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Abstract

In this paper the problem of testing a point null hypothesis from the Bayesian per-
spective and the relation between this and classical approach is studied. A procedure to
determine the mixed prior distribution is introduced and a justification for this construc-
tion based on a measure of discrepancy is given. Then, we compare a lower bound for the
posterior probability, when the prior is in the class of e—contaminated distributions, of the

point null hypothesis with the p-value.
AMS classification: 62F15; 62A15.
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1. Introduction
1.1. s—contaminated class

To carry out a Bayesian analysis concerning an unknown parameter, 8, it is necessary
to indicate the prior beliefs about ¢ through a prior distribution of probability. It is not
usually the case that the prior information could be expressed in terms of a concrete
probability distribution since this prior information is, frequently, vague. This lack of
precision is the reason why, often, the prior information is expressed in terms of a class of
distributions, I', in which we include all priors that look reasonable concerning our prior
beliefs. Moreover, to compare the posterior probability of the null hypothesis with the
p-value it looks reasonable to elicit a class of priors instead of a concrete prior distribution
since the p-value doesn’t use prior information.

An interesting way to describe prior beliefs is to consider the s—contaminated class
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given by

IF'={n=(1-¢)m+¢€q, q €Q} (1)

where 7y is a particular prior distribution, the prior that one would use in a Bayesian
analysis with only one prior distribution. € is the class of probability distributions that
represents the possible —and reasonable— deviations of mg. A fixed ¢, with 0 < € < 1,
represents the degree of contamination that we want to introduce in .

As to the class (), there are several possibilities we can take into account. We are going
to use the class of all probability distributions. Huber (1973) and Sivaganesan (1988)
use this class in other context. Berger and Berliner (1986), Berger (1985), Sivaganesan
and Berger (1989) and Berger (1994) give relevant information about other classes of
contamination.

We start, in Section 1, with the problem. Then, in 1.2, we introduce the procedure
to make up the mixed prior distribution and in 1.3 a justification for this construction is
provided. Section 2 compares the p—values with the infimum of the posterior probability,
also relevant examples are contained in Section 2. Finally, in Section 3 a discussion and

some other possible ways to apply the same idea are contained.

1.2. The problem
We consider the point null testing problem
Hj:0=40, versus Hy :60+# 6y, 2)

based on observing a random variable, X, with density f(z|¢) continuous in 8,. We
suppose, as usually, that the probability of # = 6y is p > 0, in such a way that the prior
information is given by a mixed distribution assigning mass p to the null hypothesis and
spreading the remainder, 1 — p, according to a density =(6) € I' over 8 # 6;. However
there is no rule to fix the value of p —usually p = é——,(scc Robert, 1994, Ch. 5).

In practical situations, it is not usual to test (2). We propose to replace (2) by the

more realistic precise hypothesis
Hy:0€l, versus H,:0¢€ I}, (3)

where I, = (6 — 0,80 + b) and b is suitable “small” so that any value of § € I, can be
considered indistinguishable from #y. Examples can be seen in Berger (1985), Berger and

Delampady (1987) and Lee (1989) among others.



An interesting discussion about the difference between (2) and (3), without using this
mechanism, can be found in Lindley (1988) and discussion contained there.

In the classical approach, (2) can be changed by (3) when the p-value in (2) is approx-
imately the same as the p-value in (3). Berger and Delampady (1987) seek conditions
under which both p-values are approximately equal. From Bayesian perspective, this can
be done when the posterior probabilities of the null hypotheses are close or, equivalently,
when the Bayes factor in (2) is similar to the Bayes factor in (3). A relation between (2)
and (3) with regard to the Bayes factor is given by Gomez—Villegas and Gémez Sanchez
Manzano (1992). There it is shown that the Bayes factor in (3) converges to the Bayes
factor in (2) when b goes to zero. A difference between the use of Bayes factor and posterior
odds in this framework can be seen in Levine and Casella (1996).

Let us suppose that our prior distribution is 7(#) € I', with I" defined in (1). In the

point null testing problem, we need a mixed prior distribution

7 () = plig,}(0) + (1 — p)7(0) L1o20,3(6) (4)

where I4(0) =1if 8 € A and I4(0) = 0if § € A°. Whereas in (3) it is sufficient to choose
7(#) € I'. Then, what we propose is to choose the value of p, in the mixed distribution
(4), as

p=1{  x(8)d8. (5)
j0—d01<b

This construction is based on the assumption that 7 (#) represents our prior beliefs about &
but, as it is not possible to test (2) with 7(¢), we approach (2) by (3) choosing a convenient
value of b.

In the same way of Berger and Sellke (1987), we seek to minimize Pr(Hg|z) over the
class I' in (1). From (5) we have p = (1 — €)po + £qo, where

Do = 7o(0)d0, and go = ] ¢(6)de. (6)
1060 |<b 10—06|<b

A reason to take the infimum is that for a small infimum the null hypothesis must be
rejected according to the interpretation of the p-value. More reasons can be seen in
Berger and Sellke (1987). Besides, this development is similar to that of Casella and
Berger (1987) who reconcile Bayesian and frequentist evidence in the one-sided testing
problem and we are interested in making clear the reason for the discrepancy between
both approaches in the point null testing problem.

There is a substantial amount of literature about the reconciliation between p-values

and posterior probabilities, some important references, besides the ones mentioned above,



are Edwards et al. (1963), Pratt (1965), Dickey and Lienz (1970), Cox and Hinckley
(1974), DeGroot (1974), Bernardo (1980), Rubin (1984), Ghost and Mukerjee (1992),
Berger, Boukai and Wang (1997) and Mukhopadhyay and Das Gupta (1997).

1.3. Justification and notation

The choice of p, the mass assigned to the point null hypotheses, as in (5) is basic for pos-
terior calculations. A way of justifying this construction is by using the Kullback-Leibler
information measure, §(7*|7) = [ 7(8) In(x(0)/7*(#)) df, as a measure of discrepancy be-
tween m and 7%,

There is a problem here because 7(#) is a density but 7*(¢) is not a density. We can
sort out the problem considering two measures on (R,Bg). For all A in the Borel o-field
we define the following measures
. . p+(l—pu(d) if €A
J(A) = / 7(0)d\6) and p*(A) = / 7(6) dA(8) =
4 A (1 —=piu(A) if 6y € A°
The first measure, p(A), is originated by the density 7 (#) and the second, p*(A), by 7%(6),
where p is given by (5) and A is the Lebesgue measure.

It is easy to prove that p is absolutely continuous with respect to p* ( p << p* ), so
it exists du/dp*, the Radon-Nikodym derivative of g with respect to p*. Besides, it is

straightforward to see that

0 if 6=4,
~(0) = (7)
dp L if g +£6,

l—p

du

Now, using that g << p*, we can define the discrepance between p and p* as é(p*|p) =
Jo (In(dp/dp)) dp. Then, by (7), we have §(p*|p) = —In(1 — p).

Several comments are in order. First, when b goes to zero then p, according to (5),
goes to zero too and the discrepancy between p* and p also goes to zero. This is a
justification to construct (4) in this way and it makes reasonable the replacement of (2)
by (3). Secondly, if p = 1/2 is employed, instead of using the value of p given in (5), then
the discrepancy between p* and p is d(p*|p) = 0.693; which is perhaps a high discrepancy.
Finally, the suitable choice of b, which depends on the problem we are dealing with, is
perhaps more intuitive than just selecting an arbitrary value of p.

We denote the likelihood function by f(x|€), which is considered as a function of

@ for the observed value x. The marginal distribution of X with respect to the prior



7 € I' is denoted by m(z|r). Assuming the existence of all quantities in the problem,
we have m(z|r) = (1 — g)m(z|mo) + sm(x|q), hence, if the posterior distributions mo(8|x)
and ¢(f|z) exist, the posterior distribution of # given @ with respect to 7 is given by
70| x) = AMa)mo(0|z) + (1 — A(2))g()z), where A(z) = (1 — ) (m(x|mo))/m(z|r).

A classical measure of evidence against the null hypothesis, which depends on the
observations, is the p-value. If there exists an appropriate statistic T(X) for testing
(3), for example a sufficient statistic, the p-value of the sample point, z, is p(z) =
supgep, Pr(|T(X)| > [T(x)| [0). In particular, for testing (2), the p-value takes the
form p(a) = Pr(|T(X)| > |T(x)| |6).

2. Arbitrary contaminations

In this section we obtain, in Theorem 1, a lower bound for the posterior probability
of the point null hypothesis, given 7* by (4) and with p computed according to (5). In
order to achieve the infimum of the posterior probability sufficient conditions, when 7= € T,
are established in Theorem 2. Finally, this Section contains several examples where we
compare the lower bounds of the posterior probability with the p-values for different values
of b. GémezVillegas and Sanz (1998) give a survey about these ideas using the class of
all unimodal and symmetric distributions.

Theorem 1. Consider the hyphoteses introduced in (2), an arbitrary prior distribution
7(0) €T asin (1) and a mized prior distribution as (4) with the mass assigned to the null
hypothesis according to (5). Then
-1
Pr(Hgle) > (14 o5 ) )

where
m(x|mg) | SUPgxg, f(z0)

[

r(z)=(1-¢)

f(z]6o) f(z]6o)
Proof: Computing a lower bound of the posterior probability of Hj
* f(z]6o)
Pr(Hj|z) = T-p (9)
flz|fo) + m(x|7)

is just like computing an upper bound of (1 — p)/pm(z|7) when = € I'. We remark that,
by the construction of 7*(#), p depends on ¢ through ¢o. So the infimum of Pr(Hj;|z) in
¢ can be computed as the supremum in ¢ € Q) of

l1—p 1

mzlr) = | —m8
P (lm) (1—2)po+<qo

— 1 [(1 = e)ym(a|xo) + em(z|q)]. (10)



With pg and ¢o given by (6) and the supremum of (10) is always less or equal than the

product of

sup [; - 1] (11)
qeQ L(1 = £)po + g0

1
and sup,eq [(1 — )m(z|mo) + em(z|q)]. But (11) is equal to T—9m 1 and
—£)Po

m(z|q) = ] flx|0)q(6)do < sup f(z|6) / q(0)d# = sup f(z|0).
] 046, o 0460

Then, immediately we obtain (8). O

Theorem 1 gives a lower bound for the posterior probability of the null hypothesis and
a first question is when the infimum is achieved by a distribution of the class I' in (1).
The answer is given by the following theorem.
Theorem 2. Let Ejn be the mazimum likelihood estimator of 6 when 6 is in HY. If én €l
and, for fized §, fa'?:’j; f(x|0) d8 is approzimated by 25 f(x|0,,), then the distribution given.
by 7(0) = (1 — e)mo(8) + <q(0), where q(0) is uniform in (én — 6.0, + (T), satisfies

inf Pr(Hg|e) = Pr(Hg|e,7) = (1 + Hr(m])_ (12)

Proof: By (9), we need to compute p and m(z|7). But

p = /| 7(0) do

- (1_5)/’ w0 do+c [ q(6)d8 = (1—e)po.
j6—00|<b 0-001b

and m(z|7) = (1 — g)m(x|ro) + em(z|q) , where

1 pOnts R
m(z[9) :[éf(;rw)q(f}) 6 = 5[ F(2]6) 48 ~ F(2]6,),

[}
then we obtain (12). O
It is interesting to note that the real restriction in this theorem is g,, € I;, since the
approximation of the integral is always possible by choosing a sufficiently small value of
5. When 8, is in I, (8) becomes an strict inequality.
Example 2.1. Let us suppose that X |6 is distributed N (6, ¢?), with ¢ known, and
mo(#) has a N(u, 72) distribution, with both parameters known. If X;,..., X, is a ran-
dom sample of X, then X is N(f,0%/n) distributed, m(Z|mo) is N(u, 72 + 0%/n) and
SUpg.g, f(2]0) = Vn/(o\/27), either 2 = 6 or = # fy. Besides pg = ®((o + b — u)/7) —

®((0g — b— pu)/7), ® denoting the standard cumulative distribution function.



Table 1 shows, with 02 =1, 72 = 2, 6y = u = 0 and n = 10, the values of the lower

bound given by (8) for some specific values of t = \/n(Z — ) /o and some b.
Table 1 goes here

We can observe, too, that if we take an adequate value of b, the values of the lower
bound given by (8) are close to the respective p-values. For example, if we take b between
0.2 and 0.3 it can be seen that these lower bounds are approximately equal to the p—values.
O

A way to choose b is to make the lower bound in (8), with p as in (5), agree with the
p-—value. This could be done if we obtain b from the expression

pla) = (1 + Mr'(:n)) |
(1—-¢)po

but this implies that

l—p(:r))_'1 (13)

1
Po=1"% (l * pla)r(z)
and the prior probability depends on the data. A possibility to avoid that the prior
distribution becomes data dependent is to replace p(z) by the significance level of the
test, a. Moreover, if the value choosen for b is close to that one obtained by (13), then
we get that the infimum of the posterior probability and the p-value are closed, since the
infimum is a continuous function of b.

Jeffreys (1967, pg. 274) has dealt with this problem, normal likelihood with known
variance, using the Cauchy distribution as prior. We deal with this situation in the
following example.

Example 2.2. Let X have a N(6,1) distribution with # unknown. Let my(#) be the
base prior distribution of #, i.e. a C'auchy(0,2) distribution. To test Hj : = 0 versus
Hiy : 0 # 0, with a random sample of size 10 and £ = 0.2. Table 2 shows the values of b
providing lower bounds for the posterior probability of Hj close to the p-values. It can
be observed that, in this case, the values of b, that make the p-value be near the posterior

probability, are now slightly larger than in Example 2.1. O

Table 2 goes here

3. Comments

The results that we have obtained are consequence of a methodology based on the

relation between point null and interval null hypothesis. The discrepancy used in this



paper between 7 (¢) and 7*(#) justifies the choice of p as in (5) with a suitable value of
b. According to this procedure, the mixed prior distribution 7*(#), used in the point null
problem, is close to the continuous prior 7 (), used in the interval problem, as we stated
in 1.3.

The procedure works well when the prior 7(#) is in the class of e-contaminated distri-
butions, in the sense that the lower bound for the posterior probability of the point null
hypothesis can be close to the p—value as it is shown in the examples that we have dealt
with. Similar results were obtained by Goémez-Villegas and Sanz (1998) in a different
context.

The value of b must be chosen, in general, as one of the intermediate values in tables 1
and 2, when the sample model is normal. If the sample model has much heavier tails than
normal, the values of b needed to obtain agreement will be greater than those obtained
in examples 1 and 2 and if we use, in this case, suitable small values of b, as it seems
more appropriate, the p-values will be greater than the lower bounds of the posterior
probability.

Finally, in the light of our results, it seems that the discrepancy observed in testing
point null hypothesis between Bayesian and classical approach becomes more acute by
using p = 0.5 in the mixed distribution.

Other classes of distributions should be studied as prior distributions with this method-

ology and more research is necessary in order to establish conditions for the choice of b.
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Table 1: Lower bounds for posterior probabilities of Hj when X ~ Normal

t

1.645 1.960 2.576 3.291
b=0.1 0.0325 0.0189 0.0046 0.0006
b=0.2 0.0657 0.0387 0.0097 0.0013
b=0.3 0.0994 0.0595 0.0151 0.0021
b =04 0.1335 0.0812 0.0209 0.0028
b=0.5 0.1678 0.1037 0.0272 0.0038
p-value 0.1000 0.0500 0.0100 0.0010

Table 2: Lower bounds for posterior probabilities of HF when X ~ N(0,1) and mo(f) is
Cauchy(0,2)

t 1.645 1.960 2.596 3.291

b 0.4 0.4 0.3 0.3
Pr(H;|t) 0.0898 0.0533 0.0103 0.0013
p-value 0.1 0.05 0.01 0.001
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