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Abstract: DNA microarray experiments require the use of multiple hypothesis testing procedures because
thousands of hypotheses are simultaneously tested. We deal with this problem from a Bayesian decision
theory perspective. We propose a decision criterion based on an estimation of the number of false null
hypotheses (FNH), taking as an error measure the proportion of the posterior expected number of false posi-
tives with respect to the estimated number of true null hypotheses. The methodology is applied to a Gauss-
ian model when testing bilateral hypotheses. The procedure is illustrated with both simulated and real data
examples and the results are compared to those obtained by the Bayes rule when an additive loss function is
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dure significantly reduced the percentage of false negatives whereas the percentage of false positives remains
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1 Introduction

All statistical inference methods involve taking a decision. In multiple hypothesis testing problems and spe-
cifically in the context of microarray experiments, in which hundreds or thousands of hypotheses are simul-
taneously tested, the key point is to decide which hypotheses will be rejected and which will be accepted.
Decision Theory is a theoretical framework that allows researches to globally study statistical inference
problems as a unique type of problem: taking a decision. It also greatly reinforces the logic of the Bayesian
approach (Berger, 1985).

From a Bayesian point of view, deciding between the null and the alternative hypothesis, when a single
hypothesis is considered consists in computing both of the posterior probabilities and then deciding accord-
ingly. The idea is similar when testing multiple hypotheses.

We consider the problem of simultaneously testing N hypotheses as follows

H,:0€0, versus H:0g®©, i=1,2,...,N 6}

where © U0,=0 and ©,n0 =g foralli=1,2, ..., N.

If the model is fx}6) with x=(x,, x,, ..., x,), where x=(x,, X, ..., x,)) is observed from f{x]6) for each i=1, 2,
... N, and our beliefs about 6=(6,, ..., 6,) can be expressed by means of z(6), then the posterior distribution
of 8 is given by

71(6x)e<f(x]6)7(6) (2

The posterior probability for each of the null hypotheses, Pr(6,e ©,|x), is obtained from the corresponding
marginal distribution of 8, for i=1, ..., N. Once the posterior probability of each null hypothesis is computed,
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we must decide, on the basis of these probabilities, which of the null hypotheses will be rejected and which
will be accepied, Therefore, it is necessary to choose a cutoff in order to reject all hypotheses whose posterior
probability is less than or equal to this cutoff value.

To the best of our knowledge, Lehmann (1957a,b) was the first to consider the problem of multiple hypoth-
eses as a frequentist decision problem, He developed an optimal procedure considering an additive loss func-
tion. Therefore, the problem of minimizing the risk function or the Bayes risk can be solved by minimizing
separately each of the components of the problem and the procedure is then optimal for each comparison
without taking into account the other comparisons.

Table 1 describes the possible outcomes from N hypothesis tests, where N, and N, are the unknown
number of true and false null hypotheses, respectively, V is the number of true null hypotheses that are
rejected (type I errors or false positives), T is the number of false null hypotheses that are accepted (type 1T
errors or false negatives), and W and R are observable random variables representing the number of accepted
and rejected null hypotheses, respectively.

Using a Neyman-Pearson frequentist approach, Spjetvoll (1972) developed a powerful procedure for
testing multiple hypotheses by maximizing the power for each individual hypothesis considering the per-
family error rate (PFER). This is defined as PFER=E[V], the expected number of false positives. The main
result of the works of Lehmann and Spjetvoll is that if an optimal procedure is used for each component of
the problem, then the procedure is optimal for the joint multiple hypothesis problem.

From a Bayesian decision theory point of view, Duncan (1961, 1965) developed an optimal procedure to
compare all couples of means for a one-way balanced design. Using normal and independent prior distribu-
tions, he derived a Bayes rule for when the loss function is additive and depends on the real mean differences.
This rule does not depend on the number of comparisons and in this sense the Bayesian procedure for this
problem has the same nature as procedures that control the per-comparison error rate, PCER=E[V]IN, because
it ignores the multiplicity of the problem. However, the procedure proposed by Duncan depends on hetero-
geneity between the treatment means. Hochberg and Tamhane (1987) provide a detailed description of work
by Lehmann, Spjgtvoll and Duncan.

Lewis and Thayer (2004) followed the approach of Shaffer (1999) and Duncan (1965) and applied Bayes-
ian decision theory to the problem of testing multiple hypotheses in a design with random effects. They
considered the 0-1loss function and showed that a Bayes rule controls the false discovery rate (FDR), which
provides theoretical support for the conclusions of Shaffer (1999). The methodologies of Lewis and Thayer
(2004) and Shaffer (1999) can be considered semi-Bayesian because they control some frequentist error
measures.

Sun and Cai (2007) developed a compound decision theory framework and derived an oracle rule based
on z-values that minimizes the false nondiscovery rate (FNR) subject to a constraint on the FDR. Sun and
McLain (2012) studied the problem in a compound decision theoretic framework and developed asymptoti-
cally valid and optimal procedures for testing composite null hypotheses in heteroscedastic models. They
proposed the concept of a composite null distribution for heteroscedastic models and developed an optimal
testing procedure that minimizes FNR subject to a constraint on FDR.

Scott and Berger (2006), in the context of DNA microarray experiments, dealt with the multiple hypoth-
esis testing problem from a Bayesian decision theory perspective. In this type of experiment, one of the main
objectives is to find active genes and therefore there are two possible actions for each gene: the gene is clas-
sified as active or as inactive. If an active gene is classified as inactive, the loss is proportional to the absolute
value of the mean level expression for all genes; if an inactive gene is classified as active, the loss is one unit.

Table1 Possible outcomes in a multiple hypothesis testing problem.

Accept Reject Total
H, true U v N,
H, false T S N,

w R N
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Thus, for an active gene classified as inactive, the greater the mean level of the gene expression, the greater
will be the loss. To specify this loss function it is only necessary to fix the constant of proportionality. The
decision rule will be to choose the action with the smallest posterior expected loss for each gene.

In this paper we propose a Bayesian decision criterion based on estimation of the number of false null
hypotheses, taking as an error measure the proportion of the posterior expected number of false positives
with respect to the estimated number of true null hypotheses, denoted by FPr and defined in Section 2. We
show that this quantity is less than the posterior expected realized FDR, proposed by Genovese and Wasser-
man (2002, 2003), when the number of rejected null hypotheses is significantly less than the number of true
null hypotheses, as occurs in the case of microarray experiments. The methodology is applied to a Gaussian
model and is illustrated with simulated data and real data for DNA microarray experiments. The results are
compared to those obtained using a Bayes rule methodology when an additive loss function is considered for
each joint action and the 0-1 generalized loss function taking equal costs is considered for each individual
action.

The results show that more false null hypotheses are detected with our criterion than with the Bayes
rule, Therefore, the percentage of false negatives is reduced while the percentage of false positives remains
at an acceptable level. This is especially suitable in the context of DNA microarray experiments, in which
multiple hypothesis tests are used in most cases as a first exploratory step to identify genes that are dif-
ferentially expressed for a posterior detailed analysis. In this way, a higher number of false positives can
be allowed at an admissible proportion to obtain the greatest possible number of genes of interest (Dudoit
et al., 2003).

The remainder of the paper is organized as follows. The problem of testing multiple hypotheses, some
frequentist error measures and the estimated proportion of false positives and false negatives that we propose
are established in Section 2. In Section 3 we present two decision criteria: a Bayes rule and our proposed
criterion based on estimation of the number of false null hypotheses. Section 4 addresses some properties of
this new criterion. In Section 5 a Gaussian model is analyzed and examples with simulated and real data are
developed. Finally, in Section 6 we present some comments and conclusions.

2 Multiple hypotheses testing and error measures

A traditional error measure in the context of multiple hypotheses as in (1) is the family-wise error rate (FWER),
defined as FWER=Pr(V>1), the probability of obtaining at least one type I error or false positive. Shaffer
(1999) modified Duncan’s procedure to control FWER at the 0.05 significance level in a weak sense. She com-
pared her methodology with different frequentist procedures and obtained similar results to those obtained
by Benjamini and Hochberg (1995) for FDR control. They defined FDR as the expected proportion of false
positives (erroneously rejected hypotheses) with respect to the rejected hypotheses, more precisely

[V/R] if R>0

E
FDR={ o i R=0 3

Benjamini and Hochberg (1995) argued that in some situations it may be acceptable to tolerate some false
positives provided that there are few in relation to the number of rejected null hypotheses. In the context of
DNA microarray experiments, multiple hypotheses are often used as a first exploratory step to identify groups
of genes that are differentially expressed in specific biological processes for subsequent further research.
Thus, a slightly higher number of false positives may be acceptable at this stage of the analysis and it may
also be of interest to reduce the number of false negatives. Therefore, FDR is the most commonly used error
type in the frequentist approach in this context.

Genovese and Wasserman (2002, 2003) introduced the realized FDR and the realized FNR, which can be
written as
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N

rFDR:Zi-I(l_Zi)éf 1ENR= Zi'-*lzi(l—()i) (4)

ZN 8 ) ZZ;(]_éi) ’

=0

where 6=1if the null H_, is rejected and 6,=0 otherwise, and z=0 if the null H_, is true and z=1 if it is false
(note the difference between the rFDR and the FDR in (3)). They also consider the posterior expected rFDR
and rFNR (Miiller et al., 2004; Do et al., 2005) defined as follows:

3" PriH, =01t)s
7FDR=E(rFDR|t]===t" o 0 ®
0

¥ Pr(H,=111)(1-5)
ZZI( 1—5'.) ‘

rFNR=E[rFNR|t] =

As we see later, it may be that 7FDR and rFNR are acceptably small quantities while the proportion of
false negatives, that is, the proportion of misclassified false null hypotheses, is significantly larger. This is
why we consider the proportion of the posterior expected false positives and false negatives among the esti-
mated number of true and false null hypotheses, respectively. In fact, consider

N N
FP=Y'(1-2)é, and FN=Y z(1-3), ()
the number of false discoveries and false negatives realized, and

FP=3 Pr(H, =0]t)8, and Fﬁ=ﬁjpr(ﬂm=1|t)(1-a,) @

the corresponding posterior expected values of FP and FN. We consider the proportion of FP and FN with
respect to the number of true and false null hypotheses, respectively, that is
— FP — FN ®
FPr=— and FNr=—o,
N, 2 "N

o 1

where N, and N, can be estimated by ﬁo =Np and ITI, =N(1-p) respectively, or through ﬁo——-Z:‘Pr( H  =0|t)
and N,=Y " Pr(H,=1]t).
The quantities FPr and FNr represent the proportion of true and false misclassified null hypotheses,

respectively, and are natural extensions of the probability of obtaining type I and type II errors in the case of
a single hypothesis.

3 Bayesian decision criterion

In this section we consider two decision criteria from the Bayesian decision theory point of view. The first
criterion is a traditional one (Duncan, 1965; Lewis and Thayer, 2004) and uses the Bayes rule when an addi-
tive loss function is considered for multiple hypothesis testing and the generalized 0-1 loss function is con-
sidered for each single test. The second criterion proposed is based on estimation of the number of false null
hypotheses.

For a testing problem as in (1), we now present these two decision rules.
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3.1 The Bayes rule

From a Bayesian decision theory perspective, to determine the null hypotheses that will be accepted and
those that will be rejected, we must choose the action with the lowest posterior expected loss.
We first define the parametric and action spaces, which can be represented as

¥ "
9=U®l where 61=O{Hm=8y}! ]'=1,._,,2"’ (9)

where £,=0 when H, is true and ¢ =1 when H,, is false, and

A:UA, where A,:ﬁaeﬂ,, j=1,...,2", (10)
=1 i=1

where e,=0 if H,, is accepted and =1 if H, is rejected. Therefore, a,, is the individual action taken with
respect to the hypothesis H, within the joint action A.

We can consider an additive loss function so that the problem of minimizing the posterior expected loss
can be solved by minimizing each of its components. Then, when the joint action 4, is taken and the true
value of the parameter is ©,, the loss function can be written as

U©,A)=Y L(H,=¢a,,),
=1

where
0 si g=¢,
L‘-(HOi-"—‘E,,,aeu,): C“ si e,,#e,,

¥
is the 0-1 generalized loss function and represents the individual cost when the action aq, , is taken for
H,, with H =¢, . Thus, C represents the cost of a false negative and C,; is the cost of a false positive for
hypothesis i.

The individual expected posterior losses for the actions a, and a, are C Pr(H =1|t) and C Pr(H =0lt),
respectively, where ¢ is a statistic t=t(x). Then, for each hypothesis H_, action a,, is preferable to action a,, if

C,Pr(H, =0It)<C Pr(H =1It),
from which we can deduce the Bayes rule: for each t, the null hypothesis H; will be rejected if

C
Pr(H,,=0|t)< = :’C (11)

of 1l

given costs C, and C,, whose specification is not straightforward.

3.2 Criterion based on the estimated false null hypothesis (FNH) number

We propose a decision criterion based on an estimate of the FNH number given all data and prior knowledge.
Let N, denote the number of false null hypotheses, as in Table 1. This procedure consists of rejecting N , null
hypotheses with lower posterior probability of being true, where 19, denotes an estimate of N,. The objec-
tive is to obtain a Bayesian estimate of N,. Suppose that a random vector T=(X,, ..., X, ) is observed for each
hypothesis and that p is the prior probability of 6,c ©,, for all i.
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Denoting H,=0if H, is true, H =1if H is false and p=Pr(H =0|p) with 1-p=Pr(H =1|p) for i=1, ..., Nand
assuming that the N hypotheses are independent, then H_|p~Bemoulli(1-p) and since N, =Z:I H,, we con-

clude that N,|p~Binomial(N, 1-p) and we can estimate N, using, for example, the mean of this distribution.
The unknown parameter p can be estimated using its posterior distribution, n(plt), where t=

(t, ..., t and t=(x,, ..., x,) for i=1, ..., N. For example, p=E_ [ p], the posterior mean of z{plt). Finally,
N, p~Binomial(N,1~p) and we can estimate N, by N,=E[N,| p]=N(1-p).

In this way, we consider as a decision criterion rejecting of the KI‘ null hypotheses with the lowest poste-
rior probability and accepting the others, avoiding the problem of choosing the constants C; and C, required
to apply the Bayes rule defined in (11).

Although it is known that genes are linked in a complex form and therefore are not independent, the
independence assumption is useful to model the data in a pragmatic way and to check whether the observed
differences in the expression level are significant based solely upon a comparison gene-by-gene. Independ-
ence in microarray data is considered largely in literature, as it is the case of Benjamini and Hochberg (1995),
Baldi and Long (2001), Genovese and Wasserman (2003), Storey (2003), Chen and Sarkar (2004), Miiller et al.
(2004), Do et al. (2005), Lonnstedt and Britton (2005), Scott and Berger (2006) and Sun and McLain (2012)
between others.

4 Properties of the FNH criterion

First, we note that the FNH criterion is equivalent to the Bayes rule defined in (11) for concrete costs C, and
C,» depending on the multiple hypothesis testing problem.

In fact, to apply the Bayes rule given in (11), the costs C, and C, must first be set for all i=1, ..., N. Then the
cutoff C/(C,+C,) is obtained for each hypothesis. However, with the FNH criterion we reject the estimated
number of null hypotheses, ﬁ,, with the lowest posterior probability of being true and the cutoff is directly
obtained from the highest posterior probability of the rejected null hypotheses. That is, p; =Pr(H, i =0|t)
will be the cutoff, where Pr(H, =0lt) represents the ordered posterior probabilities.

Then, setting C_/(C,+C,) equal to p 5> We obtain the relation between the costs C,, and C,, corresponding
to the FNH criterion, that is,

= (12)

oi P N,

Therefore, if the costs C,, and C,, i=1, ..., N, satisfy relation (12), then the Bayes rule will provide equivalent
results to the FNH criterion. In general, following this reasoning, we could write the costs C; and C,, in this
way, where p,=C_/(C,+C,) is the cutoff to rejection of each null hypothesis and k is the number of null hypoth-
eses rejected.

Second, we show that if the costs for false negatives are equal and positive, that is, if C,=C>0 fori=1, ...,
N, then N, is the smallest number of rejected null hypotheses with which a zero posterior expected loss could
be obtained.

To prove this result, we need the following proposition, which shows the behavior of the posterior
expected loss as a function of k.

Proposition 1. For fixed values of the costs for false negatives, C , i=1, ..., N, the posterior expected loss for the
Bayes rule that reject k hypotheses, p(n(81x),a,), is a decreasing function of k, the number of null hypotheses
rejected.

That is, if k,<k,, then p(7( alx),a;' )2p( (6] x),a;2 ), where
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i N
p(a(61x),a,)=3 C Pr(H,, =0It)+ Y C Pr(H, =1t)
y 5 4 i=k

and a, is the posterior Bayes action by which k null hypotheses will be rejected.

Proof. See Appendix A.

On the other hand, if the costs for false negatives are equal, that is, if C,=C for i=1, ..., N, the posterior
expected loss for the Bayes rule that leads us to reject k null hypotheses can be expressed as follows:

k
p(n(81x),a, lfC(iZPr( H,=0 It)+N1—k]. (13)

k =1

Proof. See Appendix B.
Therefore, if C,=C>0 for all i=1, ..., N, then p(z(8|x),a;)20, because the expected posterior loss is a
decreasing function of k,

p(a(81x),a,)2p(x(8]x),a,, )=C(iiPr( H,, =0It)+N, —N}
N i=1

=c(&—Np)zo

N
and then p(z(8|x),a,)=0 only if

1 k
o 3 Pr(H,,=0|t)=k-N,,

Kk =1

and since iz" ’ Pr(H,,=0]t)=0 it follows that k should be greater than or equal to N,. Therefore, N, is the
p, =" '

smallest number of rejected null hypotheses with which a zero posterior expected loss could be obtained.
Finally, we note that if we reject the N, null hypotheses with the lowest posterior probability of being true,
we obtain the same expected posterior number of false positives and false negatives.
In fact, if we reject the N, null hypotheses with the lowest posterior probability of being true, from (7) we
can write

o =111, (14)

e W —
FP=§Pr(Hw”=OIt) and FN= ) Pr(H,

=N +1

and using (20) we have that FP=FN, that is, we obtain the same expected posterior number of false positives
and false negatives.

Thus, if the FNH criterion is used to reject the N , null hypotheses with the lowest posterior probability
and accept the rest, the estimated posterior number of false positives will be very similar to the estimated
posterior number of false negatives as we will show in the next section.

Then, as the posterior expected loss is a decreasing function of the number of null hypotheses rejected,
i) the more hypotheses that are rejected the lower will be the expected posterior loss obtained; however, it is
possible that the number of false positives will significantly increase; and ii) the fewer hypotheses that are
rejected the fewer will be the false positives, but a higher posterior expected loss will be obtained, along with
an increase in the number of false negatives.

Therefore, we can conclude that our criterion properly addresses these issues. On the one hand, if the
costs for false negatives are equal and positive (C ,=C>0 for all i=1, ..., N), then it follows that the average
number of false null hypotheses is the smallest number of the null hypotheses to be rejected to obtain zero
loss. On the other hand, on rejecting the average number of false null hypotheses, we obtain that the expected
posterior number of false positives and false negatives are equal.
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5 Gaussian model

Consider the multiple testing problem H:1. =0 versus H :u#0, i=1, ..., N (Dudoit et al., 2003; Lénnstedt and
Britton, 2005; Scott and Berger, 2006; Storey et al., 2007; Cabras, 2010; Ausin et al., 2011). We assume that the
sample mean T=(X,+ ... +X, )/n is obtained for each hypothesis. -

To illustrate use of the FNH criterion, together with the proportion FPr defined in (8), we compare the
results with those obtained when using rFDR in (5) and the Bayes rule at equal costs C =C, for all i=1, ...,
N. We consider the Gaussian model of Ausin et al. (2011) and use an empirical Bayes method to estimate the
model parameters and compute the posterior probability of each null hypothesis. That is, we assume that
the statistics T, are, under the null hypothesis, normally distributed random variables with zero mean and

unknown accuracy ¢, T, IH0,~N(0,1/\/;), whereas these statistics have mean x#0 under the alternative

hypothesis T,| H,,~N( ,u,,l/\fq; ), where ut, i=1, ..., N, are the parameters of interest.

The variance of the two components of the mixture model are assumed to be equal as it is usually con-
sidered in the literature (Lonnstedt and Speed, 2002; Kendziorski et al., 2003; Storey, 2003; Scott and Berger,
2006; De la Horra, 2007). If the variance of both components are not the same, we can proceed in an analo-
gous way taking a prior distribution for this new parameter or estimating it by empirical Bayes methods.

Therefore, we should consider for T, a mixture of both distributions as follows:

Rtlp. n, $)=pf (tlg)+(-p)f (¢, $) (15)

foralli=1, ..., N, where p is the prior probability of the null hypothesis and f (t|¢) and f(t |u, ¢) are the den-
sities under the null and the alternative hypotheses, respectively. Then, assuming that the statistics T, are
independent and identically distributed random variables, the likelihood can be written as:

U OIO=T T/t ot )=] [LEF, (8 193+ Q=P t |1t )],
=1 i-1

where 0=(p, ¢, i, ..., p,), t=(t,, ..., t,) and t=T(x,, ..., x,).
To apply Bayesian inference, we need to define a prior distribution for the model parameters, 8, for which
we consider the following conjugate prior distributions (Ausin et al., 2011):

p~Beta(a, f),
@$~Gamma(a/2, b/2),

" |¢-N[0,T/c—';} i=1,..,N, (16)

where the parametrization of the gamma distribution is chosen in this way to simplify the calculations. Other
parametrizations lead to the same results.

In general, it is not easy to obtain an analytical expression for the posterior distribution 7(8|t)<1(8]t)=(6).
However, Bayesian inference may be applied using Monte Carlo methods based on Markov chains (MCMC). We
apply a Gibbs sampling to estimate the model parameters and the posterior probability of each null hypothesis
using the algorithm of Ausin et al. (2011). Then we use an empirical Bayes approach to estimate the parameter
c=c, forall i=1, ..., N, associated with the variance of the prior distribution assumed for x, in (16).

5.1 Simulation results

To illustrate how the error measures FPr and FNr in (8), and the FNH criterion work and to compare the
results with those obtained using rFDR and rFNR in (5) and the Bayes rule with equal costs C,=C, for all i=1,
..., N, we performed a simulation with N=5000 hypotheses and n=5 observations per hypothesis for a mixture
of two normal distributions as in (15).
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We generated three data sets such that x,~N(0, 1) with probability p and x,~N{u, 1) with probability 1-p
for i=1, ..., 5000 and j=1, ..., 5 and for values of p=0.7, 0.8 and 0.9, as is usually done for microarray experi-
ments, For u, i=1, ..., 5000, different values were chosen in the interval [-10, 10]. Next, for each data set, we

calculated the sample means t,_=z;x.i /5, i=1, ..., 5000, so that the data ¢, are equivalent to simulations

from a mixture pN(0,1/+/5)+(1-p)N(u,,1/+/5), with p=0.7, 0.8 and 0S.

Given these simulated data, we applied the Gibbs sampling procedure using (a, £)=(1, 1) and (a, b)=(0, 0)
for the prior distributions in (16), since the procedure is robust with respect to choice of these parameters (Ausin
et al., 2011). For the parameters ¢, the same value ¢ was chosen for i=], ..., 5000 and was estimated using an
empirical Bayes approach. Appendix C contains the Matlab code to implement the methodology. Table 2 shows
the posterior estimates of the parameters ¢, p and ¢ for the different values of p considered and different values
of the hyper-parameters. It is evident that our procedure yields good estimates of p and ¢ and moreover it can be
seen that the results are robust against the choice of the hyper-parameters of the prior distributions.

The proportions of false positives and false negatives for the Bayes rule with equal costs derived from (5)
and (8) are estimated by the following expressions:

o~ —

. FNr,= No  TFDRs=T22, TFNRy=LD2 17)
N R, N-R,

oL
N
where EB:ZLI( iz)iso‘s)fii’ No::z:;ﬁoi’ ﬁﬂ“z:‘I( 131:>0‘5)ﬁn’ Nl':z:ijﬁ’u; with
P, =Pr(H,=0|t,a,8,a,b,¢), P=Pr(H =1lt,a,p,a,b,C) and R, is the number of hypotheses rejected accord-
ing to the Bayes rule with equal costs C,=C,, for alli=1, ..., N.
Table 3 shows the posterior estimate of ¢ and results for the Bayes rule with equal costs C=C, for all

)

i=1, ..., N, including the percentage of rejected null hypotheses (R %), FPrB, Fﬁrﬂ, rFDR;s and ;ﬁ@a, all

computed according to (17).
The estimated percentages of false positives and false negatives for the FNH criterion derived from (5)
and (8) are given by

G El;mn = I?I\_f FNH
FPr,.~ I FNr,, = 7 (8)
TFDR e =§PFNH—, TFNRFNH= i s
FNH N —RFNH

wheie oSl B RoSiBe Mm-S IBop R ReElR, i
B =Pr(H =0l|t,a,p,a,b,¢) P,=Pr(H, =0lt,a,f,a,b,) and R, is the number of hypotheses obtained
rejected on application of the FNH criterion.

Table 2 Posterior estimates for ¢, p and ¢ for different values of p and different priors for p~Betaly, §) and ¢~Gamma(a/2, b/2).

(a,b) p=0.7 p=0.8 p=0.9
@p) é P é é P ¢ é P é

(0,0) 1,25 0.0053 0.66 5.63 0.0041 0.78 5.74 0.0074 0.87 5.19
1.1) 0.0053 0.67 5.61 0.0034 0.78 5.88 0.0066 0.88 5.25

25, 1) 0.0073 0.67 4,90 0.0060 0.78 5.28 0.0074 0.88 517

5,1) 1, 25) 0.0064 0.66 5.22 0.0031 0.78 5.96 0.0075 0.87 5.19
a,:1) 0.0054 0.67 5.57 0.0046 0.78 5.60 0.0097 0.88 4,97

(25, 1) 0.0050 0.67 5.73 0.0034 0.78 5.87 0.0065 0.88 5.25

(1,10) a, 25) 0.0051 0.66 5.62 0.0046 0.78 5.53 0.0065 0.88 5.21
(1,1) 0.0055 0.67 5.44 0.0034 0.78 5.78 0.0074 0.88 5.11

(25, 1) 0.0052 0.67 555 0.0046 0.78 5.50 0.0068 0.88 5.16
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Table 3 Results for application of the Bayes rule with prior distributions p~Beta(1, 1), ¢~Gamma(0, 0) for different values of p
and the corresponding posterior estimate of ¢,

¢ R% FPr, FNT, IFDR: rFNR:
p=0.7 0.0053 28.80 0.0092 0.1501 0.0214 0.0699
p=0.8 0.0034 18.96 0.0047 0.1438 0.0195 0.0385
p=0.9 0.0066 9.76 0.0018 0.1906 0.0163 0.0251

Table 4 shows the posterior estimate of ¢ and results obtained by applying the FNH criterion, including
the estimated percentage of false null hypotheses (ﬁ,%) and the highest estimated posterior probability for

=0]t,a,,a,b), where Pr(H,, =0|t,,f,a,b) is the
ordered posterior probabilities, Table 4 also shows results for FPr FNr, s E-”Eﬁmu and rFNRgwy, all

FNH* FNH

which each null hypothesis is rejected, p, =Pr(H,,

computed according to (18).

As observed in Tables 3 and 4, the FNH criterion is less conservative than the Bayes rule for equal costs, in
the sense that more null hypotheses are rejected. Moreover, our criterion detects a higher percentage of false
null hypotheses because we obtain a lower proportion of errors for false negatives, while the proportion of errors
for false positives remains at an acceptable level. Inaddition, FPr and FNr allow us to reject more null hypoth-
eses than rFDR and rFNR. It can be observed in Tables 3 and 4 that rejection more hypotheses according to
the FNH criterion reduces the FNr error with FPr remaining at low levels, while FDR increases significantly.

Therefore, we can conclude that the FNH criterion and the error measures FPr and FNr are more appro-
priate in our examples than the Bayes rule with equal costs and the error measures rFDR and rFNR Further-
more, they are particularly suitable for DNA microarray experiments, in which tests of multiple hypotheses
are often used as a first exploratory step to identify genes that are potentially differentially expressed for
subsequent more detailed analysis. Thus, the test may be able to support a greater number of false positives,
as long as their proportion is admissible, to identify the largest possible number of genes of interest.

Moreover, as the posterior expected loss is a decreasing function of k, the number of hypotheses rejected,
we can also conclude that the posterior expected loss is lower using the FNH criterion than using the Bayes
rule, because our criterion indicates rejection of a greater number of null hypotheses, as observed in Figure 1.

Figure 2 shows the error measures computed according to (17) as a function of k for the simulated data
with p=0.9. It is evident that FPr allows us to reject more null hypotheses than rFDR. We might even reject

more hypotheses than those rejected by the FNH criterion. Furthermore, we can see that rFDR~rFNR using

o

the Bayes rule with equal costs and FP=FN using the FNH criterion and that the number of rejected null

hypotheses with the FNH criterion is an intermediate point between the point at which equilibrium is reached
using rFDR and rFNR and the point at which equilibrium is reached using FPr and FNr.

5.2 Real data results

In this section, we apply the Bayes rule and the FNH criterion to colon cancer data from Alon et al. (1999) to
identify differentially expressed genes. Alon et al. (1999) used Affymetrix oligonucleotide arrays to monitor

Table 4 Results according to the FNH criterion with prior distributions p~Beta(3, 1), and ¢~Gamma(0, 0) for different values of p
and the corresponding posterlor estimate of c.

é ﬁ’,% Py, ;Frm FNr,, rFDRen  rFNRmw

p=0.7 0.0053 33.18 0.8176 0.0559 0.1121 0.1127 0.0556
p=0.8 0.0034 21.72 0.8343 0.0302 0.1085 0.1088 0.0301
p=0.9 0.0066 11.88 0.8706 0.0201 0.1480 0.1493 0.0199
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Figurel The posterior expected loss according to (13) with C=1as a function of the number of null hypotheses rejected using
simulated data for different values of p.

the expression of over 6500 human genes in 40 tumor and 22 normal colon tissue samples. The samples were
taken from 40 different patients, with 22 patients supplying both a tumor and a normal tissue sample. They
focused on the 2000 genes with highest minimal intensity across the samples. Further details are available
at http://www.stat.ucla.edu/wxl/research/microarray/DBC/index.htm and http://microarray.princeton.edu/
oncology/.

Thus, the microarray data matrix for this set has 2000 rows and 62 columns. Alon et al. (1999) did not list
the tissues consecutively, so we rearranged the data so that normal tissues are labeled from 1 to 22 and tumor
tissues from 23 to 62.

To determine if there are significant differences between the level of expression in normal tissue and that
in tumor tissue for each gene, we used the statistic T,. We consider the Gaussian model with prior distribu-
tions given by (16) and with c,=c for i=1, ..., 2000. For the parameters of the priors we choose the same values
as in the simulation case: p~Beta(l, 1), and ¢~Gamma(0, 0).

Estimation of the model parameters and the posterior probability of the null hypothesis was performed
using the procedure proposed by Ausin et al. (2011). We obtained ¢=0.0041 p=0.75 and $=0.00059. Table5
shows the results obtained by applying the Bayes rule with equal costs C =C, for i=], ..., 2000 and the FNH
criterion; that is, the percentage of genes with differential expression (R%) and the estimated proportion of

- A -
the posterior expected count of false positives ( FPr) and false negatives ( FN1), together with the posterior

expected realized FDR and FNR (rFDR and ;EER) according to (17) and (18). We also found that the highest
estimated posterior probability for which each null hypothesis is rejected when applying the FNH criterion,
p;, =0.7002.
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Figure 2 (A) rFDR (solid line) and rFNR (thick line), (B) FP (solid line) and FN (thick line) and (C) Pr (solid line) and FNr
(thick line) as a function of the number of null hypotheses rejected using simulated data with p=0.9.
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Table 5 Results according to the Bayes rule with equal costs, € =C, forall i=1, ..., 2000, and the FNH criterion with prior distri-
butions p~Beta(l, 1), and ¢~Gamma(0, 0) and £=0.0041 for colon cancer data from Alon et al. (1999).

— — —

R% FPr Fir rFDR rFNR

Bayes rule 21,95 0,0195 0.1782 0.0669 0.0567
FNH criterion 2490 0.0434 0.1297 0.1310 0.0429
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Figure 3 Posterior expected loss as a function of the number of null hypetheses rejected for colon cancer data from Alon et al.
(1999) with (¢, /)=(1, 1), (a, b)=(0, 0) and £=0.0041.

It can be observed that, as in the case of simulated data, a higher percentage of genes with differential
expression is detected and a lower proportion of false negatives is obtained with our criterion than with the
Bayes rule, while the proportion of false positives remains at an acceptable level, which is desirable in this
context. Figure 3 shows the expected posterior loss as a function of the number of hypotheses rejected (k).
It is evident that our procedure provides a lower posterior expected loss than the Bayes rule, in agreement
with the simulated results. Finally, Figure 4 shows the error measures computed according to (17) and (18) as
a function of k for colon cancer data from Alon et al. (1999). It is evident that these error measures show the
same behavior as for the simulated data.

A B Cc
10 e 5 2000 - e S S L 10 =
o8l
239 298 | 1500} 439 498 o /
RB  FNH o AB FNH ;
" / s
08 - I 06 i
1000 P
04 / : 04 /
/ 500
02 / 02
ol / 01
] — 0f—-

. : ] 0 s
o] 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Figure 4 rFDR (solid line) and rFNR (thick line), b) FP (solid line) and W (thick line) and ¢) Pr {(solid line) and FNr (thick
line) as a function of the number of rejected null hypotheses for colen cancer data from Alon et al. (1999) with («, 8)=(1, 1),
(a, b)=(0, 0) and £=0.0041.
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6 Conclusions and comments

The procedure proposed here, which consists of estimating the number of false null hypotheses that will
be rejected, takes into account not only information provided by the observations corresponding to each
hypothesis but also the joint information provided by all of the hypotheses. Moreover, it is very straightfor-
ward to implement.

In comparison with the Bayes rule, the FNH criterion detects a higher percentage of false null hypoth-
eses, resulting in a more powerful test since a lower percentage of false negatives is obtained. In addition,
the rate of false positives is kept within acceptable levels, as observed in Tables 3 and 4. Furthermore, it is
not necessary to fix the costs C; and C,, for each hypothesis for our decision criterion, which is one of the
problems that arises when applying the standard Bayes rule because the costs are not easy to specify in most
cases.

Furthermore, when the costs for false negatives are fixed, the posterior expected loss is a decreas-
ing function of k, the number of hypotheses that are rejected; from another point of view, the posterior
expected loss is also a decreasing function of the highest probability at which every null hypothesis is
rejected. Therefore, using our approach in this case, the posterior expected loss is lower than if the Bayes
rule is used provided that such a probability is >0.5, which occurs in all the cases we have discussed. Also
note that since the posterior expected loss is a decreasing function of k, as more hypotheses are rejected,
a lower posterior expected loss is obtained along with a lower proportion of false negatives, albeit with an
increase in the percentage of false positives. Conversely, if fewer null hypotheses are rejected, the percent-
age of false positives decreases and the posterior expected loss increases with the percentage of false nega-
tives. In this sense, the FNH criterion combines very adequately both situations. On the one hand, if the
costs for false negatives are equal, that is C;=C>0 for all i=1, ..., N, then it follows that the average number
of false null hypotheses is the smallest number of null hypotheses to be rejected for zero loss. On the other
hand, for rejection of the average number of false null hypotheses the expected posterior number of false
positives and false negatives is equal and matches the number of null hypotheses rejected when using our
FNH decision criterion. - o

Therefore, we can conclude that the FNH criterion and the error measures FDr and FNr are more appro-
priate in our examples than the Bayes rule with equal costs and the error measures FDR and FNR. Fur-
thermore, they are particularly desirable in the context of DNA microarray experiments, in which tests of
multiple hypotheses are used in many cases as a first exploratory step to identify groups of genes that are
potentially differentially expressed for subsequent more detailed analyses. Thus, the test may be able to
support a greater number of false positives, as long as their proportion is admissible, to reach the largest pos-
sible number of genes of interest.
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gratefully acknowledge the very constructive comments and suggestions of two anonymous referees who
have contributed to improve the quality of the paper.

Appendix A

Proof of Proposition 1

First we show that for fixed values of the costs for false negatives, C,, i=1, ..., N, the posterior expected
loss for the Bayes rule that rejects k hypotheses, p(7(8|x),a;) is a function of the cutoff p, or equivalently a
function of k, the number of rejected null hypotheses.

In fact, setting p,=C,/(C,+C,), we can write p(7(8|x),a,) as follows,
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p((6lx),a,)= Zc,,Pr( Hm—Olt)+2C Pr(H,, =1it)
(l -p,) (19)
=Tgco Hay =010+ 3., PrUHg, =110),

i=k+1

where a; is the posterior Bayes action by which the kith null hypothesis will be rejected. Then, for fixed
values of C,» i=1, ..., N, the posterior expected loss for the Bayes rule, p(x(@|x),q,), is a function of the
cutoff p, or equwalently a function of k, the number of rejected null hypotheses.

Finally we show that p(7(8|x),a) is a decreasing function on k.

Q-p,) G=-p, )
Let k, and k, be such that k<k;; then p, <p, and - e , and
k, k

(01,2, )= S0, P, =010+ 3. €, =102 S0, P, =010
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- Z C,Pr(H,,=1t)- 2 C,Pr(H (0.)—1|t)+—2—k-*— S G, Pr(H,=0lt)
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( pk
ZC Pr(H,, =0[t)+ 2 CoPr(H, =11t)— Z CoPr(Hg, =1]t)

i=k~1 =k +1
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Appendix B

In fact, if C,=C for i=1, ..., N, then the second term of (19) can be written as

CZM H,,=1]t)= Cz(l—Pr( H,,,=0]t))

i=k11

—C(N k-3 P (m,-om]

k=k+1

—C(N k—Np+ZPr( i O{t)J

—( -k+ZPr( m-OIt)),

(20

where p=Pr(H,=0|p) is the prior probability that each null hypothesis is true. Then, substituting (20) in (19),
we immediately obtain (13).
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Appendix C

Matlab code for simulated data
1. Codes of Matlab for function M—file for function to maximize:

1 function EB = EB (c,t,al,bet,a,b,m,N)

2 p= ;phi= ;mu=zeros(1,N);EB=0;burnin= ; iters= ;

3 for iter=1;burnin+iters

4 probO=p*exp(-phi*(t."2)/2);

5 probi=prob0+(1-p)*exp(-phi*({t-mu).”2)/2);

6 uni=rand(1,N).*prob1;z=zeros(1,N);z=uni>prob0;

7 Ni=sum(z);NO=N-N1;11=find(z);

8 p=betarnd(al+NOQ,bet+N1);

9 bast=b+sum(t(z==0).72)+sum((t(11)-mu(l1)).A2)+sum(c*(mu-m)."2);

10 phi=gamrnd((a+2*N)/2,2/bast);

1 mu(It)=normrnd((c*m(11)+t(11))./(c+1),1./sqrt((c+1)*phi));

23 mu(z==0)=normrnd(m(z==0),1./sqrt(c*phi));

13 if iter>burnin;EB=EB+prod((p*(phi*0.5)*exp(-phi*(t.*2)/2))+((1-14 p)*(phi*0.5)*

exp(-phi*({t-mu).~2)/2)));end

15 end

16  EB=-EB/iters
2. Create an M-file to obtain the maximum of the function EB using the code “fminbnd”
3. Given the previously estimated value of ¢, next sentences estimate the rest of the parameters and

measures used in the approach.

17 clear;seed=;rand(’state’,seed);randn(’state’,seed);

18 N=;n=;sig=;ptrue=;phitrue=n*(sig)-2;mutrue=linspace( , ,N);

19 al=;bet=;a=;b=;m=zeros(1,N);c= *ones(1,N);

20 meds=mutrue;uni=rand(L,N);ztrue=uni>ptrue;meds(uni<ptrue)=0;
21 for i=1:n;x(i,:)=normrnd(meds,sig);end

22 t=mean(x);s=std{x);

23 p=; phi=; mu=zeros(1,N);

24 Ez=zeros(1,N);Emul=zeros(1,N);Ep=0;Ephi=0;

25 fid = fopen(pphi.txt’,'wt’);fid2 = fopen(tzmu.txt’,'wt’);
26 fid3 = fopen(’'mpphi.txt’,’wt’);burnin=;iters=;

27 for iter=1:burnin+iters

28 probO=p*exp(-phi*(t.A2)/2);

29 probi=prob0+(1-p)*exp(-phi*((t-mu).”2)/2);

30 uni=rand(1,N).*probi;z=zeros(1,N);z=uni>prob0;

31 if iter>burnin;Ez=Ez+z;end

32 Ni=sum(z);NO=N-N1;11=find(z);p=betarnd(al+NO,bet+N1);

33 if iter>burnin;Ep=Ep+p;mp=Ep/(iter-burnin);end

34 bast=b+sum(t(z==0)./2)+sum((t(11)-mu(11)).*2)+sum(c.*(mu-m)."2);
35 phi=gamrnd((a+2*N)/2,2/bast);

36 if iter>burnin;Ephi=Ephi+phi;mphi=Ephi/(iter-burnin);end

37 if iter>burnin;fprintf(fid3,’%6.4f %6.4f/n’,[mp; mphi]);end

38 mu(I1)=normrand((c(I1).*m(11)+t(11))./ (c(I1)+1),1./sqrt((c(11)+1)*phi));
39 mu(z==0)=normrnd(m(z==0),1./sqrt(c(z==0)*phi));

40 if iter>burnin; Emul(I1)=Emu1(I1)+mu(l1);end

41 if iter>burnin;fprintf(fid,’%6.4f %6.4f/n’,[p; phil);end

42 end

43 Emul=Emul./Ez;Ez=Ez/iters;load pphi.txt;load mpphi.txt
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44 pest=[ 1-sum(ztrue)/N ptrue mean(pphi(:,1))]

45 phiest=[phitrue mean(pphi(:,2))]

46 zest=[ztrue;Ez]’;muest=[meds;Emul)’;tzmu=[t; ztrue;Ez;meds;Emul]’;
47 fprintf(fid2,’%6.4f %6.4f %6.4f %6.4f %6.4f/1,[t;ztrue;Ez;meds;Emul]);
48 fclose(all’);

49 subplot(2,2,1),plot(pphi(:,1)),title(’p")

50 subplot(2,2,2),plot(pphi(:,2)),title(’phi’)

51 subplot(2,2,3),plot(mpphi(:,1)),title('mp’)

52 subplot(2,2,4),plot(mpphi(:,2)),title('mphi’)

53 RB=(sum(Ez>.5)*100)/N

54 Ri=round(N*(-mean(pphi(:,1))));

55 N1=(R1*100)/N

56 EzO=sort(Ez,’descend’);pN1=1-EzO(R1)

57 V=cumsum(1-Ez0);F=cumsum(EzQ0);T=sum(Ez)-F;FPr=V./V(N);
58 FNr=T./sum(Ez);R=(1:1:N);I=V./R;II=T./(N-R);

59 for i=1:N-L; EI(i)=I(i); EII(i)=II(i);end

60 1FDR=[ELV(N)/N];xFNR=[EILO0];

61 FPrB=FPr((RB*N)/100)

62 FNrB=FNr((RB*N)/100)

63 rFDRB=rFDR((RB*N)/100)

64 rFNRB=rFNR((RB*N)/100)

65 FPrFNH=FPr(R1)

66 FNrFNH= FNr(R1)

67 rFDRFNH=rFDR(R1)

68 rFNRFNH=rFNR(R1)

For real data change the following lines

line 17 by: clear;x = xlsread("File name.xls’); %This file must contain a column with mean differences
line 18 by: N=;

lines 20, 21 and 22 by: t=x;

line 44 by: pest=mean(pphi(:,1))

line 45 by: phiest=mean(pphi(:,2))

line 46 by: tzmu=[t;Ez;Emul}’;

line 47 by: fprintf(fid2,"%6.4f %6.4f %6.4f/n’,[t;Ez;Emul]);
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