimated FDR (F̂DR) and estimated FNR

(F̂NR) using the empirical Bayes (EB) approach with ��� �� = �1� 1� and
�a� b� = �0� 0�, compared with the frequentist FDR method for different

values of c

EB method FDR method

ĉMLE = 0�0739 ĉ = 0�014 ĉ = 0�0327 � = 0�05 � = 0�10

R% 8�90 7�94 8�56 2�74 4�72
F̂DR 0�111 0�048 0�094 0�047 0�085
F̂NR 0�296 0�334 0�313 0�783 0�633
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Table 7
Maximum likelihood estimator of c, estimated posterior
means of p and � and percentage of rejected hypothesis

(R%), using different priors for p ∼ Beta��� �� and
� ∼ Gamma�a/2� b/2�. Colon cancer data

�a� b� ��� �� ĉopt p̂ �̂ R%

�0� 0� �1� 25� 0�0040 0�72 0�00069 24�25
�1� 1� 0�0041 0�75 0�00059 21�95
�25� 1� 0�0041 0�76 0�00047 21�65

�1� 10� �1� 25� 0�0060 0�71 0�00065 24�40
�1� 1� 0�0056 0�74 0�00060 22�80
�25� 1� 0�0048 0�75 0�00058 21�90

�10� 1� �1� 25� 0�0040 0�71 0�00073 24�90
�1� 1� 0�0054 0�73 0�00063 23�55
�25� 1� 0�0047 0�75 0�00061 22�75

Figure 2. Diagnostic check: histograms are of differences from Colon cancer data. Curves
are fitted densities, for different parameter values.
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be observed that 21�95% of genes are differentially expressed with our empirical
procedure, whereas with the procedure proposed by Benjamini and Hochberg (1995)
for control the FDR, this percentage is reduced to a 6% for an � = 0�05 and 10�90%
if � = 0�1.

It must be observed that Alon et al. (1999) analyzed more than 6,500 genes
at first, but after they focused their analysis in 2,000 genes with highest minimal
intensity across the samples. We have dealt with these 2,000 genes, therefore a high
percentage of rejected hypothesis is obtained.

Our approach leads to a relatively straightforward procedure to identify
genes differentially expressed. Moreover, the inferences are based on the posterior
probabilities and then the influence of each gene can be evaluated. For example, in
the data set of colon cancer from Alon et al. (1999), we obtained 223 genes that are
differentially expressed with posterior probability equal to 1.

Figure 2 shows how our Gaussian–Gamma model fits data. Plotted on each
histogram is the fitted marginal density from de Gaussian–Gamma model. It can be
seen that the fit captures the basic attributes of the data, even though that there is
margin for improvement.

5. Conclusions and Comments

Our approach significantly improves the percentage of the Type II errors, or false
negatives, with respect to the FDR procedure, while the percentage of false positives
or Type I errors is quite acceptable. That is to say, our model is less conservative
than the FDR procedure, which is an objection usually marked in the literature.

In the simulated example that we dealt with, the performance of our Bayesian
methods improves the results obtained with the FDR procedure in the sense that
it reduces significantly the percentage of false negatives with respect to the FDR
method. Moreover, our procedure identifies the genes that are really differentially
expressed.

Furthermore, the procedure is robust with respect to the parameters of the
prior distributions, as great changes in these values do not cause important changes
either in the parameter estimations or in the estimation of false positives and false
negatives.

The sensitivity, which was initially observed to the choice of the parameter
associated with the prior variance of the means, has been solved by using an
empirical Bayes approach that provides good results when all the observations are
used to estimate the value of the parameter c in the �′

is prior distribution. This
methodology implies that we use a prior distribution which depends on the observed
data. However, as Casella (2001) pointed out, data dependent priors are perfectly
valid and are frequently used in the Bayesian literature.
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