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A Bayesian test for the point null testing problem in the multivariate case is developed. A procedure to
get the mixed distribution using the prior density is suggested. For comparisons between the Bayesian and
classical approaches, lower bounds on posterior probabilities of the null hypothesis, over some reasonable
classes of prior distributions, are computed and compared with the p-value of the classical test. With our
procedure, a better approximation is obtained because the p-value is in the range of the Bayesian measures
of evidence.
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1. Introduction

Let X be a random variable having density f (x|θ), with θ ∈ � ⊆ R
p and suppose that we want

to test

H0 : θ = θ0 versus H1 : θ �= θ0, (1)

where θ0 = (θ0
1, . . . , θ

0
p) is a known vector and θ �= θ0 means that at least one element of θ is

different from the corresponding element of θ0. This problem does not have only a theoretical
aspect because it appears in many practical situations also, for example, the classical data set in
[1] gives cork deposits on trees, with the thickness of cork deposits in the four directions (North,
East, South, West) measured by cork bearings on n = 28 trees. If the average cork deposits
(θN, θE, θS, θW) are not equal, this might indicate that the thickness of cork depends on ecological
circumstances, such as dominant wind direction. The corresponding null hypothesis would be
θN − θE = θE − θS = θS − θW = 0, that is H0 : (θ1, θ2, θ3) = (0, 0, 0) versus H1 : (θ1, θ2, θ3) �=
(0, 0, 0). Moreover, Equation (1) is widely used in social and educational sciences, for example
Timm [2] reported the results of an experiment where subjects responded to ‘probe words’ at
five positions in a sentence and tested a point null hypothesis and it is also used in many other

*Corresponding author. Email: ma.gv@mat.ucm.es

ISSN 0233-1888 print/ISSN 1029-4910 online
© 2009 Taylor & Francis
DOI: 10.1080/02331880802505173
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
o
m
p
l
u
t
e
n
s
i
a
n
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
d
r
i
d
]
 
A
t
:
 
1
1
:
4
6
 
3
 
J
u
l
y
 
2
0
0
9



380 M.A. Gómez–Villegas et al.

problems that contrast the difference of the means in paired data as, for example, an application
to psychological tests in different stages of a person’s life.

There are many approaches to the univariate two–sided hypothesis test, both in frequentist
and Bayesian tests, but not to the multivariate two–sided one from a Bayesian perspective. Some
exceptions are cited next. Berger and Delampady [3] show the conflict between Bayes factors
or posterior probabilities and the frequentist p-values. Consequently, they recommended some
alternatives to the p-values, using π0 = 0.5 as prior probability to the null hypothesis, and with
this choice they conclude that the posterior probabilities or the Bayes factors are larger than
the p-values. Berger et al. [4] show that the conditional frequentist method and the Bayesian
methodology for testing precise hypotheses are equivalent in the sense that both methods report
the same error probabilities upon rejecting or accepting. Oh [5] deals with the multivariate normal
distribution. In [6] the relevance of π0, the prior probability of the sharp null hypothesis, to the
difference between the infimum of the posterior probability and the p-value is explored. They
used a fixed value of π0 whereas we will use the prior distribution to get π0. Other papers compare
the p-value with the Bayes factor, for example [7–9], although the Bayes factors are not equally
calibrated by different authors.

Let us suppose that our prior opinion about θ is given by the density π(θ). Then, to test
Equation (1) we need a mixed prior distribution

π∗(θ) = π0I{θ0}(θ) + (1 − π0)π(θ)I{θ �=θ0}(θ), (2)

with π0 the prior probability assigned to H0.
From our point of view, in a Bayesian context using a prior density π(θ), the problem is the 0.5

prior probability usually assigned to the null hypothesis as is the case in [3]. It gives too much
weight to the null hypothesis, H0, making Bayesian and frequentist approaches very different.
In addition, our proposal is to give the prior mass to the point null hypothesis using only our prior
density, π(θ). Bayesian and frequentist approaches have a different meaning, but if the p-value
and the infimum of the posterior probabilities are numerically nearly equal it means that both
approaches are coherent.

Now, consider the more realistic precise hypothesis

H0ε : d(θ0, θ) ≤ ε versus H1ε : d(θ0, θ) > ε (3)

with a proper metric d and ε ‘small’ enough. What we propose is to use π(θ), our prior opinion
about θ, and compute π0 by means of

π0 =
∫
E(θ0, ε)

π(θ) dθ, (4)

where E(θ0, ε) = {θ ∈ R
p, d(θ0, θ) ≤ ε}. Thus, the prior probabilities assigned to H0 and H0ε,

through π(θ), are equal.
There are several ways to specify d(θ0, θ). One way is to take an arbitrary value of ε and

divide it in values εi , i = 1, . . . , p – perhaps εi = ε/p, for all i – so that the uncertainty is shared
among every coordinate, and then to build the distance starting from |θi − θ0

i | ≤ εi , i = 1, . . . , p.
Another way is to consider E(θ0, ε) as an ellipsoid centred at θ0. This last approach will be used
in this article because of its computational tractability and intuitive appeal.

Several reasons can justify the choice of π0 as in Equation (4), even though the usual value taken
for π0 is 0.5. First, in one dimension, when using Equations (2) and (4) with suitable small values
of ε – in the case of normal likelihood ε ∈ (0.1, 0.3)– and π(θ) in the class of all unimodal and
symmetric distributions or in the class of ε–contaminated distributions, a better approximation
between the posterior probability and the p–value is obtained. These results can be seen in [10–15].
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Statistics 381

The second reason to use π0 as in Equation (4) is that if π(θ) reflects our prior opinion about
θ then the prior probability of θ0 is zero, but if we use Equation (2) the prior mass assigned to θ0

is π0 and this probability emerges from π(θ).
The third reason arises because H0 is the limit hypothesis of H0ε as ε goes to zero. Then, if π(θ)

is our prior opinion to test Equation (3) and π∗(θ), given by Equation (2), is our prior opinion to
test Equation (1), it seems natural that both π(θ) and π∗(θ) must satisfy

lim
ε→0

δ(π∗|π) = 0, (5)

for some suitable measure of discrepancy, δ. One of the most popular measures of discrepancy is
the Kullback–Leibler divergence

δ(π∗|π) =
∫

�

π(θ) ln
π(θ)

π∗(θ)
dθ (6)

(see, [16, p. 76]). For our problem we have

δ(π∗|π) =
∫

�

π(θ) ln

{
π0

π(θ)
I{θ0}(θ) + (1 − π0)I{θ �=θ0}(θ)

}−1

dθ

= −
∫

�

π(θ) ln

{
π0

π(θ)
I{θ0}(θ) + (1 − π0)I{θ �=θ0}(θ)

}
dθ

= −
∫

{θ �=θ0}
π(θ) ln(1 − π0) dθ

= − ln(1 − π0).

(7)

We think Equation (5) is a desirable property. Usually in the literature, the expression (2) is used
with π0 = 0.5. However, for π0 = 0.5, Equation (7) gives δ(π∗|π) = 0.693, which represents a
high discrepancy between these two distributions, π∗ and π , whereas with our approximation the
result (5) is verified.

The three reasons above are enough, in our opinion, given a prior density π(θ), to justify the
construction of π∗(θ) as in Equation (2) with π0 as in Equation (4) for the problem of testing a
multivariate point null hypothesis.

Finally, it must be pointed out that we do not propose to change H0ε : d(θ0, θ) ≤ ε by
H0 : θ = θ0, since in this case it should be possible to work with π(θ). What we claim is that
H0ε is, with a proper ε, a good approximation to H0 and then we can use π0, calculated as in
Equation (4) to test Equation (1) with π∗(θ) as in Equation (2). Therefore, the hypothesis (3)
supports the choice of π0 in Equation (4) as the prior probability for H0 in Equation (1). Finally,
it is easier to calibrate distances through ε than to calibrate probabilities.

Anyhow, in this article the results are obtained as a function of π0 and then they can be specified
for every π0 as in Equation (4). In particular, it is possible to compute the corresponding value of
ε for the hypothesis (1) that gives π0 = 0.5 in Equation (4), to reflect what is happening.

In Section 2 lower bounds on posterior probabilities over some reasonable classes of prior
distributions are given: elliptical priors are analysed in Subsection 2.1 and scale mixture of nor-
mal priors in Subsection 2.2. Finally, in Section 3 some comments and concluding remarks are
included.

2. Lower bounds on posterior probabilities

In order to make comparisons between the p-value and the posterior probabilities we take wide
classes of prior distributions and then compute the infimum of the posterior probabilities over these
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382 M.A. Gómez–Villegas et al.

classes. This is the usual procedure used in the literature to compare the Bayesian and frequentist
approaches. A Bayesian with a large class of prior distributions might behave as a frequentist in
the sense of reaching similar conclusions. In the limit case, a Bayesian that dealt with the class
of all probability distributions as priors is a frequentist. It also allows us to interpret the p-value
as a lower bound of the posterior probabilities of the null hypothesis over some classes of prior
distributions.

2.1. Lower bounds for elliptical priors

Because of the structure of the problem, it looks reasonable to deal first with the class �EU(θ0, �0),
the class of distributions on R

p having probability density functions of the type

π(θ) = ψ((θ − θ0)′(�0)−1(θ − θ0))

with ψ(·) a decreasing function on [0, ∞), θ0 ∈ R
p and �0(p × p) a positive definite matrix.

These distributions are called elliptical and are unimodal in the sense of [17]. They have ellipsoidal
contours centred at θ0 with scale parameters �0. In particular, �EU(θ0, �0) contains the spherical
distributions on R

p.
Furthermore, if the following additional regularity conditions are imposed:

• ψ(r2) → 0 as r → ∞, and
• ψ(r2) is of bounded variation in every finite interval away from the origin,

it can be shown, see [18], that π(θ) ∈ �EU(θ0, �0) if and only if π(θ) is a mixture of uniform
densities on ellipsoids centred at θ0, E(θ0, k) = {θ|(θ − θ0)′(�0)−1(θ − θ0) ≤ k2}.

Then, to find the infimum of the posterior probability of the point null hypothesis over the class
�EU(θ0, �0), it is sufficient to find it over the smaller class of the uniforms, see [19].

The following theorem gives the infimum of the posterior probability of the point null hypothesis
when the prior density π(θ) is in �EU(θ0, �0), using the previous result.

Theorem 2.1 If �EU(θ0, �0) is the class of priors and π∗(θ) is given by Equation (2) with π0

as in Equation (4), then

inf
π∈�EU(θ0,�0)

P (H0|x) =
(

1 + 1

V (E(θ0, ε))

∫
Rp

f (x|θ)
f (x|θ0)

dθ

)−1

, (8)

where V (E(θ0, ε)) is the volume of E(θ0, ε) = {θ|(θ − θ0)′(�0)−1(θ − θ0) ≤ ε2}, an ellipsoid
centred at θ0.

Proof See Appendix 1 �

Now, we consider the multivariate normal distribution to see the consequences of the previous
result.

Example 2.1 Suppose X is Np(θ, σ 2I) distributed, σ 2 known, where X = (X1, . . . , Xp)′ and
θ = (θ1, . . . , θp)′. It is desired to test Equation (1) with a sample of size n. The frequentist
significance test statistic is

T (X, θ0) = n

σ 2
|X − θ0|2,

with X = (X1, . . . , Xp). Under the null hypothesis, H0, T (X, θ0) has a χ2
p distribution. Therefore,

the p-value of the observed data, x, is given by p(x) = P {χ2
p ≥ T (x, θ0)}.
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Using Theorem 2.1, the infimum of the posterior probability of the point null over the class
�EU(θ0, �0) is

inf
π∈�EU

P(H0|x) =
{

1 + 1

V (E(θ0, ε))

∫
Rp

exp(−n/2σ 2|x − θ|2)
exp(−n/2σ 2|x − θ0|2) dθ

}−1

But, V (E(θ0, ε)) = πp/2εp|�0|/�(p/2 + 1) and taking �0 = I , the identity matrix, then

inf
π∈�EU

P(H0|x) =
{

1 + 2p/2�(p/2 + 1)

ε∗p exp

(
1

2
T (x, θ0)

)}−1

, (9)

where ε∗ = ε
√

n/σ . By fixing ε∗, the space dimension, p, and θ0 = 0 for different values of
T (x, θ0), the infimum of the posterior probability can be obtained. Table 1 shows the values of ε∗
so that the p-value and the infimum of the posterior probability are equal. These values depend
on the space dimension and they become larger as p increases.

In Table 1 we observe robustness with respect to the data for every dimension, p. For instance,
when the dimension is p = 3 and if we choose ε∗ ∈ (2.1, 2.3), then the infimum of the posterior
probability of H0 will be close to the different p-values. For different dimensions p, Figure 1
shows the infimum of the posterior probability with suitable values of ε∗, chosen from Table 1.
The p-value and the infimum of the posterior probability when π0 = 0.5 are also included. It
is observed that as ε∗ increases, the infimum of the posterior probability of H0 increases too,
and we can get it very close to the p-value. However, for π0 = 0.5, the infimum of the posterior
probability is always greater than the p-value, and there is a large discrepancy between these two
measures of evidence. For example, the corresponding value of ε∗ for π0 = 0.5 and p = 5 goes
from 3.96 to 5.56 for p-values from 0.1 to 0.001, which is extremely high.

Nevertheless, for high dimensions, greater or equal to 10, the value of ε∗ is extreme. This
fact invalidates the agreement of the p-value and the posterior probability of H0. The value
ε∗ = 5.023 needed to match both quantities when p = 10 makes the hypothesis H0 and H0,5.023

non–exchangeable.
Table 2 shows the infimum of the posterior probability for p = 5 and some suitable values of

ε∗ chosen from Table 1. Moreover, Table 2 includes the values of the infimum when π0 = 0.5.
It is clear from Table 2 that, when the agreement is possible, our procedure permits a better

approximation between the infimum of the posterior probability and the p-value for a proper
value of ε. This is not the case if π0 = 0.5 is chosen. The next example shows how this procedure
works in a real context. Again, the difference with [3] is the choice of the prior probability of the
null hypothesis.

Example 2.2 Let us consider the classical data in [20] giving skull length and breadth measured
on siblings in 25 families (X1, X2, X3, X4) with X1, X2 of the first son and X3, X4 of the second

Table 1. Values of ε∗ so that the p-values and the infimum of the posterior
probability over �EU are equal.

Dimension p

inf P{H0|x} = p-value 2 3 5 10 20

0.1 1.491 2.120 2.918 4.075 5.486
0.05 1.451 2.145 3.019 4.247 5.696
0.01 1.421 2.227 3.243 4.601 6.118
0.001 1.415 2.341 3.515 5.023 6.615
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384 M.A. Gómez–Villegas et al.

Figure 1. Thin lines: infimum of the posterior probability for some ε∗; circles: infimum of the posterior probability
when π0 = 1/2; thick line: p-value.

Table 2. P -values and infimum of the posterior probabilities for
elliptical priors with p = 5.

p(t) 0.1 0.05 0.01 0.001

Pr(H0|t, π0 = 0.5) 0.3391 0.2350 0.0761 0.0098
Pr(H0|t, ε∗ = 2.9) 0.09724 0.04128 0.00578 0.00038
Pr(H0|t, ε∗ = 3.2) 0.14981 0.06580 0.00937 0.00063
Pr(H0|t, ε∗ = 3.5) 0.21619 0.09930 0.01459 0.00979

son. The point null hypothesis asserts there is no difference between the first and the second son
with regard to the head size.

Dealing with the data Y1 = X1 − X3 and Y2 = X2 − X4 and accepting

� =
(

60 14
14 17

)

as the model covariance matrix, the mean vector is

x̄ =
(

4.08
1.76

)

and the classical test statistic t = nx̄ ′�−1x̄ = 8.1245 with a p-value = 0.01721.
With our methodology the corresponding ε∗ = 1.4, as shown in Figure 2, yields

P(H0 | x̄) = 0.0166. However for π0 = 0.5 the infimum of the posterior probability is
P(H0 | x̄) = 0.1373.
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Figure 2. Thin lines: infimum of the posterior probability for some ρ; thick line: p-value.

The next example explores the influence of the correlation between the variables in the posterior
probability. We consider that the variables have the same variance, σ 2, and a common correlation
coefficient ρ.

Example 2.3 Suppose X1, . . . , Xn is a sample from a Np(θ, �), a multivariate normal
distribution with a special correlation structure,

� = σ 2

⎛
⎜⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎞
⎟⎟⎟⎠ ,

with σ 2 known and ρ being the correlation coefficient. It is a permutation–symmetric multivariate
normal distribution that gives exchangeable variables for ρ ≥ 0 (see [21]). The graphics in Figure 2
show the p-values and the infimum of the posterior probabilities for different values of p, ε∗ =
ε
√

n/σ and the correlation coefficient, ρ.

It can also be noted that, in every case, it is possible to match the infimum of the posterior
probability and the p-value, but the approximation is worse for high dimensions of the parameter
space, especially for large values of ρ.

This fact can be explained because the covariance matrix of permutation-symmetric normal
variables has certain interesting properties.

(i) |�| = σ 2p(1 − ρ)p−1(1 + (p − 1)ρ), therefore � is a positive definite matrix if and only if
ρ ∈ (−1/p − 1, 1).
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386 M.A. Gómez–Villegas et al.

(ii) With the previous condition �−1 = (τij )

τij =

⎧⎪⎪⎨
⎪⎪⎩

1 + (p − 2)

σ 2
p(ρ)
for i = j

−ρ

σ 2
p(ρ)
for i �= j,

where 
p(ρ) = (1 − ρ)(1 + (p − 1)ρ) > 0 so that 
p(ρ) ∼ (1 − ρ) as ρ goes to one.

Thus the frequentist significance test statistic t = nxt�−1x converges to infinity as ρ goes to one
with t ∼ 1/(1 − ρ).

On the other hand, using the asymptotic behaviour of the gamma tail, we have

P {χ2
p ≥ t} 
 t (p/2)−1e−t/2

and taking �0 = I , the infimum of the posterior probability yields

P(H0|x) =
{

1 + �(p/2 + 1)

ε∗p 2p/2((1 − ρ)p−1(1 + (p − 1)ρ))1/2 exp

(
t

2

)}−1

.

Then to make comparisons for large values of ρ we have

P {χ2
p ≥ t}

P(H0|x)
∼ (1 − ρ)1/2

as ρ goes to one.
This behaviour explains that the p-value decreases quickly with regard to the infimum of the

posterior probabilities for a fixed value of ε when ρ goes to one as shown in Figure 2. Thus, for
highly correlated variables, the p-value is extremely unfavourable to the point null hypothesis.
On the other hand, the prior probability of the null hypothesis calculated by Equation (4) is larger,
for the same value of ε, than in the uncorrelated case.

Then, if we want to match the Bayesian and frequentist perspectives, a lower ε∗ must be chosen
as ρ goes to one and p increases, as can be seen in Table 3. Some particular cases are visualized
in Figure 3. Once again the use of π0 = 0.5 keeps both approaches well separated.

2.2. Lower bounds for scale mixture of priors

In this section we assume that (X1, . . . , Xp) is a random sample of a Np(θ, σ 2I) distribution,
and σ 2 known, where I is the p × p identity matrix. Then X is Np(θ, σ 2/nI) distributed. It is

Table 3. Values of ε∗ to match the p-value and the infimum
of the posterior probability for some values of ρ.

Dimension p

ρ p = 5 p = 10 p = 20

0.1 3 3.8 3.65
0.4 1.8 0.95 0.135
0.7 0.55 5.25 × 10−2 2.4 × 10−4

0.9 6.65 × 10−2 4.2 × 10−4 8 × 10−9
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Figure 3. Thin lines: infimum of the posterior probability for some values of ε∗ and ρ; thick line: p-value.

desired to test Equation (1) with θ0 = 0, then the appropriate statistic is T (X) = n/σ 2X
′
X. Now,

the considered prior density π(θ) belongs to the class of scale mixture of normals

�N =
{∫

Np(0, v2I )π(v2) dv2, π(v2) a non-decreasing function on (0, ∞)

}
. (10)

The reason to consider this class of priors is that it assigns higher mass to the neighbours of a
precise hypothesis than the class �EU(θ0, �0), see [7], and then we can have some large values
of π0 with moderate values of ε.

To find the lower bound on the posterior probability over the class (10) is equivalent to finding
it over the smaller class in which π(v2) is uniform on (0, r), r > 0, see [7].

The following theorem shows the infimum of the posterior probability over this class for p > 2.
For notation, πr(θ) = ∫ r

0 (1/r)ϕ(θ, v2) dv2, ϕ being the Np(0, v2I ) density.

Theorem 2.2 If the prior mass assigned to the null hypothesis is, from Equation (4),

π0r =
∫

B(0,ε)

πr(θ) dθ,

where B(0, ε) = {θ, θ|2 ≤ ε2}, then

inf
π∈�N

P (H0|t) =
(

1 + 1

ε∗2

Fp−2(t)

fp(t)

)−1

, (11)

with t = n/σ 2x′x,Fp−2 being the chi–squared distribution function with p − 2 degrees of freedom
and fp being the corresponding density with p.d.f.
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Table 4. Values of ε∗ such that the p–values and the infimum of the
posterior probability over �N are equal.

Dimension p

inf P{H0|x} = p-value 5 10 15 20

0.1 1.71 1.93 2.07 2.18
0.05 1.64 1.83 1.95 2.06
0.01 1.56 1.71 1.81 1.90
0.001 1.52 1.63 1.74 1.78

Table 5. P -values and infimum of the posterior probabilities for scale
mixture priors for p = 5.

p(t) 0.1 0.05 0.01 0.001

Pr(H0|t, π0 = 0.5) 0.38037 0.28843 0.11329 0.01903
Pr(H0|t, ε∗ = 1.5) 0.07846 0.04231 0.00922 0.00097
Pr(H0|t, ε∗ = 1.6) 0.08832 0.04766 0.01048 0.00109
Pr(H0|t, ε∗ = 1.8) 0.10921 0.05957 0.01322 0.00140

Proof See Appendix 2 �

Then, by fixing ε∗ and the space dimension p, the infimum of the posterior probability can be
obtained. Table 4 shows the values of ε∗ making the infimum of the posterior probabilities for the
class of scale mixture priors and the p-value equal.

In fact, as asserted above, we can get moderate values of ε∗ to match Bayesian and frequentist
approaches.

In order to compare numerically the p-value with the infimum of the posterior probability,
Table 5 shows for p = 5 this infimum for some suitable values of ε∗, chosen from Table 4, and
the infimum of the posterior probability when π0 = 0.5.

It can be pointed out that practical agreement exists between Bayesian and frequentist measures
for the different values of ε∗. In particular, for an intermediate value of ε∗ = 1.6, the infimums
of the posterior probability and the p-value are nearly the same. However, for π0 = 0.5, these
values are significantly different because the value of ε∗ goes from 4.03 to 6.69 for p-values from
0.1 to 0.001, respectively, which are extremely high.

Figure 4 shows the graphics of the lower bounds of the posterior null probability, for some
values of ε∗, and the p-value jointly with the posterior probability for π0 = 0.5.

3. Conclusions and comments

The most important conclusion is that the p-values and the posterior probabilities can be matched
for testing multivariate point null hypotheses. The difference between these two measures
increases when the prior mass assigned to the point null hypothesis for dimensions p ≥ 2 is
π0 = 0.5.

The proposal in this article is to give a prior probability for θ0 equal to the probability of a sphere
or an ellipsoid with a fixed radius ε and centred at θ0, calculated from π(θ). This methodology
shows, for the examples considered, a better approximation between the p-value and the infimum
of the posterior probabilities using just one source of prior information π(θ). As pointed out
in Example 2.2, where the p-value is 0.0172 and, with our procedure, P(H0|t) = 0.0166 when
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Figure 4. Thin lines: infimum of the posterior probability for some values of ε∗; circles: infimum of the posterior
probability when π0 = 1/2; thick line: p-value.

ε∗ = 1.4, whereas if π0 = 0.5, this infimum becomes 0.1373 greater than the p-value. Besides,
we think that the choice of ε or ε∗ is easier than the choice of π0 in practical situations.

It can also be pointed out that an apparent robustness in ε∗ is observed in every fixed dimension
p for the normal distribution and the class �EU, although varying with p. Furthermore, for the
class of scale mixtures, this robustness is observed not only for every fixed p but for varying p

as well.
Moreover, for a normal family with a common correlation coefficient, it is observed that the

p-value and the infimum of the posterior probability are closer as ρ, the correlation coefficient,
decreases.

Finally, if the mixed prior distribution structure is to be used for the point null testing problem
with π0 being the prior mass assigned to the null hypothesis, then a value smaller than 0.5
should be employed for π0 to ensure a numerical agreement between the Bayesian and frequentist
approaches.
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Appendix 1.

Proof of Theorem 2.1 The posterior probability of the point null hypothesis, H0, is given by

P(H0|x) =
(

1 + 1 − π0

π0

mπ(x)

f (x|θ0)

)−1

,

where mπ(x) = ∫
�

π(θ)f (x|θ) dθ. Then, computing the infimum of the posterior probability over the class �EU(θ0, �0)

of the point null hypothesis is just like computing the supremum of M(k) = (1 − π0)/π0mπ(x) over the class of density
functions constant on ellipsoids centered at θ0 (see [5]).

Assuming ε < k and denoting πk(θ
0, k, �0) by the uniform distribution over the ellipsoid centred at θ0, then

π0 =
∫

E(θ0,ε)

πk(θ
0, k, �0) dθ = V (E(θ0, ε))

V (E(θ0, k))

and

M(k) = V (E(θ0, k)) − V (E(θ0, ε))

V (E(θ0, k))V (E(θ0, ε))

∫
E(θ0,k)

f (x|θ) dθ.

It is straightforward to check that M(k) is increasing in k, because M ′(k) > 0, and then the supremum is attained as k

goes to infinity,

sup
k

M(k) = lim
k→∞ M(k) = 1

V (E(θ, ε))

∫
Rp

f (x|θ) dθ

and from this we get (8). �

Appendix 2.

Proof of Theorem 2.2 First, it can easily be checked that

π0r = 1

r

∫ r

0
Fp

(
ε2

u

)
du.
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Then, the corresponding posterior probability, for a fixed dimension p and uniform U(0, r), is

Pr(H0|t) =
(

1 + 1 − π0r

π0r

1

Br

)−1

where the Bayes factor, Br , is

Br = f (t |θ0 = 0)∫
Rp f (t |θ)πr (θ) dθ

and

1

Br

= 1

r

∫
Rp

∫ r

0

1

(2π)p/2up/2
exp

{
n

σ 2
x′θ − n

2σ 2
θ′θ − 1

2u
θ′θ

}
dθ du

= 1

r

∫ r

0

(nu

σ 2
+ 1

)−p/2
exp

{
1

2

(n/σ 2)2

n/σ 2 + 1/u
x′x

}
du

= 1

r
exp

{ n

2σ 2
x′x

} σ 2

2

∫ 1

σ 2/nr+σ 2
zp/2−2 exp

{
−nx′x

2σ 2
z

}
dz

= σ 2

rn(p − 2)

{
Fp−2(t) − Fp−2

(
σ 2t/σ 2 + rn

)
fp(t)

}
.

Then, the posterior probability of the point null hypothesis, H0, for p > 2 is given by

Pr(H0|t) =
{

1 + 1 − π0r

rπ0r

σ 2

n(p − 2)

Fp−2(t) − Fp−2(σ
2t/(σ 2 + rn))

fp(t)

}−1

(B1)

where Fp−2 is the chi–square distribution function with p − 2 degrees of freedom and fp chi–squared density function
with p degrees of freedom.

Now, we look for the infimum in r but Pr(H0|t), from (B1), is decreasing in r and then

inf
π∈�N

P r(H0|t) = lim
r→∞ Pr(H0|t).

But it can be shown that

lim
r→∞ rπ0r =

∫ ∞

0
Fp

(
ε2

t

)
dt = ε2

p − 2
,

then, Equation (11) is obtained. �
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