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Abstract

The r × s table is used for discussing different approaches to statistical inference.
We develop a Bayesian procedure to test simple null hypotheses versus bilateral
alternatives in contingency tables. We consider testing equality of proportions of
independent multinomial distributions when the common proportions are known.
A lower bound of the posterior probabilities of the null hypothesis is calculated
with respect to a mixture of point prior on the null and a ε−contaminated prior
on the proportions under the alternative. The resulting Bayes tests are compared
numerically to Pearson’s χ2 in a number of examples. For the examined examples
the lower bound and the p-value can be made close. The obtained results are
generalized when the common proportions vector under the null is unknown or
with known functional form.
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1 Introduction

We suppose that independent random samples are drawn from two large
populations, and each of their members is classified as a success or a failure.
The first sample is of size n1 and produces a successes and b failures; the
second is of size n2 and produces c successes and d failures. The situation
is displayed in Table 1.

It is necessary to have a quantitative measure of the strength of the ev-
idence that the data gives in support or in rejection of the hypothesis that
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2 Gómez-Villegas, M. A. and González-Pérez, B.

the proportion of successes in the first population, p1, is equal to the pro-
portion of successes in the second population, p2. Therefore, the parameter
of interest for the problem of homogeneity outlined is θ = (p1, p2).

Table 1: data in the 2× 2 table

Successes Failures Total
Sample 1 a b n1

Sample 2 c d n2

Total m1 m2 N

To develop a Bayesian analysis concerning an unknown parameter, θ, it
is necessary to indicate the prior beliefs about θ through a prior distribu-
tion of probability. However, the case in which the initial information can
be expressed in terms of a concrete probability distribution is not usual,
due to the fact that, frequently, this prior information is diffuse. In some
situations, due to this absence of precision, the prior information is ex-
pressed in terms of a class of distributions, Γ, in which all possible prior
distributions for θ are included. Moreover, to compare the posterior proba-
bility of the null hypothesis of the Bayesian method with the p-value of the
classical method it is reasonable to consider a class of prior distributions
instead of a concrete distribution, given that the p-value does not use prior
information.

An interesting way of describing prior opinions is to consider the class
of ε−contaminated distributions given by

Γ = {π = (1− ε) q0 + εq, q ∈ Q} . (1.1)

q0 is a particular prior distribution, the prior that one would use in a
Bayesian analysis with only one prior distribution. Q is the class of proba-
bility distributions that represents the possible (and reasonable) deviations
from q0. A fixed ε, with 0 < ε < 1, represents the degree of contamination
that we want to introduce into q0.

Referring to the class Q, there are several possibilities to keep in mind.
We are going to use the class of all probability distributions. Gómez-
Villegas and Sanz (2000) use this class of distributions to study the prob-
lem of testing a simple null hypothesis from a Bayesian perspective. Hu-
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ber (1973) and Sivaganesan (1988) also use this class although in another
context. Berger and Berliner (1986), Sivaganesan and Berger (1989) and
Berger (1985, 1994) give relevant information about other classes of con-
tamination.

Section 2 formulates the homogeneity problem studied in a precise way
and introduces the procedure to make up the mixed prior distribution. In
section 3 the notation used in this paper is detailed. Section 4 calculates
the infimum of the posterior probability that the proportion of successes
in the first population is the same as in the second and both equal to a
known value, when our initial opinion is in the class of ε−contaminated
distributions. Relevant examples are contained in section 5. Section 6
compares the lower bound of the posterior probability obtained in section
4 with the p-value. Section 7 treats the case of r × s tables. Section 8
generalizes the proposed methodology when the common proportions vector
under the null is unknown or with known functional form. Finally, section
9 contains some closing comments.

2 Formulation of the Problem

Consider Xi, i =1, 2, independent random variables distributed, respec-
tively, B (ni, pi), with ni ∈ N, i =1, 2, fixed and known, and suppose that
we wish to test

H0 : p1 = p2 = p0 versus H1 : ∃i, pi 6= p0, (2.1)

with p0 known.

Moreover, suppose that our prior opinion about (p1, p2) is given by the
density π (p1, p2) ∈ Γ, Γ being the class of ε−contaminated distributions
given in expression (1.1).

Then, a mixed prior distribution is needed to test (2.1). We propose

π∗ (p1, p2) = π0IH0 (p1, p2) + (1− π0) π (p1, p2) IH1 (p1, p2) , (2.2)

where π0 is the assigned prior mass to the null hypothesis. However, there
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is no rule to fix the value of π0, usually π0 = 1
2 (see Robert, 2001, chapter

5).

Now, consider the more realistic precise hypothesis

H0δ : d ((p0, p0) , (p1, p2)) ≤ δ versus H1δ : d ((p0, p0) , (p1, p2)) > δ, (2.3)

with a proper metric d and a value of δ > 0 sufficiently small. Therefore,
any point (p1, p2) such that d ((p0, p0) , (p1, p2)) ≤ δ is considered indistin-
guishable from (p0, p0).

An interesting discussion and a justification of this construction by using
the Kullback-Leibler information measure about the change of (2.1) for
(2.3) can be found in Gómez-Villegas and Sanz (2000) and Gómez-Villegas
et al. (2002).

Applying the method of Gómez-Villegas and Sanz (2000) and Gómez-
Villegas et al. (2002), introduced by Gómez-Villegas and Gómez (1992)
and justified by Gómez-Villegas and Sanz (1998), we can use π (p1, p2), our
opinion about (p1, p2), and calculate π0 by means of

π0 =
∫

B((p0,p0),δ)
π (p1, p2)dp2dp1, (2.4)

where B ((p0, p0) , δ) =
{

(p1, p2) ∈ (0, 1)× (0, 1) ,
∑2

i=1 (pi − p0)
2 ≤ δ2

}
,

the sphere having center (p0, p0) and radius δ.

Therefore, the prior probability assigned to H0 by means of π∗ (p1, p2)
and assigned to H0δ by means of π (p1, p2) is the same, selecting an appro-
priate value of δ.

In the same way of Berger and Sellke (1987), we seek to minimize
P (H0|a, c) over Γ, the class of prior distributions given in expression (1.1).
From (2.4) we have π0 = (1− ε) π0

q0
+ επ0

q , where

π0
q0 =

∫
B((p0,p0),δ)

q0 (p1, p2)dp2dp1, π0
q =

∫
B((p0,p0),δ)

q (p1, p2)dp2dp1. (2.5)

As it is indicated in Gómez-Villegas and Sanz (2000), a reason that jus-
tifies taking the infimum is that, for a small infimum, the null hypothesis
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must be refused according to the interpretation of the p-value. More rea-
sons can be seen in Berger and Sellke (1987). Moreover, this development
is similar to the one found in Casella and Berger (1987) that reconciles
Bayesian and classical measures in a one-sided testing problem.

There is an extensive literature about the comparison between Bayesian
and classical measures. Some important references, besides the ones al-
ready mentioned, are Edwards et al. (1963), Pratt (1965), Dickey and Lienz
(1970), Cox and Hinkley (1974), DeGroot (1974), Bernardo (1980), Spiegel-
halteer and Smith (1982), Rubin (1984), Ghosh and Mukerjee (1992), Mc-
Culloch and Rossi (1992), Mukhopadhyay and Dasgupta (1997), Berger
et al. (1997, 1999), Oh and DasGupta (1999), Gómez-Villegas et al. (2004b).

3 Notation

We denote the likelihood function by

f (a, c|p1, p2) =
(

n1

a

)(
n2

c

)
pa
1 (1− p1)

n1−a pc
2 (1− p2)

n2−c ,

which is considered as a function of θ = (p1, p2) for the observed value
of (X1, X2) = (a, c), a = 0, 1, · · · , n1, c = 0, 1, · · · , n2. m (a, c|π) denotes
the marginal distribution of (X1, X2) with respect to the prior distribution
π ∈ Γ where

m (a, c|π) = (1− ε) m (a, c|q0) + εm (a, c|q) .

Assuming the existence of the posterior distributions q0 (p1, p2|a, c) and
q (p1, p2|a, c), the posterior distribution of (p1, p2) given (a, c) with respect
to π ∈ Γ is

π (p1, p2|a, c) = λ (a, c) q0 (p1, p2|a, c) + (1− λ (a, c)) q (p1, p2|a, c) ,

where λ (a, c) = (1−ε)m(a,c|q0)
m(a,c|π) .

A classical measure of the evidence against the null hypothesis, which
depends on the observations, is the p-value. If T = T (X1, X2) is an ap-
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propriate statistic to test (2.3), for instance a sufficient statistic, then the
p-value of the sample point (a, c) is

p (a, c) = sup
(p1,p2)∈H0δ

P {|T (X1, X2)| > |T (a, c)| | (p1, p2)} .

In particular, to test (2.1), the p-value takes the form

p (a, c) = P {|T (X1, X2)| > |T (a, c)| | (p0, p0)} .

With this procedure, the decision of accepting or rejecting H0 depends
on the size of the p-value, namely, H0 is rejected when p (a, c) < α, α ∈ (0, 1)
being the significance level of the test.

In section 6 we consider two different test statistics to test (2.1).

4 Lower Bound for the Posterior Probability

In this section we obtain a lower bound for the posterior probability of the
null hypothesis to test (2.1), for a prior distribution π∗ given in expression
(2.2) and π0 computed according to (2.4). Theorem 1 establishes sufficient
conditions in order to achieve the infimum of the posterior probability, for
an arbitrary prior distribution π ∈ Γ.

Consider the hypothesis introduced in (2.1), an arbitrary prior distribu-
tion π ∈ Γ as in (1) and a mixed prior distribution as in (2.2) with assigned
mass to the null hypothesis in (2.3) according to (2.4). Then,

P (H0|a, c) =
[
1 +

1− π0

π0

m (a, c|π)
f (a, c|p0, p0)

]−1

.

To calculate a lower bound of the posterior probability of H0, it is suf-
ficient to compute an upper bound of 1−π0

π0
m (a, c|π), when π ∈ Γ. By the

construction of π∗ (p1, p2), π0 depends on q ∈ Q through π0
q given in ex-

pression (2.5). Then, that lower bound can be calculated as the supremum
in q ∈ Q of

1 − π0

π0
m (a, c|π) =

[
1

(1 − ε) π0
q0 + επ0

q

− 1

]
[(1 − ε) m (a, c|q0) + εm (a, c|q)] . (4.1)
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With π0
q0

and π0
q given in expression (2.5), as the supremum of (4.1)

when q ∈ Q is always less than or equal to the product of

sup
q∈Q

[
1

(1− ε) π0
q0

+ επ0
q

− 1
]

=
1

(1− ε) π0
q0

− 1

and supq∈Q [(1− ε) m (a, c|q0) + εm (a, c|q)], where

m (a, c|q) ∝
∫ 1

0

∫ 1

0
pa
1 (1− p1)

b pc
2 (1− p2)

d q (p1, p2) dp2dp1

≤ sup
(p1,p2) 6=(p0,p0)

pa
1 (1− p1)

b pc
2 (1− p2)

d .

Then

P (H0|a, c) ≥

[
1 +

1− (1− ε) π0
q0

(1− ε) π0
q0

ηε (a, c)

]−1

, (4.2)

where ηε (a, c) = (1− ε) η(a, c) + ε
( a

a+b)
a( b

a+b)
b( c

c+d)
c( d

c+d)
d

pa+c
0 (1−p0)b+d , with

η(a, c) =
m (a, c|q0)

f (a, c|p0, p0)
.

The previous expression furnishes a lower bound for the posterior prob-
ability of the null hypothesis to test (2.1). Therefore, the first question to
propose is, when is it possible to achieve the infimum computed in expres-
sion (4.2) by a distribution of the class Γ given in (1.1). The answer is
given by the following theorem.

Theorem 4.1. Let (p̂1, p̂2) be the maximum likelihood estimator of (p1, p2)
when (p1, p2) ∈ H1.

If (p̂1, p̂2) /∈ B ((p0, p0) , δ) and
∫
B((p̂1,p̂2),ρ) f (a, c|p1, p2)dp2dp1, for fixed

ρ, is approximated by πρ2f (a, c|p̂1, p̂2), then the distribution given by

π̃ (p1, p2) = (1− ε) q0 (p1, p2) + εq̃ (p1, p2) ,
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where q̃ (p1, p2) is uniform in B ((p̂1, p̂2) , ρ), satisfies

infπ∈ΓPπ (H0|a, c) = Pπ̃ (H0|a, c) =

[
1 +

1− (1− ε) π0
q0

(1− ε) π0
q0

ηε (a, c)

]−1

,

(4.3)

where π0
q0

and ηε (a, c) are both as in expressions (2.5) and (4.2), respec-
tively.

Proof. For (4.1), we need to compute π0 and m (a, c|π̃). Given that for π̃,

π0 =
∫

B((p0,p0),δ)
π̃ (p1, p2)dp2dp1

= (1− ε)
∫

B((p0,p0),δ)
q0 (p1, p2)dp2dp1 + ε

∫
B((p0,p0),δ)

q̃ (p1, p2)dp2dp1

= (1− ε) π0
q0

and m (a, c|π̃) = (1− ε) m (a, c|q0) + εm (a, c|q̃), where

m (a, c|q̃) =
∫ 1

0

∫ 1

0
f (a, c|p1, p2) q̃ (p1, p2) dp2dp1

=
1

πρ2

∫
B((p̂1p̂2),ρ)

f (a, c|p1, p2) dp2dp1 ≈f (a, c|p̂1, p̂2)

=
(

n1

a

)(
n2

c

)(
a

a + b

)a( b

a + b

)b( c

c + d

)c( d

c + d

)d

,

then we obtain (4.3).



ε−Contaminated Priors in Contingency Tables 9

It is interesting to note that the real restriction in this theorem is
(p̂1, p̂2) /∈ B ((p0, p0) , δ), since in this situation the approximation of the
integral is always possible by choosing a sufficiently small value of ρ and
with B ((p0, p0) , δ)∩B ((p̂1, p̂2) , ρ) being empty. If (p̂1, p̂2) ∈ B ((p0, p0) , δ),
(4.2) becomes a strict inequality.

5 Examples

A possible initial distribution consists of assigning independent uniform
prior distributions, that is to say,

q0 (p1, p2) = I(0, 1) (p1) I(0, 1) (p2) .

In this situation, the lower bound of the posterior probability of the null
hypothesis to test (2.1) can be obtained evaluating ηε (a, c) in expression
(4.2) as

ηε (a, c) = (1− ε) η (a, c) + ε

(
a

a+b

)a (
b

a+b

)b (
c

c+d

)c (
d

c+d

)d

pa+c
0 (1− p0)

b+d
, (5.1)

where η (a, c) = p−m1
0 (1− p0)

−m2 Γ(a+1)Γ(b+1)
Γ(a+b+2)

Γ(c+1)Γ(d+1)
Γ(c+d+2) .

It can be observed that for n1, n2 and κ fixed, there are at most four
2 × 2 tables in the set Aκ = {(a, c) , η (a, c) = κ}. For instance, when
p0 = 1/2 and a and b swap places as well as c and d. Moreover, g (a, c) =(

a
a+b

)a (
b

a+b

)b (
c

c+d

)c (
d

c+d

)d
is a constant function on Aκ, and for p0

fixed, the function pa+c
0 (1− p0)

b+d takes at most two different values on
Aκ. In this situation

P (H0|κ) ≥

[
1 +

1− (1− ε) π0
q0

(1− ε) π0
q0

ηε (κ)

]−1

, (5.2)

where ηε (κ) = (1− ε) κ + ε g(κ)

minAκpa+c
0 (1−p0)b+d .

A more general assignment consists of using independent beta prior
distributions, that is to say,
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q0 (p1, p2) =
Γ (α + β)
Γ (α) Γ (β)

Γ (γ + δ)
Γ (γ) Γ (δ)

pα−1
1 (1− p1)

β−1 pγ−1
2 (1− p2)

δ−1 ,

p1, p2 ∈ (0, 1) , (α, β, γ, δ > 0) .

Then, the lower bound of the posterior probability of the null hypothesis
to test (2.1) is obtained evaluating η (a, c) in expression (5.1) as

η (a, c) = p−m1
0 (1 − p0)

−m2 Γ (α + β)

Γ (α) Γ (β)

Γ (γ + δ)

Γ (γ) Γ (δ)

Γ (a + α) Γ (b + β)

Γ (a + b + α + β)

Γ (c + γ) Γ (d + δ)

Γ (c + d + γ + δ)
.

6 Comparison with the Classical Method

In parametric testing of a simple null hypothesis, it is known that Bayesian
and classical procedures can give rise to different decisions, see Lindley
(1957), Berger and Sellke (1987) and Berger and Delampady (1987), among
others. In most of the Bayesian approaches the infimum of the posterior
probability of the null hypothesis or the Bayes factor, over a wide class of
prior distributions, is considered and then it is obtained that the infimum
is substantially larger than the corresponding p-value. It is necessary to
point out that in all these situations the assigned mass to the simple null
hypothesis is 1

2 . On the other hand, Casella and Berger (1987) show that
there is no discrepancy in the one-sided testing problem.

In most of the existing contributions a class of prior distributions is used.
Gómez-Villegas et al. (2004a) use the class of the unimodal and symmetric
distributions to show that the p-values and the posterior probabilities can
be close for the multivariate point null testing problem. Our objective
is verify that, to test (2.1), there is no discrepancy between the classical
and Bayesian approaches when the prior is in the class of ε−contaminated
distributions.

It can be observed that the lower bound of the posterior probability
given in expression (5.2) depends on the statistic η (a, c) given in expression
(5.1), which can be used as the test statistic to get a critical region and
calculate the p-value, p (a, c), for the observed point (a, c) of the sample
space.
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Table 2: lower bounds of the posterior probability of H0 : p1 = p2 = 1
2 , for

tables (a, c) with P {η ≥ κ0| (p0, p0)} close to 0.1, 0.05 and 0.01, q0 (p1, p2) =
I(0, 1) (p1) I(0, 1) (p2) and ε = 0.2.

P {η ≥ κ0| (p0, p0)} 0.1063 0.0905 0.0533 0.0442 0.0118 0.0097
π0

q0
= 0.5 0.1677 0.1594 0.1013 0.0825 0.0222 0.0182

π0
q0

= 0.35 0.1052 0.0996 0.0617 0.0499 0.0131 0.0107
π0

q0
= 0.34 0.1014 0.0961 0.0594 0.048 0.0126 0.0103

π0
q0

= 0.33 0.0978 0.0926 0.0572 0.0462 0.0121 0.0099
π0

q0
= 0.32 0.0942 0.0891 0.0549 0.0444 0.0116 0.0095

π0
q0

= 0.31 0.0906 0.0858 0.0528 0.0426 0.0111 0.0091
π0

q0
= 0.3 0.0871 0.0824 0.0507 0.0408 0.0106 0.0087
κ0 1.025 1.064 1.794 2.07 7.68 8.28

If the point (a0, c0) is observed and η (a0, c0) = κ0, then the probabil-
ity that we would get a new value of η as big as or larger than κ0 can
be computed, when the experiment is repeated independently, once again
randomly sampling n1 subjects from population 1 and n2 subjects from
population 2.

Therefore, {η ≥ κ0} is a possible critical region, and

p (a0, c0) = P {η ≥ κ0| (p0, p0)} =
∑

η(a,c)≥κ0

f (a, c|p0, p0)

=
∑

η(a,c)≥κ0

(
n1

a

)(
n2

c

)
pa+c
0 (1− p0)

b+d = p (κ0) (6.1)

is the p-value.

However, the usual Pearson’s χ2 classical method uses the random vari-
able

Λ =
a2

n1p0
+

b2

n1 (1− p0)
+

c2

n2p0
+

d2

n2 (1− p0)
−N

as the test statistic.
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In this situation, when the value of Λ at an observed point (a0, c0) is
Λ (a0, c0) = λ0, then the used evidence is the p-value

p (a0, c0) = P {Λ ≥ λ0| (p0, p0)} = P
(
χ2

2 ≥ λ0

)
= e−

λ0
2 . (6.2)

Table 3: lower bounds of the posterior probability of H0 : p1 = p2 = 1
2 , for

tables (a, c) with P {η ≥ κ0| (p0, p0)} close to 0.1, 0.05 and 0.01, q0 (p1, p2) =
I(0, 1) (p1) I(0, 1) (p2) and ε = 0.

P {η ≥ κ0| (p0, p0)} 0.1063 0.0905 0.0533 0.0442 0.0118 0.0097
π0

q0
= 0.5 0.4938 0.4844 0.358 0.3257 0.1151 0.1077

π0
q0

= 0.2 0.1961 0.1902 0.1223 0.1077 0.0315 0.0293
π0

q0
= 0.12 0.1174 0.1135 0.0706 0.0618 0.0174 0.0162

π0
q0

= 0.11 0.107 0.104 0.0644 0.0563 0.0158 0.147
π0

q0
= 0.1 0.0978 0.094 0.0583 0.0509 0.0142 0.1324

π0
q0

= 0.09 0.0879 0.085 0.0522 0.0456 0.0127 0.0118
π0

q0
= 0.08 0.0782 0.075 0.0462 0.0403 0.0111 0.0104

π0
q0

= 0.07 0.0684 0.066 0.0403 0.0351 0.0096 0.009
κ0 1.025 1.064 1.794 2.07 7.68 8.28

Our objective is to obtain an appropriate value of δ such that the values
of the lower bound of the posterior probability given in expression (5.2) are
close to the corresponding p-values.

Table 2 shows the values of the lower bound of the posterior probabil-
ity of H0 to test (2.1) given in expression (5.2), for some specific values
of η and some π0

q0
, when p0 = 1

2 and the initial opinion q0 (p1, p2) =
I(0,1) (p1) I(0,1) (p2) is contaminated with ε = 0.2.

We can observe that if we take an appropriate value of π0
q0

= π0
1−ε =

πδ2 (see Proof of Theorem 1), the values of the lower bounds are close to
the respective p-values given in expression (6.1). For example, if we take
π0

q0
∈ (0.3, 0.35), then for δ ∈ (0.31, 0.33) the lower bounds of the posterior

probability are approximately equal to the p-values. Also, we can observe
that when π0

q0
= 1

2 there is more discrepancy between both measures.

The same study for ε = 0 is shown in Table 3. In this case, we can
observe that if we take π0

q0
∈ (0.09, 0.11), then for δ ∈ (0.17, 0.19) the lower
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bounds of the posterior probability of H0 are approximately equal to the
p-values.

Table 4: lower bounds of the posterior probability of H0 : p1 = p2 = 1
2 , for

tables (a, c) with P {Λ ≥ λ0| (p0, p0)} close to 0.1, 0.05 and 0.01, q0 (p1, p2) =
I(0, 1) (p1) I(0, 1) (p2) and ε = 0.

P {Λ ≥ λ0| (p0, p0)} 0.143 0.0868 0.052 0.0445 0.0138 0.0094
π0

q0
= 0.5 0.6095 0.4938 0.358 0.3257 0.1077 0.085

π0
q0

= 0.2 0.2807 0.1961 0.1223 0.1077 0.2931 0.0227
π0

q0
= 0.12 0.1755 0.1174 0.0706 0.0618 0.0162 0.0125

π0
q0

= 0.11 0.1617 0.107 0.0644 0.0563 0.0147 0.0113
π0

q0
= 0.1 0.1478 0.0978 0.0583 0.0509 0.0132 0.0102

π0
q0

= 0.09 0.1337 0.0879 0.0522 0.0456 0.0118 0.0091
π0

q0
= 0.08 0.1195 0.0782 0.0462 0.0403 0.0104 0.008

π0
q0

= 0.07 0.1051 0.0684 0.0403 0.0351 0.009 0.0069
λ0 3.89 4.89 5.89 6.22 8.56 9.33

Table 4 shows the values of the lower bounds of the posterior probability
of H0 to test (2.1) given in expression (5.2), when p0 = 1

2 , q0 (p1, p2) =
I(0,1) (p1) I(0,1) (p2) and ε = 0, for some π0

q0
and tables (a, c) such that the

p-value P {Λ ≥ λ0| (p0, p0)} given in expression (6.2) is close to the usual
values 0.1,0.05 and 0.01.

We can observe that if we take π0
q0
∈ (0.09, 0.11), then for δ ∈ (0.17, 0.19)

the lower bounds of the posterior probability of H0 are approximately equal
to the p-values.

We can remark that the interval of values of π0
q0

that stabilizes the lower
bound of the posterior probability of H0 : p1 = p2 = 1

2 around the p-value
of the classical method is the same for both statistics, η and Λ. This shows
that the discrepancy between the respective p-values to both statistics is
not very large.

Note that, in general, H0 : p1 = p2 = p0 in (1.1) is no natural null
hypothesis. By this reason we consider first a value of p0 and after take an
sphere of radius δ about this value. Moreover, in general, when we wish
to test (1.1), the value of p0 is unknown. In spite of this, (1.1) has an
additional clear theoretical interest because it can be used as an auxiliary
test to develop a Bayesian procedure, with the proposed methodology, when
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p0 is unknown or with known functional form. This possibility is studied in
section 8. The results of previous sections are generalized for r × s tables
in next section.

7 r×s Tables

Suppose that independent random samples are drawn from r sufficiently
large populations, and their each member belongs to one and only one of
the s exclusionary classes C1, · · · , Cs. The sample number i, i = 1, · · · , r,
is of size ni and yields nij individuals in the category Cj , j = 1, · · · , s. The
data are displayed in Table 5.

Table 5: data in the r × s table

Class 1 Class 2 . . . Class s Total
Sample 1 n11 n12 . . . n1s n1

Sample 2 n21 n22 . . . n2s n2
...

...
...

...
...

...
Sample r nr1 nr2 . . . nrs nr

Total m1 m2 . . . ms N

Let Xi, i = 1, · · · , r, be independent multinomial random variables,
MB (ni, pi), with pi = (pi1, · · · , pis) ∈ Θ, where

Θ =
{
p = (p1, · · · , ps) ∈ (0, 1)s ,

∑s

i=1
pj = 1

}
⊂ Rs−1.

In this situation, we are going to suppose that we wish to test

H0 : p1 = · · · = pr = p0 versus H1 : ∃i, pi 6= p0, (7.1)

where p0 = (p01, · · · , p0s) ∈ Θ is a known value.

Consider that our prior opinion about the parameter of interest θ =
(p1, · · · ,pr) ∈ Θr is given by means of the density π(θ) = π (p1, · · · ,pr) ∈
Γ, where Γ is the class of ε−contaminated distributions given in expression
(1.1). Therefore, a mixed prior distribution is needed to test (7.1).
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We propose

π∗ (p1, · · · ,pr) = π0IH0 (p1, · · · ,pr) + (1 − π0) π (p1, · · · ,pr) IH1 (p1, · · · ,pr) ,

π0 being the prior probability assigned to the null hypothesis.

Following, if we denote by θ0 = (p0, · · · ,p0) ∈ Θr ⊂ Rr(s−1), then
H0 : θ = θ0 is the null hypothesis in (7.1).

Now, we can consider that it is more realistic to test

H0δ : d (θ0, θ) ≤ δ versus H1δ : d (θ0, θ) > δ,

with an appropriate metric d and a value of δ > 0 sufficiently small. We
propose to use B (θ0, δ) =

{
θ ∈ Θr,

∑r
i=1

∑s−1
j=1 (pij − p0j)

2 ≤ δ2
}

.

Then, applying the method of Gómez-Villegas et al. (2004a), we can
use π (θ), our opinion about θ, to calculate π0 by means of averaging π0 =∫
B(θ0,δ) π (θ) dθ. With this choice, if ε = 0 and independent uniform prior

distributions on Θ are assigned to each pi, i = 1, · · · , r, then

π0 =
π

r(s−1)
2 δr(s−1)

Γ
(

r(s−1)
2 + 1

) ,

the volume of the sphere of radius δ in Rr(s−1), for δ sufficiently small.

In this context, the posterior probability of the null hypothesis in (2.1),
when data of Table 5 has been observed, is

P (H0|n11, . . . , nrs) =

1 +
1− π0

π0

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij π (θ) dθ∏s
j=1 p

∑r
i=1 nij

0j

−1

,

where π0 = (1− ε) π0
q0

+ επ0
q , with

π0
q0

=
∫

B(θ0,δ)
q0 (θ)dθ, π0

q =
∫

B(θ0,δ)
q (θ)dθ.

From a classical viewpoint and considering Pearson’s χ2 test statistic,
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Λ =
r∑

i=1

s∑
j=1

n2
ij

nip0j
−N,

if we denote by means of λ0 the value of Λ at an observed point of Table
5, then {Λ ≥ λ0} is a possible critical region and the p-value is

p (n11, . . . , nrs) = P (Λ ≥ λ0|θ0) = P
(
χ2

r(s−1) ≥ λ0

)
With this considerations, it is possible to extend easily the previously

obtained results using a similar reasoning to the developed in section 4 for
r × s tables.

8 Generalizations

The most typical situation in homogeneity testing problem is when p0 is
unknown. In this case, we only want to test if r populations have the same
distribution which can be any one.

As usual, we can consider, as classical measure of the evidence, the
discrepancy between the observed and expected values under the homo-
geneity null hypothesis, in the terms of Pearson’s χ2 statistic. Then, the
test statistic is the random variable

Λ = N

(∑r

i=1

∑s

j=1

n2
ij

nimj
− 1

)
.

If λ0 denotes the value of Λ evaluated in the observed data point of Table
5, then {Λ ≥ λ0} is a possible critical region and the corresponding p-value
is

p = P
(
χ2

(r−1)(s−1) ≥ λ0

)
.

It is possible to generalize the previous results using an appropriate
mixed prior distribution. One option is

π∗ (θ) = π0π (p0) IH0 (θ) + (1− π0) π (θ) IH1 (θ) ,
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where π0 is the mass assigned to H0 : p1 = · · · = pr, p0 is the unknown
vector of common proportions under the null, π (θ) is our initial opinion
in the class of ε−contaminated prior distributions, Γ, given in expression
(1.1) and

π0 =
∫

C(δ)
π (θ)dθ,

with C(δ) =
⋃

p0∈Θ B (θ0, δ) and θ0 = (p0, . . . ,p0) ∈ Θr. With this choice,
if ε = 0 and independent uniform prior distributions on Θ are assigned to
each pi, i = 1, · · · , r, we can remark that π0 = 2

√
2δ + 2δ2 − 4

√
2δ3, for

sufficiently small δ and 2× 2 tables.

Therefore, the posterior probability of the null hypothesis, when the
data of Table 5 has been observed, is

P (H0|n11, . . . , nrs) =

1 +
1− π0

π0

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij π (θ) dθ∫
Θ

∏s
j=1 p

∑r
i=1 nij

0j π(p0)dp0

−1

.

In this case, a lower bound of the posterior probability of the homo-
geneity null hypothesis can be calculated by means of the same reasoning
developed in section 4. For instance,

P (H0|n11, . . . , nrs) ≥

[
1 +

1− (1− ε) π0
q0

(1− ε) π0
q0

ηε (n11, . . . , nrs)

]−1

,

where

ηε (n11, . . . , nrs) = (1− ε) η(n11, . . . , nrs) + ε

∏r
i=1

∏s
j=1

(
nij

ni

)nij

∫
Θ

∏s
j=1 p

∑r
i=1 nij

0j π(p0)dp0

,

with

η(n11, . . . , nrs) =

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij π (θ) dθ∫
Θ

∏s
j=1 p

∑r
i=1 nij

0j π(p0)dp0

.
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Then the following Theorem can be formulated

Theorem 8.1. Let θ̂ be the maximum likelihood estimator of θ when θ ∈
H1.

If θ̂ /∈ C (δ) and, for fixed ρ,
∫
B(θ̂, ρ) f (n11, . . . , nrs|θ)dθ is approxi-

mated by means of
[
π

r(s−1)
2 ρr(s−1)/Γ

(
r(s−1)

2 + 1
)]

f
(
n11, . . . , nrs|θ̂

)
, then

the distribution given by π̃ (θ) = (1− ε) q0 (θ) + εq̃ (θ), where q̃ (θ) is uni-
form in B

(
θ̂, ρ

)
, satisfies

infπ∈ΓPπ (H0|n11, . . . , nrs) = Pπ̃ (H0|n11, . . . , nrs)

=

[
1 +

1− (1− ε) π0
q0

(1− ε) π0
q0

ηε (n11, . . . , nrs)

]−1

.

Note that the only modification respect to Theorem 4.1 is the use of
the set C(δ), the union of all the spheres centered in points of the null
hypothesis and radius δ.

Another important problem is when p0 = p (ω) (Lindley, 1988), with
p: Ω → Θ, being

Ω = {ω = (ω1, · · · , ωq) , p (ω) = (p1 (ω) , · · · , ps (ω)) ∈ Θ} ⊂ Rq

and q < s fixed.

As usual, from a classical viewpoint we can use Pearson’s χ2 statistic
as test statistic,

Λ =
r∑

i=1

s∑
j=1

n2
ij

nipj (ω̂)
−N,

where ω̂ is the maximum likelihood estimator of ω. If λ0 is the value of Λ
in the data point of Table 5, then {Λ ≥ λ0} is a possible critical region and
the used evidence is the p-value,

p = P
(
χ2

rs−1−q ≥ λ0

)
.
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In this context, for comparisons between classical and Bayesian evidence
measures, we propose to use the following appropriate prior distribution

π∗ (θ) = π0π (ω) IH0 (θ) + (1− π0) π (θ) IH1 (θ) ,

where π0 is the prior probability assigned to H0 : p1 = · · · = pr = p (ω),
π (θ) is our initial opinion in the class of ε−contaminated prior distribu-
tions, Γ, given in expression (1.1) and

π0 =
∫

C(δ)
π (θ)dθ,

with C(δ) =
⋃

ω∈Ω B (θ0, δ) and θ0 = (p (ω) , . . . ,p (ω)) ∈ Θr.

In this case, the posterior probability of the null hypothesis, when the
data of Table 5 has been observed, is

P (H0|n11, . . . , nrs) =

[
1 +

1− π0

π0

∫
Θr

∏r
i=1

∏s
j=1 p

nij

ij π (θ) dθ∫
Ω

∏s
j=1 pj(ω)

∑r
i=1 nijπ(ω)dω

]−1

.

Finally, we can note that the extension of the previous results to this
situation is easy using a similar methodology.

9 Comments

The obtained results are the consequence of the methodology based on
the relation between the null punctual hypothesis in (2.1) and the more
realistic hypothesis given in (2.3). In terms of the Kullback-Leibler infor-
mation measure, the discrepancy between π (p1, p2) ∈ Γ, Γ being the class of
ε−contaminated distributions given in expression (1.1), and the the mixed
prior distribution π∗ (p1, p2) in (2.2) justifies the choice of π0 as in (2.4) with
an appropriate value of δ. According to this procedure, π∗ (p1, p2), used to
test (2.1), is close to the continuous prior π (p1, p2), used to test (2.3), as
can be seen in Gómez-Villegas and Sanz (2000) and Gómez-Villegas et al.
(2002).

When π (p1, p2) is in the class of ε−contaminated distributions, the
lower bound of the posterior probability of the point null hypothesis to test
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(2.1) can be close to the p-value, as seen in section 6. Gómez-Villegas and
Sanz (2000) obtain similar results in a different context.

The results that we have obtained indicate that, to test (2.1), the ob-
served discrepancy between the classical and Bayesian approaches using
π0 = 1

2 in the mixed distribution is bigger.

Finally, the methodology proposed can be used to approach the problem
of testing the homogeneity of independent multinomial distributions and
compare classical and Bayesian evidence measures, with r× s tables, when
p0 is known, unknown or with its functional form known, p0 = p0 (ω).

Acknowlegments

The authors are grateful to two referees, the associate editor and the
editors for their remarks and criticisms that have led to improve the article.

References

Berger, J. O. (1985). Statiscal Decision Theory and Bayesian Analysis.
Springer, New York.

Berger, J. O. (1994). An overview over robust bayesian analysis (with
discussion). Test , 3(1):5–124.

Berger, J. O. and Berliner, L. M. (1986). Robust bayes and em-
pirical bayes analysis with ε−contaminated priors. Communications in
Statistics, Theory and Methods, 13:395–400.

Berger, J. O., Boukai, B., and Wang, Y. (1997). Unified frequen-
tist and bayesian testing of a precise hypothesis. Statistical Science,
12(3):133–160.

Berger, J. O., Boukai, B., and Wang, Y. (1999). Simultaneous
bayesian-frequentist sequential testing of nested hypothesis. Biometrika,
86:79–92.

Berger, J. O. and Delampady, M. (1987). Testing precise hyphotheses,
(with discussion). Statistical Science, 2(3):317–352.

Berger, J. O. and Sellke, T. (1987). Testing a point null hyphotesis:
The irreconciliability of p-values and evidence, (with discussion). Journal
of the American Statistical Association, 82:112–139.



ε−Contaminated Priors in Contingency Tables 21

Bernardo, J. M. (1980). A bayesian analysis of classical hypothesis test-
ing. in: Bernardo, j.m., degroot, m.h., lindley, d.v., smith, a.f.m., (eds.).
Bayesian Statistics, University Press, Valencia, pp. 605–647. (with dis-
cussion).

Casella, G. and Berger, R. L. (1987). Reconciling bayesian and fre-
quentist evidence in the one-sided testing problem, (with discussion.
Journal of the American Statististical Association, 82. 106-135.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman
& Hall, London.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American
Statistical Association, 68:966–969.

Dickey, J. M. and Lienz, B. P. (1970). The weighted likelihood ratio,
sharp hypothesis about chances, the order of a markov chain. Annals of
the Mathematical Statistics, 41:214–226.

Edwards, W. L., Lindman, H., and J., S. L. (1963). Bayesian statistical
inference for psychologycal research. 70:193–248.

Ghosh, J. K. and Mukerjee, R. (1992). Non-informative priors. in:
Bernardo, j.m., berger, j.o., dawid, a.p., smith, a.f.m. (eds). Bayesian
Statistics, University Press, Oxford , 4:195–210. (with discussion).

Gómez-Villegas, M. A. and Gómez, E. (1992). Bayes factor in testing
precise hyphoteses. Communications in Statistics, Theory and Methods,
21:1707–1715.
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