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Abstract

In this work, we evaluate the sensitivity of Gaussian Bayesian networks to pertur-
bations or uncertainties in the regression coe¢ cients of the network arcs and the
conditional distributions of the variables. The Kullback-Leibler divergence measure
is used to compare the original network to its perturbation. By setting the regres-
sion coe¢ cients to zero or non-zero values, the proposed method can remove or add
arcs, making it possible to compare di¤erent network structures. The methodology
is implemented with some case studies.

Key words: Gaussian Bayesian networks, Conditional representation, Sensitivity
analysis, Kullback-Leibler divergence measure.

Introduction

A Bayesian network (BN) is a probabilistic model of causal interactions be-
tween a set of variables, where the joint probability distribution is described in
graphical terms. Probabilistic networks have become an increasingly popular
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paradigm for reasoning through uncertain, complex models in a variety of sit-
uations, including AI, medical diagnosis and data mining (Kjærul¤, Madsen
and Anders 2008).

This model consists of two parts: one qualitative and the other quantitative.
Its qualitative aspect is a directed, acyclic graph (DAG), with nodes and arcs
that represent a set of variables and their relationships respectively. Based
on the dependence structure depicted in the graph, the joint distribution of
the variables can be factorized in terms of the univariate conditional distri-
butions of each variable given its parents. These distributions constitute the
quantitative portion of the model.

Building a BN is a di¢ cult task, because all of the individual distributions and
relationships between variables need to be correctly speci�ed. Expert knowl-
edge is essential to �x the dependence structure among variables of the network
and to determine a large set of parameters. Databases can aid the process, but
provide incomplete data and only partial knowledge of the domain. Thus, any
assessments obtained using only databases are inevitably inaccurate (van der
Gaag, Renooij and Coupé 2007).

The present research is restricted to a subclass of BNs known as Gaussian
Bayesian networks (GBNs). The quantitative portion of a GBN consists of a
univariate normal distribution for each variable given its parents in the DAG.
Also, the joint probability distribution of the model is constrained to be a
multivariate normal distribution.

For each variable Xi, the experts have to provide its mean, the regression
coe¢ cients between Xi and each parent Xj 2 Pa(Xi) � fX1; : : : ; Xi�1g, and
the conditional variance of Xi given its parents in the DAG. This speci�cation
is easy for experts, because they only have to describe univariate distributions.
Moreover, the arcs in the DAG can be expressed in terms of the regression
coe¢ cients.

Our interest in this paper is the sensitivity of GBNs de�ned by these parame-
ters. This subject has not been frequently treated in the literature, because
sensitivity analyses usually perturb the the joint parameters instead of the
conditional parameters. However, it is easy to model the presence or absence
of arcs by adopting regression coe¢ cients di¤erent from or equal to zero. Thus,
it is also possible to study the e¤ect of changes in the qualitative part of the
network. An objective evaluation of this e¤ect may also reveal that a simpler
DAG structure yields equivalent results.

In Section 1 we de�ne GBNs, present some general concepts, and introduce
a working example. In Section 2 we describe the methodology used to study
the sensitivity of the GBN and calculate the sensitivity of our example. In
Section 3 we vary the network structure and present a metrology example: the
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calibration of an electronic level using a sine table. The paper ends with some
conclusions and suggestions for further research.

1 General Concepts

Throughout this work, random variables will be denoted by capital letters.
Moreover, in the multidimensional case, boldface characters will be used.

A BN is de�ned by a pair (G;P), where G is the DAG with nodes representing
variables and arcs showing the dependence structure. P is a set of conditional
probability distributions P , each representing the distribution of one random
variable Xi given all of its parents in the DAG. That is, P � P (Xi j pa(Xi))
8 Xi, where Pa(Xi) � fX1; : : : ; Xi�1g. When Xi has no incoming arcs (no
parents), P (Xi j pa(Xi)) stands for the marginal P (Xi).

The joint probability distribution of a BN can be de�ned in terms of the
elements of P, as the product of the conditional and marginal probability
distributions:

P (X) =
nY
i=1

P (Xi j pa(Xi)): (1)

BNs have been studied by authors such as Pearl (1988), Lauritzen (1996) and
Jensen and (2007) among others.

It is common to consider BNs with discrete variables. Nevertheless, it is pos-
sible to work with some continuous distributions. For example, a GBN is a
BN where all the variables of the model are Gaussian. Speci�cally, in a GBN
the joint probability density of X = fX1; : : : ; Xng is a multivariate normal
distribution N(�;�), where

f(x) = (2�)�n=2j�j�1=2 exp
�
�1
2
(x� �)0��1(x� �)

�
: (2)

Here � is the n-dimensional mean vector and � the n � n positive de�nite
covariance matrix.

Alternatively, the joint density can be factorized using the conditional proba-
bility densities for every Xi (i = 1; ::; n) given its parents. These are univariate
normal distributions, and can be obtained from the joint density as

f(xi j pa(xi)) � N(xi j �i +
i�1X
j=1

�ij(xj � �j);vi)
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where �i is the mean ofXi, �ji are the regression coe¢ cients ofXi with respect
to Xj 2 Pa(Xi), and vi is the conditional variance of Xi given its parents.
Note that �ji = 0 if and only if there is no link from Xj to Xi.

From the conditional speci�cation it is also possible to get the parameters of
the joint distribution. The means �i are the elements of the n-dimensional
mean vector �, and the covariance matrix � can be obtained with fvig andn
�ji
o
as follows. Let D be a diagonal matrix with the conditional variances

vT = (v1; : : : ; vn), D = diag(v). Let B be a strictly upper triangular matrix
with the regression coe¢ cients �ji as columns. Then the covariance matrix �
can be computed as

� = [(I�B)�1]TD(I�B)�1 (3)

For details, see Shachter and Kenley (1989).

As we remarked in Section 1, the conditional parameters, fvig and
n
�ji
o
may

be easier to specify by experts than � and�. However, the two representations
are completely equivalent when de�ning a GBN.

Now we introduce a working example of a GBN.

Example 1 Our sample problem concerns the amount of time that a machine
will work before failing. The machine is made up of 7 elements, each with its
own random time to failure Xi (i = 1; :::; 7). The elements are connected as
shown in Figure 1; the regression coe¢ cients between variables are written
next to the arcs.
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Figure 1 DAG of the GBN in Example 1
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The time that each element continues working is given by a normal distribu-
tion. The joint probability distribution of X = fX1; X2; :::; X7g is a multivari-
ate normal distribution.

Experts with the machine give the following parameters:

� =

0BBBBBBBBBBBBBBBBBBB@

1

3

2

1

4

5

8

1CCCCCCCCCCCCCCCCCCCA

; B =

0BBBBBBBBBBBBBBBBBBB@

0 0 0 1 0 0 0

0 0 0 2 2 0 0

0 0 0 0 1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 2 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCA
and

D =

0BBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 2

1CCCCCCCCCCCCCCCCCCCA
whereB is the strictly upper triangular (j < i) matrix of regression coe¢ cients
�ji given in the DAG, and D is the diagonal matrix of conditional variances
vT = (v1; : : : ; vn), D = diag(v).

Computing the joint parameters with (3) yields the equationX � N(x j �;�),
where

� =

0BBBBBBBBBBBBBBBBBBB@

1

3

2

1

4

5

8

1CCCCCCCCCCCCCCCCCCCA

� =

0BBBBBBBBBBBBBBBBBBB@

1 0 0 1 0 2 2

0 1 0 2 2 8 8

0 0 2 0 2 4 4

1 2 0 6 4 20 20

0 2 2 4 10 28 28

2 8 4 20 28 97 97

2 8 4 20 28 97 99

1CCCCCCCCCCCCCCCCCCCA
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We now have both representations of the GBN to work with.

2 Sensitivity in GBN

To build a BN is a di¢ cult task, and expert knowledge is necessary to de�ne
the model. Furthermore, as discussed in the Introduction, even the parameters
o¤ered by experts may be inaccurate.

Sensitivity analysis is a general technique for evaluating the e¤ects of inaccu-
racies in model parameters on the conclusions.

In a BN, the desired output is the marginal distribution of an interesting
variable. This function is computed from the quantitative parameters that
specify the BN. The result will be sensitive to inaccuracy in any parameter,
but not all parameters require the same level of accuracy. Typically, some
variables have more impact on the network�s output than others (van der
Gaag, Renooij and Coupé, 2007).

The model�s sensitivity can be measured by varying one parameter while keep-
ing the others �xed. This method is known as one-way sensitivity analysis. The
output can also be studied while simultaneously changing a set of parameters,
known as n-way sensitivity analysis (van der Gaag, Renooij and Coupé 2007).

In recent years, a few authors have published sensitivity analyses of BNs
(Laskey, 1995; Coupé, van der Gaag and Habbema, 2000; Kjærul¤ and van
der Gaag, 2000; Bednarsky, Cholewa and Frid, 2004; Chan and Darwiche,
2005). All of these works, while useful, deal exclusively with discrete BNs.

The sensitivity of GBNs has been studied only by Castillo and Kjaerul¤ (2003)
and Gómez-Villegas, Main and Susi (2007, 2008). Castillo and Kjaerul¤ pro-
posed a one-way sensitivity analysis (based on Laskey, 1995) investigating the
impact of small changes in the network parameters.

Our �rst paper on this topic (Gómez-Villegas, Main and Susi 2007) is also a
one-way sensitivity analysis. It di¤ers from that of Castillo and Kjærul¤(2003)
in that we evaluated a global sensitivity measure rather than local aspects of
the variable distributions such as location and dispersion. Speci�cally, our
method was based on computing a divergence measure similar in spirit to
that Chan and Darwiche (2005) but di¤erent in detail due to the variables
considered. In our 2008 paper we extended this work to an n-way sensitivity
analysis, studying the joint e¤ect of a set of uncertain parameters on the
network�s output.

In the present paper, we shall undertake a model sensitivity analysis using
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the conditional speci�cation of the network. Until now, all sensitivity analyses
proposed for GBNs have studied variations in the elements of � and �. This
research studies variations in a D and B, that is, the arcs in the network and
their regression coe¢ cients.

Arcs can be eliminated or included by appropriate perturbations of the coe¢ -
cients in B. In Section 3, we shall study cases where one arc is removed from
or added to the model. With the proposed n-way analysis, it will be possible
to determine the sensitivity of each node to changes in the structure of the
network.

To evaluate the di¤erence between the original GBN and a perturbed net-
works, we compute the Kullback-Leibler (KL) divergence measure. In the next
subsection, we present and justify our use of the KL divergence. In the follow-
ing sections, we shall describe our methodology and the results of the n-way
sensitivity analysis on our example GBN.

2.1 The Kullback-Leibler divergence

The KL divergence is an non-symmetric measure that evaluates the amount
of information available to discriminate between two probability distributions.
It is used because we wish to compare the global behaviors of two probability
distributions (for more details, see Kullback and Leibler, 1951).

The KL divergence between the original probability density f(w) and the
perturbed density f 0(w), de�ned over the same domain, is given by

KL(f 0(w) j f(w)) =
Z 1

�1
f(w) ln

f(w)

f 0(w)
dw : (4)

For multivariate normal distributions, it is evaluated as follows:

KL(f; f 0) =
1

2

"
ln
j�0j
j�j + tr

�
��0�1

�
� dim(X)

#
+
1

2

h
(�0 � �)T �0�1 (�0 � �)

i
;

where f is the joint probability density of X � N(�;�), and f 0 is the joint
probability density of X0 � N(�0;�0).
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2.2 Methodology and results

As mentioned above, sensitivity analysis compares the original model to a
perturbed model.

The original model consists of parameters based on expert knowledge: the
mean vector � and the matrices B and D.

The perturbed model represents uncertainties in the parameters using a vector
� and the matrices �B and �D. Their elements are additive perturbations
on the corresponding elements of �, B and D respectively. Thus, �B is an
upper triangular matrix and �D is a diagonal matrix.

In the sensitivity analysis, we shall consider three di¤erent perturbed models:
one using �, one using �B, and the last using �D. A separate KL divergence
will be calculated for each model.

Let (G;P) be a GBN with parameters �, B and D, where � is the vector
variables means and B, D are matrices of the regression coe¢ cients and con-
ditional variances respectively. The joint distribution is X � N (�;�).

For a set of variations in the parameters �, B or D, the following result holds:

(1) When a perturbation � is added to the mean vector, we compare the
original model N (�;�) with the perturbed model N

�
��;�

�
, where

�� � �+ �. The KL divergence is

KL�(f� j f) = 1

2

h
�T��1�

i
: (5)

(2) When the perturbation �B is added to B, we compare the original
model N (�;�) with the perturbed model N

�
�;��B

�
, where ��B �

[(I�B��B)
�1]

T
D(I�B��B)

�1. The KL divergence is

KLB(fB j f) = 1

2

h
trace

�
��BD

�1�T
B

�i
: (6)

(3) When the perturbation �D is added to D, we compare the original
model N (�;�) with the perturbed model N

�
�;��D

�
, where ��D �

[(I�B)�1]T (D+�D) (I�B)�1. The KL divergence is

KLD(fD j f) = 1

2

"
ln
jD+�Dj
jDj + trace((D+�D)

�1D)� n
#
: (7)
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Equation (7) can be expressed in terms of the conditional variances vi as

KLD(fD j f) = �1
2

"
nX
i=1

 
ln

 
1� �i

vi + �i

!
+

�i
vi + �i

!#
;

where �i is an individual perturbation to the conditional variances of Xi.

Now we shall manipulate Equation (6) to arrive at a more useful expression.
The following identities can be proven through standard linear algebra tech-
niques:

(�)�1 = ��1 ���1
h
(I�B)�1

iT
�T
B ��B(I�B)�1��1 +�BD

�1�T
B

and

�
�
��B

��1
= In �

h
(I�B)�1

iT
�T
B ���B(I�B)�1��1 +��BD

�1�T
B :

Operating with the traces, it follows that

1

2

�
trace

�
�
�
��B

��1�
� n

�
=
1

2

h
trace

�
��BD

�1�T
B

�i
.

If there exist some inaccuracies in the conditional parameters describing a
GBN, a sensitivity analysis can be undertaken using these expressions. By
calculating the KL divergences for a range of perturbations, one can determine
which parameters are most crucial to describing the network accurately. If the
KL divergence is close to zero, for example, it is possible to conclude that the
network is not sensitive to the proposed variation.

Our methodology evaluates the e¤ects of simultaneous perturbations in a set
of parameters. This tool opens up new lines of research, making it possible
to trace the evolution of perturbations through di¤erent levels of the graph,
or infer the behavior of an unknown variable from the values of evidential
variables.

The next examples illustrate the procedure described in this section. We in-
troduce two cases with di¤erent assumptions about the uncertain parameters.

Example 2 Working with the GBN given in Example 1, let us say that experts
disagree on the values of certain parameters: the mean of X6 could be either 4
or 5, and the mean of X7 could be either 7 or 8. Opinions also di¤er regarding
the regression coe¢ cients between X4 and its parent X2, and between X5 and
its parent X2. Finally, the conditional variances of X2, X4 and X5 might be
di¤erent from those intially given. The perturbations �; �D and �B are set
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to

� =

0BBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

�1

�1

1CCCCCCCCCCCCCCCCCCCA

�B =

0BBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 0 0 �1 �1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCA

�D =

0BBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCA
The perturbations are added to � , B and D respectively, yielding three
di¤erent perturbed models. The KL divergences between the original model
and each perturbed model are given below.

KL�(f� j f) = 0:5

KLB(fB j f) = 0:625

KLD(fD j f) = 0:204

The values obtained are rather small because the KL divergence can be in�nity
but we can fairly say that the network is less sensitive to perturbations in the
variances than in the means or regression coe¢ cients.

The second example shows the e¤ect of perturbing more parameters.

Example 3 For the GBN in Example 1, the experts now disagree on the val-
ues of more parameters. Using (i) and (i; j) to denote speci�c elements of a
vector and matrix respectively, we add the following perturbations to the �,
�D and �B of Example 2.

� (2) = � (3) = 1;�
(4;6)
B =�

(5;6)
B = �1;�(6;6)

D = 2;�
(7;7)
D = 3

The KL divergences are

KL�(f� j f) = 4:375

KLB(fB j f) = 12:625

KLD(fD j f) = 0:579

These values are signi�cantly larger than those obtained in Example 2. We can
conclude that the network is more sensitive to the new perturbations � and B.
However, the KL divergence is still rather small with respect to perturbation
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�D. Thus, the conditional variances do not require the same level of accuracy
as � and B.

Some other considerations concerning KL measure calibration will be dealt
with in the case study de�ned below.

3 Perturbing the structure of a GBN

The regression coe¢ cients
n
�ji
o
show the degree of association between Xi

and its parents j. If �ji = 0, there is no arc in the DAG from Xj to Xi.
Therefore, it is possible to study variations of the structure of the DAG by
perturbing the elements of the B matrix. When we change a coe¢ cient �ji
to zero, the corresponding arc from Xj to Xi is removed. Likewise, changing
a coe¢ cient from zero to some other value introduces a new arc. Sometimes
experts do not agree on the qualitative part of the model, in which case this
form of analysis is necessary.

A word of caution, however: introducing a new arc can lead to cycles in the
graph that are impossible to work with in the GBN framework.

By computing expression (6) for networks modi�ed in this manner, we can
also determine which relationships are essential to the original network. With
this analysis we can take away relatively unimportant arcs until we obtain the
simplest structure similar to the original model. This is the subject of the next
example.

Example 4 Removing only one arc, we want to �nd the resulting dependence
structure closest to the GBN introduced in Example 1.

We consider 4 di¤erent graphs, shown in panels (a), (b), (c) and (d) of Figure
2.
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Figure 2 Four di¤erent one arc removed situations

The resulting KL divergences are given in Table 1.

DKL from to

(a) 2 X2 ! X4

(b) 0:5 X2 ! X5

(c) 12 X4 ! X6

(d) 20 X5 ! X6

Table 1 KL divergences one arc removed

According to this result, only the model (b) could replace the original model
given in Example 2. Thus, the dependence betweenX2 andX5 can be removed.

The analysis con�rms that it is not possible to remove one of the arcs between
X6 and its parents, X4 and X5; the perturbed models (c) and (d) are very
di¤erent from the original model because two of the variables no longer have
any in�uence on X7. The arc between X2 and X4 could be removed, but the
KL divergence for this case is larger.

4 Case study

In metrology, uncertainties are essential when comparing measurements to
each other or with reference values in a speci�cation or standard. The most
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widely used method in this �eld is established in the book Guide to the ex-
pression of uncertainty in measurement (ISO GUM), which establishes general
rules for evaluating and expressing uncertainty. In this setting, we now con-
sider the e¤ects of uncertainty in the calibration of small-angle measurement
instruments (Piratelli-Filho and Di Giacomo 2003). Speci�cally, we examine
the calibration of an electronic level using a sine table, as represented schemat-
ically in Figure 3.

Figure 3 Experimental assembly at sine bar

Following the ISO GUM methodology, we determine the variables in�uencing
the measurement and their relations. The measurement is then represented by
a GBN. This is an approximation to the way the model is usually handled,
allowing the possibility of determining the relative in�uences of the variables.

The variables involved in the measurement procedure are de�ned below.

�T20: deviation of the temperature in the measuring room from the reference
temperature 20 �C with the standard uncertainty u�T20 = 0:41

�C
�Tdif : di¤erence between the temperatures of the table and gauge block,

with the standard uncertainty u�Tdif = 0:029
�C

h1: di¤erence of the gauge block height from the standard, with the stan-
dard uncertainty uh1 = 0:025�m
h0: di¤erence of the initial height on the sine table from the standard,

with the standard uncertainty uh0 = 0:025�m
L: di¤erence in the length of sine table (distance between cylinders) from

the standard, with the standard uncertainty uL = 0:52�m
C: deviations of the sine bar cylinders from perfect roundness, with the

standard uncertainty uC = 0:06�m
R: bias associated with the instrument resolution, with the standard un-

certainty uR = 0:29�m
�: di¤erence between the measured angle from the standard, with the

standard uncertainty u� = 0:033 �C:

Gaussian distributions are assumed for all variables, with the standard uncer-
tainties interpreted as conditional standard deviations for each variable given
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its parents. The relationships between the variables are expressed by the DAG
in Figure 4. The marginal distributions of the variables are computed using
the software package Hugin Lite 7.2, a limited version of Hugin Developer /

Hugin Researcher
R
. This program can be downloaded from www.hugin.com.

Figure 4 DAG of the small angle measurement case study

With these speci�cations and using Equation (3), the covariance matrix is
given by

� =

0BBBBBBBBBBBBBBBBBBBBBBB@

0:17 0 0:17 0:17 0:17 0:17 0:17 0:85

0 0:000841 0:000841 0 0 0 0 0:000841

0:17 0:000841 0:171466 0:17 0:17 0:17 0:17 0:851466

0:17 0 0:17 0:170625 0:17 0:17 0:17 0:850625

0:17 0 0:17 0:17 0:4404 0:17 0:17 1:1204

0:17 0 0:17 0:17 0:17 0:1736 0:17 0:8536

0:17 0 0:17 0:17 0:17 0:17 0:2541 0:9341

0:85 0:000841 0:851466 0:850625 1:1204 0:8536 0:9341 4:611280

1CCCCCCCCCCCCCCCCCCCCCCCA

�����������������������������

�T20

�Tdif

h1

h0

L

C

R

�

:
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Eliminating one arc at a time and computing the KL divergence with respect
to the original model, we obtain the results in Table 2.

DKL from to

136 �T20 ! h1

0:31435 �T20 ! L

23:6111 �T20 ! C

1:0107 �T20 ! R

136 �T20 ! h0

0:6728 �Tdif ! h0

78:34022 h0 ! �

202:20386 L ! �

79:70615 C ! �

116:66667 R ! �

78:72635 h1 ! �

Table 2 KL divergences one arc removed

The most in�uential relationship is that between the length of the sine table
and the measured angle. We can get a sense for the relative importance of
this perturbation by calculating the maximum KL divergence obtained by
removing more than one arc. The values and removed arcs are given in Table
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3.

# of arcs DKL arcs removed

2 474:977 L! � R! �

3 866:896 L! � R! � C ! �

4 1413:942 L! � R! � C ! � h1 ! �

5 2116:708 L! � R! � C ! � h1 ! � h0 ! �

6 2252:708
L! � R! � C ! � h1 ! �

h0 ! � �T20 ! h1(h0)

7 2388:708
L! � R! � C ! � h1 ! �

h0 ! � �T20 ! h0 �T20 ! h1

8 2412:32
L! � R! � C ! � h1 ! �

h0 ! � �T20 ! h1 �T20 ! h0 �T20 ! C

9 2413:33

L! � R! � C ! � h1 ! �

h0 ! � �T20 ! h1 �T20 ! h0 �T20 ! C

�T20 ! R

10 2414

L! � R! � C ! � h1 ! �

h0 ! � �T20 ! h1 �T20 ! h0 �T20 ! C

�T20 ! R �Tdif ! h1

Table 3 maximum KL divergences 2,. . . ,10 arcs removed

The case of complete independence between the variables (that is, removing
all eleven arcs) diverges from the initial network by 2414:317. Figure 5 plots
the KL divergence in Table 3 against the number of arcs removed, normalizing
to this value.
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Figure 5 relative maximum DKL with the number of deleted arcs

Of course, it is intuitively obvious that the original network is nearer to a
completely connected network than to an independent network. Another use-
ful benchmark is the KL divergence between the original network and a com-
pletely connected graph with the same eight nodes and all arcs having coe¢ -
cients equal to 1. This result is 588:4907.

5 Conclusions

This paper contributes to the problem of sensitivity analysis in GBNs in three
ways. First, it describes how to characterize uncertainty in the conditional
speci�cations of a GBN. Second, it explains how to analyze the network�s
sensitivity to perturbations in the network parameters (means, conditional
variances, and the regression coe¢ cients between a variable and its parents
in the DAG). Third, it proposes a method of n-way sensitivity analysis that
provides a global vision of the di¤erence between the original network and its
perturbation. We evaluate and discuss the proposed sensitivity analysis with
an example GBN and several cases of uncertainty.

An important use of the model is evaluating the network�s sensitivity to struc-
tural variations. By replacing regression coe¢ cients with zero or non-zero val-
ues, the new method can remove or add arcs in the DAG. The results are
applied to a metrology case study: the calibration of an electronic level using
a sine table.

Further research will focus on applying the previous results to establish the
sensitivity of a network to speci�c nodes in the DAG. Another interesting
extension to the model is including prior evidence on some of the variables; by
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this means we can evaluate the e¤ect of perturbations on evidence propagation.
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