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hypotheses (FNH), taking as an error measure the proportíon of the posterior expected number of false posi-
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1 Introduction

All statistical inference methods involve taking a decision. In multiple hypothesis testing problems and spe-
cifically in the context of microarray experiments, in which hundreds or thousands of hypotheses are simul-
taneously tested, the key polnt is to decide which hypotheses will be rejected and which will be accepted.
Decision Theory is a theoretical framework that allows researches to globally study statistical inference
problems as a unique type of problem: takíng a decision. It also greatly reinforces the logic of the Bayesian
approach (Berger, 1985).

From a Bayesian point ofview, deciding between the null and the altemative hypothesís, when a single
hypothesis is considered consists in computing both ofthe posterior probabilities and then deciding accord-
ingly. The idea is similar when testing multiple hypotheses.

We consider the problem of simultaneously testing N hypotheses as follows

(1)

where 00¡u01i=0 and 601'6,¡=0for all i=1. 2, ... , N.
[f the model is j{xlll) with x=(x,. x2 •••• , xN), where x¡=(xl1' xa' ... , Xi.) is observed fromj{xIO) for each i=l, 2•

...• N, and our beliefs about 0=(0" ...• 0N) can be expressed by means of .n(O), then the posterior distribution
of ()Is given by

(2)

The posterior probability for each of the null hypotheses, Pr«(}¡E eOilx), is obtaíned from the corresponding
marginal distribution of {},for ¡;el, ... , N. OnCE!the posterior probability of each null hypothesis is computad,
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we must decide. on the basis of these probabillties. which of the null hypotheses will be reíected and which
will be accepled. Therefore, it is necessarv to choose a cutoff in order to reject all hypotheses whose posterior
probability is less than or equal to this cutoffvalue.

To thc bcst of our knowledge. Lehmann 0957a.b) was the fiIst to consider the problem ofmultiple hypoth-
eses as a frequentist decision problem. He developed an optimal procedure consíderíng an additive 1055 func-
tlon, Therefore, the problem of minimizing the rísk function or the Bayes rísk can be solved by minimizlng
separalely each of the componente of the problem and fue procedure is then optimal for each comparison
without taking ínto account the other comparísons,

Table 1 describes the possible outcomes from N hypothesis tests, where No and NJ are the unknown
number of true and false null hypotheses, respectively, Vis the number of true null hypotheses that are
rejected (type T errors or false posltlves), T Is the number of false null hypotheses thaí are accepted (type IJ
errors or false negatives), and Wand R are observable random variables representing tbe number of accepted
and rejected null hypotheses, respectively_

Using a Neyman-Pearson frequentist approach, Spj0tvoll (1972) developed a powerful procedure for
testing multíple hypotheses by maximizing the power for each individual hypothesis considering the per-
family error rate (PFER). Ibis is defined as PFER=E[V], the expected number of false positives. The main
result of the works of Lehmann and Spj0tvoll is that if an optimal procedure ís used for each component of
the problem, then the procedure is optimal for the [oínt multiple hypothesis problem.

From a Bayesian decision theory point of view, Duncan (1961, 1965) developed an optimal procedure to
compare all couples of means for a one-way balanced designo Using normal and independent prior distribu-
tions, he derivad a Bayes rule for when the loss function is additive and depends on the real mean differences.
This rule does not depend on the number of comparisons and in this sense the Bayesian procedure for this
problem has the same nature as procedures that control the per-comparison error rate, PCER=E[VlIN, because
it ignores the multiplicity of the problem. However, the procedure proposed by Duncan depends on hetero-
geneity between the treatment means. Hochberg and Tamhane (1987) provide a detailed description of work
by Lehmann, Spietvoll and Duncan.

Lewis and Thayer (2004) followed the approach ofShaffer (1999) and Duncan (1965) and applied Bayes-
ian decision theory to the problem oI testing multiple hypotheses in a design with random effects. They
considered the 0-110ss function and showed that a Bayes rule controls the false discovery rate (FDR), which
provides theoretical support for the conclusions of Shaffer (1999). The methodologies of Lewis and Thayer
(2004) and Shaffer (1999) can be considered semi-Bayesian because they control some frequentist error
measures.

Sun and Cal (2007) developed a compound decision theory framework and derived an oracle rule based
on z-values that minimizes the false nondiscovery rate (FNR) subject to a constraint on the FDR. Sun and
McLain (2012) studied the problem in a compound decision theoretic framework and developed asymptoti-
cally valid and optimal procedures for testing composite null hypotheses in heteroscedastic models. They
proposed the concept of a composite null distribution for heteroscedastic models and developed an optimal
testing procedure that minimizes FNR subject to a constraint on FDR.

Scott and Berger (2006), in the context of DNA microarray experiments, dealt with the multiple hypoth-
esis testing problem from a Bayesian decision theory perspectíve. In this type of experiment, one of the main
objectives is to find active genes and therefore there are two possible actions for each gene: the gene is das-
sified as active or as inactive. If an active gene ís classified as inactive, the loss is proportional to the absolute
value of the mean level expression for all genes, if ao inactive gene is classified as active, the loss is one uoit.

Table 1 Possible outcomes in a multiple hypothesls testlng problem.
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Thus, for an active gene cIassified as inactive, the greater the mean level of the gene expression, the greater
will be tbe loss. To specify this loss functíon it ís only necessary to fix the constant of proportionality. The
decision rule will be to choose the action with the smallest posterior expected 1055 for each gene.

In thís paper we propose a Bayesian decision cr!terion based on estimation of the number of false null
hypotheses, taking as an error measure the proportíon of the posterior eX.J:!!Ctednumber of false positives
with respeet to the estimated number of true null hvpotheses, denoted by FPr and defined in Section 2_ We
show that this quantity is less than the posterior expected realized FDR, proposed by Genovese and Wasser-
man (2002, 2003), when the number of rejected null hypotheses is significantly less than the number oftrue
null hypotheses, as occurs in the case of microarray experíments, The metbodology is applied to a Gaussian
rnodel and is illustrated with simulated data and real data for DNA microarray experíments. The results are
eompared to those obtained using a Bayes rule methodology when an additive 1055 function is considered fOI
each ioint actíon and the 0-1 generalized 1055 function taking equal costs is considered for each individual
action.

The results show that more false null hypotheses are detected with our criterion than with the Bayes
rule. Therefore, the percentage of false negatives is reduced while the percentage of false positives remains
at an acceptable level. This is especially suitable in the context of DNA microarray experiments, in wbich
multiple hypothesis tests are used in most cases as a first exploratory step to identify genes that are dif-
ferentially expressed for a posterior detailed analysis. In this way, a higher number of false positives can
be allowed at an admissible proportion to obtain the greatest possible number of genes of interest (Dudoit
et al., 2003).

The remainder of the paper is organized as foIlows. The problem of testing multiple hypotheses, some
frequentist error measures and the estimated proportion of faIse positives and false negatives that we propose
are established in Section 2. In Section 3 we present two decision criteria: a Bayes rule and our proposed
criterion based on estimation of the number of false null hypotheses. Section 4 addresses some properties of
this new criterion. In Section 5 a Gaussian model is analyzed and examples with simulated and real data are
developed. Finally, in Section 6 we present some comments and conclusions.

2 Multiple hypotheses testing and error measures

A traditional error measure in the context of multiple hypotheses as in (l) is the family-wise error rate (FWER),
defined as FWER=Pr(V~l), the probability of obtaining at least one type 1error or false positive. Shaffer
(1999) modified Duncan's procedure to control FWER at the 0.05 significance level in a weak sense. She com-
pared her methodology with different frequentist procedures and obtained similar results to those obtained
by Benjamini and Hochberg (1995) for FDR control. They defmed FDR as the expected proportion of false
positives (erroneously rejected hypotheses) with respect to the rejected hypotheses, more precisely

{
E[V I RJ if R>O

FDR=
O if R=O

(3)

Benjamini and Hochberg (1995) argued that in some situations it may be acceptable to tolerate some false
positives provided that there are few in relation to the number of rejected null hypotheses. In the context of
DNAmicroarray experiments, multiple hypotheses are often used as a first exploratory step to identify groups
of genes that are differentially expressed in specific biological processes for subsequent further research.
Thus, a slightly higher number of false positives may be acceptable at thís stage of the analysis and it may
also be of interest to reduce the number of false negatives. Therefore, FDR is the most commonly used error
type in the frequentist approach in this contexto

Genovese and Wasserman (2002, 2003) introduced the realized FDR and the realized FNR, which can be
written as
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(4)

where 01=1 if the null BOl is rejeeted and a¡=Ootherwise, and z¡=O if the nulJ HUI ts true and z¡=l ir it is false
(note the difference between the rFDR and the FDR In (3». They also eonsider the posterior expected rFDR
and rFNR (Müller et at., 2004: Do et aL, 2005) defined as follows:

(5)

As we see later, it may be that rFDR and rFNR are aeeeptably small quantities while the proportion of
false negatives, that is, the proportion of misclassified false null hypotheses, is significantly larger. This is
why we eonsider the proportion of the posterior expected false positives and false negatives among the esti-
mated number of true and false null hypotheses, respectively. In faet, eonsider

N N

FP= ~(1-Z)Oi and FN= ~zi(1-0f)'
;=1 ~1

(6)

the number of false discoveries and faIse negatives realízed, and

_ N _ N

FP=I,Pr(Ho¡=OIt)o¡ and FN=I,Pr(H
oI
=llt)(1-a¡)

izl io::J

(7)

the corresponding posterior expected values of FP and FN. We eonsider the proportion of FP and FN with
respeet to the number of true and false null hypotheses, respectively, that is

-FP -FN
FPr=- and FNr=-,

No N,
(8)

whereNo and N] can beestirnated by Ño=NP and Ñ
1
=N(1-p) respectively, orthrough Ño= r,:IPr(Ho¡=Olt)

and Ñl=~N Pr(HO¡=llt)."'-1=1

The quantities FPr and FNr represent the proportion of true and false miselassified nuU hypotheses,
respectively, and are natural extensions of the probability of obtaining type 1and type II errors in the case of
a single hypothesís.

3 Bayesian decision criterion

In this section we consider two decision crítería from the Bayesian decisíon theory point of view. The first
eriterion is a traditional one (Dunean, 1965; Lewis and Thayer, 2004) and uses the Bayes rule when an addí-
tive loss function is considered for multiple hypothesis testing and the generalized Q-lloss functíon is con-
sidered for each single test. The second criterion proposed is based on estimation of the number of false null
hypotheses.

For a testing problem as in (1), we now present these two decisíon mies.
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3.1 The Bayes rule

From a Bayesian decisión theory perspective, to determine the null hypotheses that will be accepted and
those that will be rejected, we must choose the action witb the lowest posterior expected loss,

We flrst define the parametric and action spaces, which can be represented as

1" N

e=Ue¡ where 9¡=nIHo¡=E¡¡}, j=I,_._,2N,
j=l 1-1

(9)

where E¡}=O when Ho; is true and E¡j=1 when H¿ is false, and

2' NA=UA, where A,=na." j=I,_._,2H,
~I hl ~

(10)

where e¡¡=O if HOl is accepted and e¡,=1 if HOl is rejected. Tberefore, a ••¡ is the individual actíon taken with
respect to the hypothesis HO¡within the joint action Ar

We can consider an additive loss function so that the problem of minimizing the posterior expected los s
can be solved by minimizing each of íts components. Then, when the joint action A, is taken and the true
value of the parameter is el' the loss function can be written as

N

L( 9"A) =LL¡(Ho¡=Eu.a.),
i=1

where

si e¡¡=E"
si e¡,*E,¡

is the 0-1 generalized loss function and represents the individual cost when the action a.1 is taken for
Hai' with HO/=E, _ Thus, COi represents the cost of a false negative and CI; is the cost of a false positive for
hypothesis i.

The individual expected posterior losses for the actions aOl and al; are Co.Pr(HO/=lIt) and CIfr{Ho,=Dlt),
respectively, where t is a statistic t=t(x). Then, for each hypothesis HOi'action al, is preferable to action ao, if

Clfr(HO¡=Olt)s;Cofr(HOl=llt).

from which we can deduce the Bayes rule: for each t, the null hypothesis HO/ will be rejected if

Pr(H =Olt)S;~
O¡ Co,+CJI

(11)

given costs COi and CJj' whose specification is not straightforward.

3.2 Criterion based on the estlmated false null hypothesls (FNH) number

We pro pose a decision criterion based on an estimate of the FNH number given all data and prior knowledge.
Let N, denote the number of false null hypotheses, as in Table 1. This procedure consists of rejecting N, null
hypotheses with lower posterior probability of being true, where NI denotes an estimate of N,_ The objec-
tive ís to obtain a Bayesian estimate of NI' Suppose that a random vector T;=(XI1' • X) is observed for each
hypothesis and that p is the prior probability of (J,E 90, for all i.
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Denoting HOi=Oif Ho; is true, Ho,=1 if HOIis false and p=Pr(Hol=O!p) wíth 1-p=Pr(HO/=1!p) for i=l, ... , N and

assuming that the N hypotheses are independent, then HOj!p-Bemoulli(1-p) and since N, =I:,Hol we con-

elude that N,!p-Binomial(N, l-p) and we can estimate N, usíng, for exampíe, the mean of this distributíon.
The unknown parameter p can be estimated using its posterior distribution, Jl(plt), where t=

(t" ... , t,,) and t,=(xn, ...• XI) for i=l, ... , N. For example, p=E
2
(P1ll [p l, the posterior mean of Jl(Plt). Finally,

N,lp-Binomial(N,1-p) and wecanestimateN, by Ñ,=E[NllfJ]=N(1-p).
In this way, we consider as a decision criterion rejecting of the Ñ, null hypotheses wlth the lowest poste-

rior probability and accepting the others, avoiding the problem of choosing the constants COIand CIIrequired
to apply the Bayes rule defined in (11).

Although it is known that genes are linked in a complex form and therefore are not independent, the
independence assumption is useful to model the data in a pragmatic way and to check whether the observed
differences in the expressíon level are significant based solely upon a comparison gene-by-gene. Independ-
ence in microarray data is considered largely in literature, as it is the case of Benjamini and Hochberg (1995),
Baldi and Long (2001), Genovese and Wasserman (2003), Storey (2003), Chen and Sarkar (2004), MüIler et al.
(2004), Do et al. (2005), Lonnstedt and Brítton (2005), Scott and Berger (2006) and Sun and McLain (2012)
between others.

4 Properties of the FNH criterion

First, we note that the FNH criterion is equivalent to the Bayes rule defined in (11) for concrete costs COIand
ClI' depending on the multiple hypothesis testing problem.

In fact, to applythe Bayes rule given in (11), thecosts COiand Climust first he setfor all i=l, ... , N. Then the
cutoff Cm!(CO¡+CII)is obtained fOI each hypothesis. However, with the FNH criterion we reject the estimated
number of null hypotheses, Ñ" with the lowest posterior probability of being true and the cutoff is directly
obtained from the highest posterior probability ofthe rejected null hypotheses. That ís, Pil, =Pr(H(oil,l =Oj t)
will be the cutoff, where Pr(H(oo=Olt) represents fue ordered posterior probabilities.

Then, setting CO,!(COI+CIi)equal to Pit,' we obtain the relation between the costs COiand CJjcorresponding
to the FNH criterion, that is,

(12)

Therefore, if the costs COIand C,!, i=l, ... , N, satisfy relation (U), then the Bayes rule will provide equivalent
results to the FNH criterion. In general, following this reasoning, we could write the costs COIand CIIin this
way, where Pk =Co/( COi+CI/)ís the cutoff to rejection of each null hypothesis and k is the number of null hypoth-
eses rejected.

Second, we show that if the costs for false negatives are equal and positive, that is, if CO¡=C>Ofor i=l, ... ,
N, then NI is the smallest number of rejected null hypotheses with which a zero posterior expected loss could
be obtained.

To prove this result, we need the following proposition, which shows the behavior of the posterior
expected loss as a function of k.

Proposition 1.For fixeá values of the costs for false negatives, COI'i=l, ... , N, the posterior expected loss for the
Bayes rute that reject k hypotheses, p( Jl( elx ),a~ ), is a decreasing function of k, the number of null hypotheses
rejected.

That ís, if k,<k" then p(.71(elx),a; )~p(Jl(elx),a; ), where, .
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¡ N
p( ¡r( elx),a;)=LC"Pr(Heoo =Olt)+ L Colr(HeOi)=llt)

i-I j .•./o;-l

and a; is the posterior Bayes action by which k null hypotheses will be rejected.
Proof. See Appendix A.
On the other hand, if the costs for false negatives are equal, that is, if CQj=C for ¡==1,... , N, the posterior

expected loss for the Bayes rule that Ieads us to reject k nuU hypotheses can be expressed as follows:

(13)

Proof. See Appendix B.
Therefore, if CO/=C>Ofor aIl i=l, ... , N, then p(¡r(elx),a:)~O, because the expected posterior loss is a

decreasing function of k,

P(¡r(8Ix),a~)~p(¡r(8Ix),a~)=c(:N ~Pr(H(on=Olt)+N)-N)

=c( :~ -Np)~O
andthen p{¡r(8Ix),a;)==0 onlyif

and since ~ "k Pr{H(o.)=Olt)~O it follows that kshould be greaterthan orequaI toN). Therefore, N) is theP
k

kl'=l I

smallest number of rejected nuIl hypotheses with which a zero posterior expected Ioss could be obtained.
FinaUy, we note that ifwe reject the N) null hypotheses with the lowest posterior probability ofbeing true,

we obtain the same expected posterior number of false positives and false negatives.
In fact, if we reject the NI nulI hypotheses with the lowest posterior probability of being true, from (7) we

can write

__ N) __ N

FP=LPr(H(on=Olt) and FN= L Pr(Heon=1It),
w w~

(14)

and using (20) we have that FP=FN, that ís, we obtain the same expected posterior number of false positives
and false negatives.

Thus, if the FNH criterion is used to reject the N) null hypotheses with tbe lowest posterior probability
and accept the rest, the estimated posterior number of false positives will be very similar to the estimated
posterior number of false negatíves as we will show in the next sectlon.

Then, as tbe posterior expected loss is a decreaslng function of the number of null hypotheses rejected,
i) the more hypotheses that are rejected the lower will be the expected posterior loss obtained; however, it is
possible that the number of false positives will significantly increase; and ii) the fewer hypotheses that are
rejected the fewer will be the false positives, but a higher posterior expected 1055 will be obtained, along with
an increase in the number of faIse negatives.

Therefore, we can conclude that our criterion properly addresses these issues. On the one hand, if the
costs for faIse negatives are equal and positive (CQj=C>Ofor all i=l, ... , N), then it foIlows that the average
number of false nuU hypotheses is the smallest number of the nuU hypotheses to be rejected to obtain zero
1055. On the other hand, on rejecting the average number of false null hypotheses, we obtain that the expected
posterior number of faIse positives and false negatives are equal.

Br0lfci' [. }"JU bv ¡University of Glasqow Library
"uthcnllciltccJ 1130 209 6 50

f)'vrlloild Dilte ¡4i28/14 4:53 PM



56 - M.A. Gómez-Villegas et a!': ABayesian declslon procedure fortesting multiple hypotheses DE GRUYTER

5 Gaussian model
Consider the multiple testing problem HO,:JI,=Oversus H,rlJ.{FO. ¡=l •...• N (Dudoit et al., 2003; Lónnstedt and
Britton, 2005; Seott and Berger, 2006; Storey et al., 2007; Cabras, 2010; Ausín et al .• 2011). We assume that the
sample mean T¡=(XIl+ ... +X,.)/n is obtained for each hypothesis.

To illustrate use of the FNH criterion, together with the proportíon FPr defmed in (8), we compare the
resuIts with those obtained when using rFDR in (5) and the Bayes rule at equal costs COi=C"for all ¡=l •...•
N. We consider the Gaussian model of Ausín et al. (2011) and use an ernpirical Bayes method to estímate the
model parameters and compute the posterior probability of each nuU hypothesis. That is, we assurne that
the statistics T, are, under the null hypothesis, normally distributed random variables with zero mean and

unknown accuracy é, f¡IHo¡-N(O,l/#). whereas these statístícs have mean#,;tO under the alternative

hypothesis f¡IHoi-N(JI,.l/ #). whereJI,• i=l, ...• N. are the parameters ofinterest.

The variance of the two components of the mixture model are assumed to be equal as it is usually con-
sidered in the literature (Lónnstedt and Speed, 2002; Kendziorski et al., 2003; Storey. 2003; Scott and Berger,
2006; De la Horra, 2007). If the variance of both components are not the same, we can proceed in an analo-
gous way takíng a prior distribution for thís new parameter or estimating it by empirical Bayes methods.

Therefore, we should consider for T,a mixture of both distributions as follows:

(15)

for all ¡=l •...• N. where p is the prior probability ofthe null hypothesis and fo(t¡I<I» and J;(tl[¡.ti' <1»are the den-
sities under the null and the alternative hypotheses. respectively. Then, assuming that the statistics Ti are
independent and identically distributed random variables, the likelihood can be written as:

N N
I( Olt)= nf( tll P.Jl,.<I»~ n [pfo(t, 1<I»+(l-p )J;( t, Ip,.<I» ¡,

101 H

where8=(p, <I>,Jl" ···,JlN). t=(t, •...• tN) and t,=T,(xll •..• , x,J
To apply Bayesian inference, we need to define a prior distribution for the model parameters, e. for which

we consider the following conjugate prior distributions (AusÍn et al .• 2011):

p- Beta(a, {J),
<I>-Gamma(a/2, b/2),

Jl,I<I>-N( O, J:,<I>). i=I •...•N. (16)

where the parametrization of the gamma distribution ís chosen in this way to simplify the calculations. Other
parametrizations lead to the same results.

In general, it is not easy to obtain an analytical expression for the posterior distribution Jt(6It)oc/(6It).71(6).
However, Bayesian ínference may be applied using Monte Carlo methods based on Markov chains (MCMC).We
applya Gibbs sampling to estimate the model parameters and the posterior probability of each null hypothesis
using the algorithm of Ausín et al. (2011). Then we use an empírical Bayes approach to estímate the parameter
c=c" for a11¡=l, ...• N. associated with the variance of the prior distribution assumed for p¡ in (16).

5.1 Slmulatlon results

To illustrate how the error measures FPr and FNr in (8). and the FNH criterion work and to compare the
results with those obtaíned using rFDR and rFNR in (5) and the Bayes rule with equal costs Co;=C'i for all ¡=l •
. . .• N. we performed a simulation with N=SOOO hypotbeses and n=S observations per hypothesis for a mixture
of two normal distributions as in (15).
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We generated three data sets such that x'I-N(O, 1) with probability p and x,rN(p" 1) with probability l-p
for i=l, ... , 5000 and j=l, ... , 5 and for values of p=O.7, 0.8 and 0.9, as is usually done for microarray experi-
ments. For ¡li' ;=1, ... , 5000, different values were chosen in the interval [-10, 10). Next, for each data set, we
calculated the sample rneans t= "'05 X./ 5, ¡;1, ... , 5000, so that the data t. are equivalent to simulations

I L../=t IJ 1

from a mixture pN(O,l/J5 )+(1-p)N(Jl"l/J5), withp=O.7, 0.8 and 0.9.
Given these simulated data, we applied the Gibbs sampling procedure using (a, m=(l, 1) and (a, b)=(O, O)

for the prior distributions in (16), sínce the procedure is robust with respect to choice of these parameters (AusÍn
et al., 2011). For the parameters e" the same value e was chosen for ;=1, ... , 5000 and was estimated usíng an
empirical Bayes approach. Appendix e contains the Matlab code to implement the methodology. Table 2 shows
the posterior estimates of the parameters e, p and 1/1 for the different values of p considered and difierent values
of the hyper-parameters. It ís evídent that our procedureyields good estimates ofp and q, and moreover it can be
seen that the results are robust against the choice of the hyper-parameters of the prior distributions.

The proportíons of false positives and false negatives for the Bayes rule with equal costs derived from (5)

and (8) are estimated by the following expressions:
~ ~ ~

~ FP -=- FNB -= FPB -= FNeFPr
B
=-,.-!'.., FNro=-' -, rFDRB=--, rFNRs=--

No N¡ RB N-RB

where FPB=I.:/(i:)j~0.5)~,. ÑO=I.:l~" FÑ8=I.:/(~,>0.S)~" Ñl=I.:l~'; with

Po,=Pr(Ho,=Olt,a,p,a,b,c), ~,=Pr(Ho,=llt,a,p,a,b,c) andRBis thenumberofhypotheses rejected accord-

íng to the Bayes rule with equal costs Co,=C1I, fOI all í=l, ... , N.
Table 3 shows the posterior estimate of e and results for the Bayes rule wíth equal costs COl=C1i fOI a11

(17)

~ ..=. -
i=l, ... , N, including the percentage of rejected null hypotheses (RB%), FPrB' FNrB, rFDRBand rFNRB, all

computed according to (17).
The estimated percentages of false positives and false negatives for the FNH criterion derived from (5)

and (8) are given by

- FFFNH FN =::;FNFNHFPrFNH~-'-' rFNH A ,

N.. N,
(18)

FDR FPFNJI
r. fNf/=--,

RmH

.= FNFNH
rFNRFNI/=---,

N-RFNI/

FNFNI/=I.:J(~'>PÑ,)~" ÑI=I.:l~i' with

and RFNHis the number of hypotheses obtained

where
-=- I.N A • • N •
FPFNH= . I(Po·~PN·)POI' No="" Po"r=J '1 .t.J1••1 '

~,=Pr(Ho,=Olt,a,p,a,b,c) ~,=pr(Ho,=Olt,a,fJ,a.b,c)
rejected on application of the FNH criterion.

Table 2 Posterior estimates for e, p and.p for different values of p and different priors for p-8eta(a. /f) and .p-Gamma(a/2, b/2).

(a.b) p=O.7 p=0.8 p=O.9

(a.fJ) i íi ~ i P ~ e p ~
(o. O) (1.25) 0.0053 0.66 5.63 0.0041 0.78 5.74 0.0074 0.87 5.19

(1,1) 0.0053 0.67 5.61 0.0034 0.78 5.88 0.0066 0.88 5.25
(25.1) 0.0073 0.67 4.90 0.0060 0.78 5.28 0.0074 0.88 5.17

(5.1) (1.25) 0.0064 0.66 5.22 0.0031 0.78 5.96 0.0075 0.87 5.19
(1.1) 0.0054 0.67 5.57 0.0046 0.78 5.60 0.0097 0.88 4.97

(25.1) 0.0050 0.67 5.73 0.0034 0.78 5.87 0.0065 0.88 5.25
(1,10) (1,25) 0.0051 0.66 5.62 0.0046 0.78 5.53 0.0065 0.88 5.21

(1.1) 0.0055 0.67 5.44 0.0034 0.78 5.78 0.0074 0.88 5.11
(25.1) 0.0052 0.67 5.55 0.0046 0.78 5.50 0.0068 0.88 5.16
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Table 3 Results for application of the Baves rule wlth prior distributions p-8eto(1. 1). q,-Gommo(O. O) for different values of p

and tne corresponding posterior estimate of c.

e R.% ¡Pr. FNr. ,FOR. ,FNR.

p=0.7 0.0053 28.80 0.0092 0.1501 0.0214 0.0699
p:O.8 0.0034 18.96 0.0047 0.1438 0.0195 0.0385
p=0.9 0.0066 9.76 0.0018 0.1906 0.0163 0.0251

TabIe 4 shows the posterior estímate of e and results obtaíned by applying the FNH criterion, íncludíng
the estimated percentage of false null hypotheses (N, %) and the highest estimated posterior probability for

whích each null hypothesis is rejected, PÑ =Pr(H(oÑ ¡=Olt,a,/3,a,b), where Pr(H,oo=Olt,a,p,a,b) is the, , - - -- --
ordered posterior probabilities. rabie 4 also shows results for FPrfNH' FNrfNH, rFDRmll and rFNRmll, al!

computed according to (18).
As observed in TabIes 3 and 4. the FNH criterion is less conservative than the Bayes rule for equal costs, in

the sense that more null hypotheses are rejected. Moreover, our criterion detects a hígher percentage of faIse
null hypotheses because we obtaín a lower proportion of errors for false negatives, while the proportion of errors
for faIse positives remains at an acceptable level. In addition, FPr and FNr allow us to reject more null hypoth-
eses than rFDR and rFNR. It can be observed in Tables 3 and 4 that rejeetion more hypotheses according to
the FNH criterion reduces the FNr error with FPr remaining at low leveIs, whil~DR increases significantly.

Therefore, we can conclude that the FNH criterion and the error measures FPr and FNr are more appro-
priate in our examples than the Bayes rule with equal costs and the error measures rFDR and rFNR Further-
more, they are particularly suitable fOI DNA mícroarray experiments, in which tests of multiple hypotbeses
are often used as a first exploratory step to identify genes that are potentially differentially expressed for
subsequent more detailed analysis. Thus, the test may be able to support a greater number of false positives,
as long as the!r proportion is admissible, to identify the largest possible number of genes of interest.

Moreover, as the posterior expected loss is a decreasing function of k, the number ofbypotbeses rejected,
we can also conclude that tbe posterior expected loss is lower using the FNH criterion than using the Bayes
rule, because our criterion indicates rejection of a greater number of null hypotheses, as observed in Figure 1.

Figure 2 shows the error measures computed according to (17) as a function of k for the simulated data
with p=O.9. It is evident that FPr allows us to releer more null hypotheses than rFDR. We might even reject

~~
more hypotheses than those rejected by the FNH criterion. Furthermore, we can see that rFDR=rFNR using

the Bayes rule with equal costs and FP=FN using the FNH criterion and that the number of rejected null

hypotl'!eses with t~e FNH críteríon is an intermediate poínt between the point at which equilibrium is reached
using rFDR and rFNR and the point at which equilibrium is reached using FPr and FNr.

5.2 Real data results

In this section, we apply the Bayes rule and the FNH criterion to colon cancer data from AJon et al. (1999) to
identify differentially expressed genes. AJon et al. (1999) used Affyrnetrix oligonucleotide arrays to monitor

Table 4 Results accordlng to the FNH criterio n with prior dlstrlbutions p-Beta(1, 1). and t/>-Gamma(O, O) for different values of p
and the correspondlng posterior estlmate of c.

i Ñ,% -
Ps, FPrFNH FNr_ rFDRIIIlI rFNR_

p=O.7 0.0053 33.18 0.8176 0.0559 0.1121 0.1127 0.0556
p=O.B 0.0034 21.72 0.8343 0.0302 0.1085 0.1088 0.0301
p=0.9 0.0066 11.88 0.8706 0.0201 0.1480 0.1493 0.0199
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Figure 1 The posterior expected toss according to (13) with (=1as a function of the number of null hypotheses rejected using
slmulated data for different values of p.

the expression of over 6500 human genes in 40 tumor and 22 normal colon tissue samples. The samples were
taken from 40 different patients, with 22 patients supplying both a tumor and a normal tissue sample. They
focused on the 2000 genes with highest rninímal intensity across the samples. Further details are available
at http://www.stat.ucla.edu/wxl/research/microarray/DBC/index.htm and http://microarray.princeton.edu/
oncology/.

Thus, the microarray data matrix for this set has 2000 rows and 62 columns. Alon el al. (1999) did not list
the tissues consecutively, so we rearranged the data so that normal tissues are labeled from 1to 22 and tumor
tissues from 23 to 62.

To determine if there are significant differences between the level of expression in normal tissue and that
in tumor tíssue for each gene, we used the statistic Ti' We consider the Gaussian model with prior distribu-
tíons given by (16) and with c¡=c fOI i=l, ... ,2000. For tbe parameters oftbe priors we choose the samevalues
as in the simulation case: p-Beta(l, 1), and ¡J>-Gamma(O, O).

Estimation of the model parameters and the posterior probability of the null hypothesis was performed
using the procedure proposed by Ausín et al. (2011). We obtained c=0.0041 p=0.75 and ~=0.00059. Table 5
shows the results obtained byapplying the Bayes rule with equal costs COI=C11 for i=l, ... , 2000 and the FNH
criterion; that is, the percentage of genes with differential expression (ROAI) and the estimated proportion of

the posterior expected count of false positives (FPr) and false negatives (FN r), together with the posterior
--=- -

expected realized FDR and FNR (rFDR and rFNR) according to (17) and (18). We also found that the highest
estimated posterior probability for which each null hypothesis is rejected when applying the FNH criterion,
PÑ,=0.7002.
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Figure 2 (A) rFOR (solid tine) and rFNR (thick tine), (8) FP (solid tine) and FN (thick line) and (C) FPr (solid line) and FNr
(thick line) as a function of the number of null hypotheses relected using simulated data with p=O.9.
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Table 5 Results according to the Bayes rule with equal costs, COi=C"for all ;=1, ... , 2000, and the FNHcriterio n with prior distri-
butíons p~8eto(l, 1), and ¡p-Gomma(O. O)and i",0.0041 for colon cancer data from Alon et al. (1999).

R% FPr FNr
=-
rFDR rFNR

Bayes rule
FNHcriterion

21.95
24.90

0.0195
0.0434

0.1782
0.1297

0.0669
0.1310

0.0567
0.0429

500.---~·

\
400 '\

300 \.

\

200 \\

\
100 -139 (RB) ,,~97 (~NH)

--..----~--
o ' ---'--- _...1_, •....-"
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Figure 3 Posterior expected 1055 as a function of lhe number of null hypotheses rejected for colon cancer data from Alon et al.
(1999) with «l, {J)=(1, 1), (a. b)=(O. Ol and é=0.0041.

It can be observed that, as in the case of simulated data, a higher percentage of genes with differential
expression is detected and a lower proportion of false negatives is obtained with our criterion than with the
Bayes rule, while the proportion of false positives remains at an acceptable level, which is desirable in thís
context. Figure 3 shows the expected posterior loss as a function of the number of hypotheses rejected (k).
It is evident that our procedure provides a lower posterior expected loss than the Bayes rule, in agreement
with the simulated results. Finally, Figure 4 shows the error measures computed according to (17)and (18) as
a function of k for colon cancer data from Alon et al. (1999). It is evident that these error measures show the
same behavior as for the simulated data.
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Figure 4 rFDR (solid line) and rFNR (thlek line), b) FP (solid line) and FN (thiek line) and el FPr (solid line) and FNr (thiek
line) as a funetion of the number of rejected null hypotheses for colon cancer data from Alon et al. (1999) with (a, {J)=(1, 1),
(a, b)=(O, O)and ':=0.0041.
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6 Conclusions and comments

The procedure proposed here, which consists of estimating the number of false null hypotheses that will
be rejected, takes into account not only information provided by the observations corresponding to each
hypothesis but also the [oint information provided by all of the hypotheses. Moreover, it ís very straíghtfor-
ward to implement.

In comparison with the Bayes rule, the FNH criterion detects a higher percentage of false null hypoth-
eses, resulting in a more powerful test since a lower percentage of false negatives is obtained. In addition,
the rate of false positives is kept within acceptable levels, as observed in Tables 3 and 4. Furthermore, it is
not necessary to fix the costs COIand C11 for each hypothesis for our decision criterion, which is one of the
problems that arises when applying the standard Bayes ru1e because the costs are not easy to specify in most
cases.

Furthermore, when the costs for false negatives are fixed, the posterior expected los s is a decreas-
ing function of k, the number of hypotheses that are rejected; from another point of view, the posterior
expected loss is a1so a decreasing function of the highest probability at which every nul1 hypothesis is
rejected. Therefore, using our approach in this case, the posterior expected 1055is lower than if the Bayes
rule is used provided that such a probability is >0.5, which occurs in all the cases we have discussed. Also
note that since the posterior expected loss is a decreasing function of k, as more hypotheses are rejected,
a lower posterior expected loss is obtained along with a lower proportíon of false negatives, albeít with an
increase in the percentage of false positives. Converse1y, if fewer null hypotheses are rejected, the percent-
age of false positives decreases and the posterior expected 1055 íncreases with the percentage of false nega-
tives. In this sense, the FNH criterion combines very adequately both situations. On the one hand, if the
costs for false negatives are equal, that is COI=C>Ofor a11i=l, ... , N, then it follows that the average number
of false null hypotheses is the smallest number of null hypotheses to be rejected COI zero Ioss. On the other
hand, for rejection of the average number of false null hypotheses the expected posterior number of false
positives and fa1se negatives is equal and matches the number of null bypotheses rejected when using our
FNH decision criterion.

Therefore, we can conclude that the FNH criterion and the error measures FDr and E.Nr are more appro-
priate in our examples than the Bayes rule with equal costs and the error measures FDR and FNR. Fur-
thermore, they are particularly desirable in the context of DNA microarray experiments, in which tests of
multip1e hypotheses are used in many cases as a first exploratory step to identify groups of genes that are
potentially differentially expressed for subsequent more detailed analyses. Thus, the test may be able to
support a greater number of false positíves, as long as their proportion is admissible, to reach the largest pos-
sible number of genes of interest.

Acknowledgements: This work was supported by grants MTM 2008-03282jMTM and GR 58/08. The authors
gratefully acknow1edge the very constructive comments and suggestions of two anonyrnous referees who
have contributed to improve the quality of the papel.

AppendixA

Proof 01Proposition 1
First we show that for fíxed values of the costs for false negatives, COi' i=l, ... , N, the posterior expected

loss for the Bayes rule that rejects k hypotheses, p(.11'( 81x), a;) is a function of the cutoff Pt 01 equivalently a
function of k, the number of rejected null bypotheses.

In fact, setting pt=Co/CCO¡+Cll),we can write P(.11'(9Ix),a;) as follows,
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(19)

where a; is the posterior Bayes action by which the kih null hypothesis will be rejected. Then, for fixed
values of Co,.i=l •...• N. the posterior expected loss for the Bayes rule, p(.7r(Olx),a;), is a function of the
cutoff p.or equivalently a function of k, the number of rejected null hypotheses.

FinaIly we show that p( n( 01x), a;) ls a decreasing function on k.
(l-P.) (l-P. )

Let k] and k2 be such that k]<k2; then Pt <Pt and -_. (--' ,and
" P P11 ti

• (1 P, ) ., N (1-p. ) .,
p(n(9Ix),a., );-_·-:'¿Co,Pr(H(o,)=Olt)+ L Co,Pr(H(on=llt)=--'-LCo¡Pr(H(o,J=Olt)

PI. 1=1 1=" +] P" lo!

N ., (l-p.) k,

+ L CO¡Pr(H(on=llt)- L Co,Pr(H(Oi)=llt)+.....--::L- L Co,Pr(H(Oil=Olt)
i=k\-l ¡••I'.+I Pk1 i-k1+]

(l-P. ) t, N .,

<-----"L- LCo¡Pr(H(O,)=Olt)+ I. Co,Pr(H(Oi)=llt)- I. CO¡Pr(H(on=llt)
Pk, i=! '-1,-1 1-",+1

(I-p ) l, t,
+-_.'- L CO¡Pr(H(o¡J=Olt)=p(.7r(Olx).a~)- L Co,Pr(H(on=llt)

Pk
1

¡..t,+l ¡-1",+1

(I-p ) ., k, l,

+-_.'-:,¿ CoiPr(H(olJ=1It)=p(.7r{9Ix),a;)- L Co;+ L CO¡Pr(H(Oi)=Olt)
Pk

1
,••1\-+1 1=-<",+1 1:1; ..•.1

(l-p.) ., • l, 1 l,

+--'- L <m«; =0 It)=P(.7r{9Ix).a.)- L Co,+- L CO¡PrCH(on=Olt)
Pie, ¡=.kITl 1-",+) Pl1 i-k,Tl

t, k,

::;P(.7r(9Ix),a;)- LC01+ LCo1=p(.7r(9Ix),a;)
I ,

1.11+1 i-t,+1

Appendix B

In fact, if COl=Cfor i=l, ... , N, then the second term of (19) can be written as

N N

CL Pr( H(Of)=llt)=C L (l-Pr( H(on=Olt»
1 '=111

=C(N-k- I,PrCH(OIJ=Olt»)
•• 1'+1

=C(N-k-NP+ t,Pr(H(Oi)=Olt»)

=c( N]-k+ tPr(H(Oil=Olt»).

(20)

where p=Pr(Ho1=0!p) is the prior probability that each null hypothesis is true. Then, substituting (20) in (19).
we immediately obtain (13).
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AppendixC

Matlab code for simulated data
1. Codes of Matlab for function M-file for function to maximize:

1 functíon EB = EB (c.t.al.bet.a.b.m.N)
2 p= .phi» ;mu=zeros(I,N);EB=O;bumin= ; iters= ;
3 for iter=l:burnin+iters
4 probO=p*exp(-phi*(t."2)/2);
5 probl=probO+(1-p)*exp(-phi*«t-mu)."2)/2);
6 uní-randü,N).*probl;z=zeros(1,N);z=uni>probO;
7 Nl=sum(z);NO=N-Nl;l1=find(z);
8 p=betarnd(al+NO,bet+Nl);
9 bast=b+sum(t(z==O)."2)+sum«t(Il)-mu(Il»./\ 2)+sum(c*(mu-m)./\2);
10 phi=gamrnd«a+2*N)/2,2/bast);
11 mu(Il)=normmd«c*m(Il)+t(Il»./(c+l),l.fsqrt«c+l)*phi);
23 mu(z==O)=normrnd(m(z="'O).l./sqrt(c*phi»;
13 if iter»burnin;lEB=EB+prod«p*(phi/\0.5)*exp(-phi*(t./\2)/2)+((1-l4 p)*(phi/\0.5)*

exp(-phi*«t-mu)./\2)/2»)¡end
15 end
16 EB=-EB/iters

2.Create an M-file to obtain the maximum of the function EBusing the code "fminbnd"
3.Giventhe previously estima ted value of e, next sentences estimate the rest of the parameters and

measures used in the approach.
17 clear;seed=;rand('state' .seedhrandní'state' .seed):
18 N=:n=¡sig=;ptrue=;phitrue=n*(sig)/\-2;mutrue=linspace( , ,N);
19 al=;bet=;a=;b==;m=zeros(l,N);c=*ones(l,N);
20 meds=mutrue;uni=rand(l,N)¡ztrue=uni>ptrue;meds(uni <ptrue)=O;
21 for i=l:n;x(i,:)==normrnd(meds,sig):end
22 t=mean(x);s=std(x);
23 p=: phí»: mu-zerosñ.N):
24 Ez=zeros(1,N);Emul=zeros(l,N):Ep=O;Ephi=O¡
25 fid = fopen('pphi.txt', 'wt');fidl = fopen('tzmu.txt', 'wt');
26 fid3 = fopen('mpphi.txt','wt');burnin=:iters=:
27 for iter=l:burnin+iters
28 probO=p*exp(-phi*(t./\2)/2);
29 probl=probO+(1-p)*exp(-phi*«t-mu)./\2)/2);
30 uni=rand(1,N).·probl;z=zeros(l,N)¡z=uni>probO:
31 if iter>burnin;Ez=Ez+z:end
32 N1=sum(z);NO=N-Nl;l1=find(z);p=betarnd(al+NO,bet+Nl);
33 if iter>burnin;Ep=Ep+p;mp=Ep/(lter-burnin);end
34 bast=b+sum(t(z==O)." 2)+sum«t(Il)-mu(Il»." 2)+sum(c.*(mu-m)./\2):
35 phi=gamrnd«a+2*N)/2,2/bast);
36 if iter>burnin;Ephi=Ephi+phi;mphi=Ephi/Oter-burnin);end
37 if iter>burnin;fprintf(fid3, '%6.4f %6.4f/n',lmp; mphi]);end
38 rnu(l1)=norrnrnd«c(Il)_*m(I1)+t(Il»./(c(I1)+l),l.fsqrt«c(Il)+l)*phi);
39 mu(z==O)=normrnd(m(z==O),l./sqrt(c(z==O)*phi»¡
40 if iter>burnin;Emul(ll)=Emul(Il)+mu(Il);end
41 if iter>burnin;fprintf(fid,'%6.4f %6.4f/n' ,Ip; phi));end
42 end
43 Emul=Emu1./Ez;Ez=Ez/iters;load pphi.txt;load mpphi.txt
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44 pest=] l-sum(ztrue)/N ptrue mean(pphi(:,1»]
45 phiest=[phitrue mean(pphi(;,2))]
46 zest=[ztrue;Ezj';muest=[meds;Emu1)';tzmu=[t; ztrue;Ez;meds;Emul]';
47 fprintf(fid2,'%6.4f 0/06.4fo/06.4f0/06.4f%6.4f/n' ,[t;ztrue;Ez;meds;Emul]);
48 fdose('all');
49 subplot(2,2,1),plot(pphi(:,1»,title('p')
50 subplot(2,2,2),plot(pphi(:,2»,title('phi')
51 subplot(2,2,3),plot(mpphi(:,1»,title('mp')
52 subplot(2,2.4),plot(mpphi(: ,2»,title('mphi')
53 RB=(sum(Ez>.5)*100)/N
54 Rl=round(N*(I-mean(pphi(:,l»)));
55 Nl=(Rl*lQO)/N
56 EzO=sort(Ez,'descend');pNl=l-EzO(Rl)
57 V=cumsum(1·EzO);F=cumsum(EzO)¡T=sum(Ez)-F;FPr=V./V(N);
58 FNr=T./sum(Ez);R=(1:1:N);I=V./R;II=T./(N-R);
59 for i=l:N-l;EI(i)=I(i);EII(i)=II(i);end
60 rFDR=[EI,V(N)/N);rFNR=[EII,O);
61 FPrB=FPr«RB*N)/100)
62 FNrB=FNr«RB*N)/lOQ)
63 rFDRB=rFDR«RB*N)/lOO)
64 rFNRB=rFNR«RB*N)/lOO)
65 FPrFNH=FPr(Rl)
66 FNrFNH=FNr(R1)
67 rFDRFNH=rFDR(Rl)
68 rFNRFNH=rFNR(Rl)

For real data change the following lines
line 17by: clear;x = xlsread('File name.xls'); %This me must contain a column with mean differences
line 18by: N= ¡
lines 20, 21and 22by: t=x';
line 44 by: pest=meanípphíb.t)
line 45by: phiestemeanfpphih.Z)
line 46 by: tzmu=[t;Ez;Emu1]';
line 47 by: fprintf(fid2,'%6.4f %6.4( %6.4(/n' ,[t;Ez;Emu1]);
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