
Asymptotic relationships between posterior
probabilities and p–values using the hazard rate
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Abstract

In this paper the asymptotic relationship between the classical p-value and the infimum

(over all unimodal and symmetric distributions) of the posterior probability in the point null

hypothesis testing problem, is analyzed. It is shown that the ratio between the infimum

and the classical p-value has an equivalent asymptotic behaviour to the hazard rate of the

sample model.
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1. Introduction

In testing a point null hypothesis, it is well-known that the discrepancy between the classical

p-value, from now on p–value, and the posterior probability of the null hypothesis for some

kind of mixed prior distributions, see Berger and Sellke (1987) and Berger and Delampady

(1987). Recently, it has been studied that a better approximation between Bayesian and
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classical approaches can be obtained, if the mass assigned to the null hypothesis is related to

the prior density over the alternative hypothesis. The point is to work with wide classes of

prior distributions, see Spiegelhalter and Smith (1982), Gómez-Villegas and Gómez Sánchez-

Manzano (1992), McCulloch and Rossi (1992) and Gómez-Villegas and Sanz (1998, 2000).

This better approximation is also present, in some particular cases, when only one prior

distribution is used, see Gómez–Villegas, Máın and Sanz (2002). The discrepancy can also

be avoided by using, in the Bayesian approach, a value that is sometime referred to as a

Bayesian p–value. However, this procedure is not going to be considered in this paper. It can

also be pointed out that such a discrepancy does not exist in the one-sided testing problem,

see Casella and Berger (1987).

This paper deals with the asymptotic behavior of the ratio between the infimum of the

posterior probability of the point null hypothesis and the classical p-value when the class of

prior distributions is the class of all unimodal and symmetric distributions. In fact it is shown

how this ratio depends on the hazard rate of the sample model. This relation is important

to explain the influence of the model when the Bayesian and classical methodologies are

compared in a point null hypothesis testing problem.

It may also be pointed out that the cited papers dealing with the discrepancy between the

infimum of the posterior probability and the p-value, do not take into account the influence

of the hazard rate function of the model. Using this fact, it will be shown that, if we have

asymptotically high hazard rate values, it is possible to avoid the discrepancy for suitable

small values of ε, but in the opposite case much larger values of ε will be needed, so that

the infimum of the posterior probability and the p–value match.

In order to establish this comparison, the tail distribution classification introduced by

Máın (1989) and studied by Gómez-Villegas and Máın (1992), so as the corresponding tail-

ordering considered by Máın and Navarro (1997) are used.

Section 2 reviews the Bayesian framework of testing point null hypotheses that we have

used and gives previous definitions including the asymptotic tail ordering used in this work.

Section 3 presents the main result and its application to different sample models. Finally, in

Section 4 some conclusions and comments are also given.
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2. Preliminaries

Consider a point null testing problem

H∗
0 : θ = θ0 versus H∗

1 : θ 6= θ0, (1)

based on observing a random variable, X, with density f(x− θ) continuous in θ = θ0. The

Bayesian approach considered in this paper supposes, as is often done, that the probability

of θ = θ0 is π0 > 0, and such that the prior information is given by a mixed distribution

assigning π0 to the point θ = θ0 and spreading the remainder, 1− π0, according to a density

π(θ) over θ 6= θ0. In order to make comparisons with the p-value, π(θ) is usually chosen

from a class of distributions. Furthermore, in many situations the choice of a particular

prior distribution can be difficult. Thus, it will be assumed that π(θ) belongs to the class

GUS = {all distributions unimodal and symmetric about θ0}, which is a reasonable class of

priors since the symmetry is a natural “objective” assumption. Besides, that requirement

is equivalent to the assumption that π(θ) is nonincreasing in |θ − θ0|. So, when π(θ) is in

GUS it seems that alternative values of θ (to θ0) are not favored according to the point null

hypothesis being studied. Some other justifications for using this class of priors can be found

in Berger (1994), Casella and Berger (1987), Berger and Sellke (1987) and Gómez-Villegas

and Sanz (1998).

To choose the mass assigned to the null hypothesis, π0, we propose the following proce-

dure: a precise hypothesis can be represented as

H0 : |θ − θ0| ≤ ε versus H1 : |θ − θ0| > ε, (2)

where ε is “small” and the point null hypothesis is replaced by this interval hypothesis.

Then, given π(θ), a value of ε can be fixed to compute

π0 =
∫

|θ−θ0|≤ε
π(θ) dθ (3)

leading to the mixed prior distribution

π∗(θ) = π0I{θ=θ0}(θ) + (1− π0)I{θ 6=θ0}(θ)π(θ), (4)
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where IA(θ) = 1 if θ ∈ A and IA(θ) = 0 if θ ∈ Ac. To justify this choice of the mixed distri-

bution see Gómez–Villegas and Sanz (2000), the idea is to make compatible both problems,

the point and the interval null hypotheses.

Furthermore, if π0 = 0.5 is used, as it is usually done in the literature, the corresponding

value of ε computed by (3) is very large. Then, the mixed prior distribution given by (4) for

this π0 does not seem reasonable because the point and the interval null hypotheses would

not be equivalent problems.

Now, we are going to use the hazard rate function, rfX
(x) = fX(x)/(1 − FX(x)) for the

continuous case, to describe the influence that the tail behaviour of the sample model has on

the asymptotic discrepancy between the p–value and the infimum of the posterior probability

of the point null hypothesis over the class GUS. For some other uses and properties of the

hazard rate function see Barlow and Proschan (1975).

The asymptotic hazard tail ordering to be considered, Máın and Navarro (1997), can be

defined by

F ¹th G if and only if there exists a value c < ∞ such that lim
x→∞ rg(x)/rf (x) = c.

For example, some of the usual distributions are ordered with this tail ordering as follows:

Normal ≺th Gamma ∼th Logistic ≺th Lognormal ≺th

Student ∼th Pareto ∼th Cauchy.

There are some other tail orderings (see Rojo 1992 and Shaked and Shanthikumar 1994) using

some other features of the tail distributions, but in our problem the hazard rate function

seems to be the most proper tool.

3. Main results

Let us suppose that a random variable X, having density f(x − θ), θ being an unknown

parameter is observed. For the point null testing problem (1), the usual frequentist measure

of evidence against H∗
0 is the p-value, that is

p(x) = Prθ=θ0(|T (X)| ≥ |T (x)|), (5)
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where T (X) is an appropriate statistic.

The next result justifies the different approximations between the p–value and the pos-

terior probability, observed when distributions with different tails are used.

Theorem 3.1 If the function f is continuous in θ0 and symmetric and all the limits to

be handled exist, then

lim
x→∞

infπ∈GUS
Pr(H∗

0 |x)

rf (x)p(x)
= ε, (6)

where ε is the half–length of the interval hypothesis in (2).

Proof: For testing (1) the posterior probability of the null H∗
0 is

Pr(H∗
0 |x) =

f(x− θ0)π0

f(x− θ0)π0 + (1− π0)
∫
θ 6=θ0

f(x− θ)π(θ)dθ

with π(θ) ∈ GUS.

Being π(θ) unimodal and symmetric it can be written as a mixture of uniform distribu-

tions (see Brandwein and Strawderman 1978).

And, computing the infimum over GUS or over the class GU , of all uniform distributions

U(θ0− k, θ0 + k) with k ∈ <, is the same (see Casella and Berger 1987). Replacing π0 by (3)

for the class GU

Pr(H∗
0 |x) =

2f(x− θ0)

2f(x− θ0) + (1
ε
− 1

k
)
∫
|θ−θ0|≤k f(x− θ)dθ

,

which is decreasing in k, the infimum is reached when k goes to infinity. Observing that,
∫

|θ−θ0|≤k
f(x− θ)dθ ≤

∫

<
f(x− θ)dθ = 1,

the infimum is

inf
π∈GUS

Pr(H∗
0 |x) =

(
1 +

1

2ε

1

f(x− θ0)

)−1

. (7)

On the other hand, the p-value of observed data is, from (5) with T (X) = X

p(x) = 2(1− F (x− θ0)),

then the ratio between the infimum and the p-value is given by

infπ∈GUS
Pr(H∗

0 |x)

p(x)
=

εf(x− θ0)

(2εf(x− θ0) + 1)(1− F (x− θ0))

=
εrf (x− θ0)

2εf(x− θ0) + 1
,

(8)
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where rf (x−θ0) is the hazard rate of the sample model that, for large x, reflects the different

tail behavior of the sample distributions.

From (8), the result (6) is immediately obtained. 2

Theorem 3.1 shows that for large x we have

infπ∈GUS
Pr(H∗

0 |x)

p(x)
≈ εrf (x)

explaining how the comparison between the p-value and the infimum of the posterior prob-

ability of the point null hypothesis depends asymptotically on the hazard rate of the sample

model, that is on the tail behavior of the sample model.

In fact we get that for a Normal distribution and for large x

infπ∈GUS
Pr(H∗

0 |x)

p(x)
≈ εx.

It means that the value of ε must be small to match the different measures. More concretely

for a value x = 3 taking ε = 1/3, the posterior probability and the p-value are close.

Otherwise, the point null hypothesis can be changed to the interval one with ε = 1/3 and in

this case the infimum of the posterior probability is 0.99 times the p-value.

Whereas for a Cauchy distribution

infπ∈GUS
Pr(H∗

0 |x)

p(x)
≈ ε

1

x
,

then for a large x a large ε is required to make the Bayesian approach we have used and the

classical one agree. Then for x = 3 a very large ε = 3 is necessary to make the Bayesian

and classical measures of evidence equal. Alternatively the point null hypothesis might be

changed by the interval one with ε = 3. For this heavy tailed model the needed value of ε

is too large to consider both the point and the interval hypotheses equivalent, and using a

proper small ε makes the infimum of the posterior probability strictly less than the p-value.

The following two examples show the effect produced by the use of increasing values

of x for a couple of sample models. Thus in the first case, a heavy-tailed distribution,

the convergence is slower than in the second one where a medium-tailed distribution is

considered.
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Example 1.(Heavy-tailed distribution). Let X be a Pareto random variable with density

f(x− θ) =
a

2x0

(
x0

x0 + |x− θ|

)a+1

; −∞ < x < ∞, a > 0

To test (1) , with θ0 = 0, the ratio between the infimum of the posterior probability and the

p-value results
infπ∈GUS

Pr(H∗
0 )

p(x)
=

εa(x0 + |x|)a

εaxa
0 + (x0 + |x|)a+1

.

Obviously, if this last expression is multiplied by (rf (x))−1 it gives ε. Table 1 shows, in a

particular case, how this limit is attained for increasing values of x. The infimum is noted

by Pr(H∗
0 |x).

Table 1: Comparisons for the Pareto distribution with a = 2, x0 = 1 and ε = 0.2.

x p(x) Pr(H∗
0 |x) Pr(H∗

0 |x)/p(x) ε× rf (x)

1 0.250 0.0476 0.1905 0.4

5 0.0278 0.0019 0.06654 0.08

10 0.0083 0.0003 0.03635 0.02

50 3.85×10−4 3.0×10−6 0.00784 0.008

100 9.8×10−5 3.9×10−7 0.00396 0.004

300 1.1×10−6 1.47×10−8 0.00133 0.00133

Example 2.(Medium-tailed distribution). Let X be a random variable with double-

exponential density

f(x− θ) =
1

2
e−|x−θ|; −∞ < x < ∞.

To test (1), with θ0 = 0, the ratio between the infimum of the posterior probability and the

p-value is
infπ∈GUS

Pr(H∗
0 |x)

p(x)
=

ε

1 + εe−|x|
.

Numerical results for some specific values are given in Table 2.
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Table 2: Comparisons for the double exponential distribution with ε = 0.2.

x p(x) Pr(H∗
0 |x) Pr(H∗

0 |x)/p(x) ε× rf (x)

1 0.36788 0.06853 0.1863 0.2

3 0.04979 0.00986 0.1980 0.2

5 0.00674 0.00135 0.1997 0.2

10 4.54×10−5 9.08×10−6 0.1999 0.2

15 3.05×10−7 6.12×10−8 0.1999 0.2

20 2.06×10−9 4.12×10−10 0.2 0.2

In summary, with heavy tails and ε = 0.2 (Example 1), it is necessary x > 300 to get the

ratio infπ∈GUS
Pr(H∗

0 |x)/p(x) approximately equal to ε× rf (x) (see Table 1). On the other

hand, if the tail of the sample model is light (Example 2), x > 10 is enough to obtain the

same result.

Until now, this kind of comparison have been done before but never taking into account

the hazard rate as definitive in order to explain the different situations. For instance, Berger

and Sellke(1987) in Comment 5 say that in the most statistical problems the infimum of

the posterior probability is substantially larger than the p-value but this is not true when

the sample model is a Cauchy distribution. This fact is also pointed out in Casella and

Berger(1987).

In this paper we have shown the major influence of the hazard tail behavior on these

comparisons.

4. Conclusions and comments

Summing up, in testing point null hypothesis, the asymptotic behavior of the ratio between

the infimum of the posterior probability of the point null hypothesis, over a wide class of

priors, and the p-value depends on the hazard rate of the sample model. This is a new

argument to explain the discrepancy between infπ∈GUS
Pr (H0 | t), if a mixed prior is used,

and p (t) that has been previously observed.

So, if the sample model is a heavy-tailed distribution, for example Cauchy, tn-Student
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or Pareto, the posterior probability of the point null hypothesis can be smaller, at least for

a prior in the class, than the p-value for an appropriate value of ε. Whereas if the sample

model is a light-tailed distribution, for example the Normal model, the posterior probability

of the null is, at least for a prior in the class, equal to the p-value.

In any case, we judge that these kind of results are helpful to the better understanding

of the actual peculiarity in the frame of point null hypothesis testing and they complement

some other well-known ones about this particular problem.
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