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ABSTRACT

In the problem of testing the point null hypothesis Hy : 8 = 6y versus H, : 8 # 6, with
a previously given prior density for the parameter 8, we propose the following methodology:
to fix an interval of radius ¢ around 6y and assign a prior mass, mp, to Hy computed by
the density m(#) over the interval (fy — .8y + ¢), spreading the remainder, 1 — mg, over
H, according to m(#). It is shown that for Lindley’s paradox, the Normal model with some
different priors and Darwin-Fisher’s example, this procedure makes the posterior probability

of Hy and the p-value matching better than if the prior mass assigned to Hy 1s 0.5.

1. INTRODUCTION
1.1 HISTORY

In parametric testing point null hypothesis 1t 1s known that Bayesian and classical meth-
ods can give rise to different decisions, see Lindley (1), Berger and Sellke (2) and Berger and
Delampady (3) among others. These papers show that there is a discrepancy between the
classical approach, expressed in terms of the p-value, and the Bayesian one, expressed in
terms of the posterior probability of the point null hypothesis and the Bayes factor. Specif-
ically, in most of Bayesian approaches the infimum of the posterior probability of the null
hypothesis or the Bayes factor, over a wide class of prior distributions, is taken and then it
1s obtained that the mnfimum is substantially larger than the corresponding p-value. It is

necessary to point out that in all of these cases the mass assigned to the point null hypothesis



is 0.5. On the other hand, Casella and Berger (4) show that there is no discrepancy in the
one-sided testing problem.

In most of the existing contributions a class of priors distributions is used, but our
objective 1s to check what happens when a single prior distribution is used. The methodology
to be proposed is the one introduced by Gémez-Villegas and Gémez Sanchez-Manzano (5)
and justified by Gémez-Villegas and Sanz (6) where it is shown that the infimum of the
posterior probability can be close to the p-value when the class of priors is the class of all
unimodal and symmetric distributions.

Some relevant references, comparing classical and Bayesian measures, in addition to those
mentioned above, are Pratt (7), Edwards, Lindman and Savage (8), DeGroot (9), Bernardo
(10), Rubin (11), Mukhopadhyay and DasGupta (12), Berger, Boukai and Wang (13, 14),
and Oh and DasGupta (15).

In Section 1.2 we present the problem. In Section 2, the methodology is applied to the
Jeffreys-Lindley paradox. Section 3 contains an example with a normal model and normal
prior. In Section 4 the general framework for a normal model 1s analyzed and an example with
the Cauchy model is considered. In Section 5 we deal with the famous example of Darwin

Fisher studied by Dickey (16). Finally, Section 6 contains some additional comments.

1.2 THE PROBLEM

We consider the point null testing problem for a location parameter
Hy:0 =46, versus H;:#6 +# 6y, (1.1)

based on observing a random variable, X, with density f(ax — 8) continuous in 6 = §,. We
will suppose that the prior information about # is given by a density () over the parameter
space ©.

Then, the prior to test (1.1) will be given by a mixed distribution, 7%(#), assigning mass
mo > 0 to # = 8y and spreading the remainder, 1 — 7y, over 8 # 6, according to the density
7(6),

7(0) = molyg (0) + (1 — mo)7(0) I1o£0,3()- (1.2)

[}



To choose my, the mass assigned to the point null hypothesis, we propose, as it 1s usually

done, the replacement of (1.1) by the more realistic precise hypothesis
Hy. : |0 — 0| < e versus Hy.: |0 — 6] > e, (1.3)

where ¢ is suitably “small”. Examples of this replacement can be found in Berger (17),
Berger and Delampady (3) and Lee (18) among others. Lindley (19) presents an interesting
discussion about the difference between (1.1) and (1.3).

Now, given the density 7(#), it is possible to fix the value of ¢ that makes equivalent both
problems, (1.1) and (1.3) and compute 7 as

o= | (8)d6. 1.4
Mo 10—6p|<e T( ) ( )

We think that the choice of ¢ is more mntuitive than just selecting an arbitrary value for o,
usually 0.5 in the literature.

There are several comments in order to justify this approach. First, the value of &
corresponding to mp = 0.5 can be obtained from flﬂ—ﬂr)lSG m(#)df = 0.5, but in this case
the values of ¢ will not be suitably “small” except for excessively peaked prior densities.
Secondly, if m(#) is our prior information then 7%(#), the mixed prior, must be near () in

some sense and if we use the Kullback Leibler information measure,

§(x*|m) = /’w(a)ln{n(a)/ﬁ*(e)} d, (1.5)

as a measure of discrepancy between 7 and 7%, it holds that §(7*|7) goes to zero when ¢ goes
to zero. However if one uses 7j(6) = 0.5I¢4,}(6) + 0.51(90,}(6)7(6), then d(7{|m) = 0.693
and it does not seem that Hy can be approximated by Hy. in this case (see Appendix).

In any case, whichever the value of 7y you choose, the posterior probability of the point

null hypothesis 1s given by

1 —m mag(x) }_I
w0  fla — )

with m.(z) = [ f(x — 8)7(8) df, the predictive distribution.

P(Hglil?) = {]_ -+



Finally, a classical measure of evidence against the null hypothesis, which depends on
the observations, is the p-value. If there exists an appropriate statistic T(X), for example a
sufficient statistic, the p-value for testing (1.1) is given by p(z) = P{|T(X)| > |T(x)| |fo}-

In this paper we wish to establish that the posterior probability of the point null hypoth-
esis, with our methodology, 1s closer to the p-value than the posterior probability when the
mass assigned to the point null 1s 7y = 0.5, at least in the problems we have analyzed. Then,
the cause of the discrepancy between the Bayesian and frequentist approximations seems to

be more clear in these situations.

2. THE JEFFREYS-LINDLEY PARADOX

Lindley (1) studies the point null hypothesis (1.1) for a sample Xy, ..., X, when the model

?

is N(8,0?), with 0% known, and the prior distribution is the improper uniform distribution

over all R. Then by (1.6),
1—7 27 /2 1 ,
1+ T, (2 exp L(T— 6y)*
o n 202

where my = fﬂi"f; 7(#) df = 2¢ in accordance with (1.4). If we take ¢ = 0.1, making Hy equiv-

P(H|7) =

alent to Hy. (see Berger and Delampady (3)), Table 1 shows that the posterior probability
of the point null hypothesis, column 2, and the p-value, column 4, are close; whereas there

1s much more discrepancy with the posterior probability when we take my = 0.5, column 5.

Table 1: Comparison between the posterior probability of the point null hypothesis and the p—

value, with X ~ N(8,1) , 7(f) =1, n =10, = = 0.1 and t = |7 — y|n'/2.

t P(Ho|¥)  P(Ho.|T)  p(@) P(Ho|T.m = 0.5)
1.645  0.0754 0.0670 0.1 0.2459
1.960  0.0442 0.0387 0.05 0.1563
2576 0.0113 0.0100 0.01 0.0437
3201  0.0014 0.0013 0.001 0.0058




If we take some other values of ¢ around 0.1, the results are similar. For example, if
¢ = 0.15 and t = 1.96, the posterior probability of Hy 1s 0.0734 and the posterior probability
of Ho. is P(Ho|7) = [T 7(6]7) df = 0.0612. On the other hand column 5, where 7o = 0.5,

can be obtained with our methodology just taking ¢ = 0.25.

3. AN EXAMPLE WITH NORMAL MODEL AND CONJUGATE PRIOR

Without loss of generality, consider testing the hypotheses Hy : 8 =0 versus H, : 0 #
0 based on observing a random sample of size n from a population N(6,1). Now, a complete
sufficient statistic for 6 is the sample mean, X, with N(6,1/n) distribution and if we suppose
that the prior is distributed N(0,72) then the predictive m,(x) is N(0,7° + 1/n). So, using
(1.4), 7o = 2®(c/7) — 1, where ® is the standard normal cumulative distribution function.
We take n = 10, 72 = 2 and a suitably small value of ¢, ¢ = 0.15, for comparison between the
p-values and the posterior probabilities of the point null hypothesis. Table 2 shows that the
posterior probability of the null hypothesis and the p-value are close, whereas it is clearly

shown the discrepancy between the p-value and the posterior probability for 7o = 0.5.

Table 2: Comparison between the posterior probability of the point null hypothesis and the p—

value, with X ~ N(0,1), § ~ N(0,2), n = 10 and = = 0.15, t = |7|n'/2.

t P(Ho|¥)  P(Ho|T)  p(F) P(Ho|T.mo = 0.5)
1.645  0.1044 0.1133 0.1 0.5582
1.960  0.0636 0.0686 0.05 0.4238
2.576  0.0176 0.0199 0.01 0.1628
3201 0.0024 0.0031 0.001 0.0257

The prefixed value of ¢ 1s adequate since the posterior probabilities of the point null
hypothesis and interval null hypothesis are close, as it 1s shown in Table 2, columns 2 and 3.
On the other hand, if the value to be chosen directly for mq is 0.5, the posterior probabilities
of the point null hypothesis are much larger than the p-values. In order to make, with our

methodology, P(Hy.|T) close to P(Hy|T, mo = 0.5), it is necessary to choose ¢ = 0.95 but in
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this case ¢ is so great that the point null hypothesis does not seem to be equivalent to the
interval hypothesis.

Now, the following question arises: is it possible to choose an interval for ¢, say (24, 3), so
that taking a value of ¢ in the interval and assigning ¢ as in (1.4), the posterior probability
of the point null hypothesis, (1.1), and the p-value match?

Naturally, there i1s a value of ¢, depending on the data, so that the p-value and the
posterior probability of the point null hypothesis are equal, but this is not our objective.
The analysis of the Table 3 shows that if ¢ is included in the interval (1/15,1/7), then the
posterior probabilities of the point null hypothesis are close to the p-values, for moderate
ralues of the observations. Furthermore, for a value of ¢ in (1/15,1/7) it can be observed
in Table 3 that, coherently, the posterior probability of the point null hypothesis is near the
posterior probability of the interval null hypothesis. Thus, in this situation, the answer to

the question stated above is affirmative.

Table 3: Values of ¢ matching the posterior probability and the p-value, with X ~ N(6,1),

# ~ N(0,2) and n = 10.

t e PH;[)~p(®)  P(Hul7)
1.645 0.143 0.1 0.1074
1.960 0.118 0.05 0.0526
2.576 0.088 0.01 0.0104
3.291 0.065 0.001 0.0010

4. COMPARISON BETWEEN THE P-VALUE AND THE POSTERIOR PROBABILITY
In this section the different properties of the posterior probability observed in previous
sections are rejoined.
Next theorem shows the behaviour of the posterior probability of the point null hypoth-
esis considered as a function of the observations and £, the half length of the interval null

hypothesis.



The p-value is now given by

p(t) = 2{1 = &(|#])} (4.1)

with @ the standard normal cumulative distribution function. The mass assigned to the

point null hypothesis is, by (1.1),

efr
7o(c) :] 7(6) df (4.2)
—s/T
Theorem 4.1 Let Xy,..., X, independent random variables from a N(8,0°) distribution,

with a* known. Suppose that the prior information about € is given by 7.(0) = =n(8/7)/7,
with 7 > 0 and 7(0) a continuous, symmetric and unimodal density with mode at 6y and
o/t < 1. To test Hy : 8 = 0 versus Hy : 8 # 0 consider, given Hy, the sufficient statistic
T = X\/n/o, then

i) For fized t, P(Hy|t,c) is increasing as a function of e, with P(Hy|t,e = 0) = 0 and
lim. o P(Hplt,2) =1,

ii) For fized ¢, P(Hy|t,e) is decreasing in t, for t > 0, being

+oo . .
}in{} P(Hy|t,e) = / exp(—u?)2)m(ku/n'?) du
L= —

and limy 4o P(Hylt,e) = 0.
Proof: i) Using expression (1.6), we have

1 —mo(e) k[t p(t —u) ku !
fe) = —_— T du , .
P(Holf_ } {1 + ?TO(S) ?1|f2 ‘/._oc L,Q(f) (RUQ) } (4 3)

where ¢ is the standard normal density. Since my(e), given by (4.2), is increasing, then

{1 — mo(e)}/mo(e) is decreasing and, immediately, we obtain that P(Hy|t,¢) is increasing in
Moreover, my(0) = 0 and it is easy to see that, by (4.3), P(Hylt,e =0) = 0.
Besides, when ¢ tends to oo, then my(¢) tends to 1 and it is straightforward to check that
lim., 4o P(Hplt,e) = 1.

i) In the expression (4.3) the factor depending on t is

. oo o(t — u) ku _
M) = [ SO (nm) du,

rd
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and its derivative with respect to t is

' 12 —(u—t)? (utt)? ku
M'(t) = ﬁ/{) (c (u=t)*/2 _ —(utt) )'2) um (-‘n,'ﬂ) du.

We observe that M'(t) > 0, therefore M(#) is increasing and then P(Hgl|t, <) is decreasing in

t.
The limy o P(Holt, <) depends on limy,_,o M(2), but

2 gt — wr(ku/nl) du e () (f»)
Z[ du

lim M(¢) = lim ™
— ¢(0)

t—=0 t—=0 (fp(t)

as asserted.

On the other hand,

ot —u) [ ku <ot —u) [ ku
Mt —[ o) dut [, I
(t) o00) ’T(\/-r_:.)(”—hu o0 T T du

and while the first integral 1s positive, the second diverges when ¢ tends to 4+oc. Then,

limy 400 M(t) = 400, and limy_, o P(Holt,e) = 0. o

These results give the precise behaviour of P(Hy|t,¢) as a function of t and . Besides the
intuitive meaning of this theorem is that, observing the behaviour of the posterior probability
of the point null hypothesis, an interval of values for ¢ can be determined such that the

posterior probabilities and the p-values are close, see figure 1.
Figures 1 and 2 go here

Now, to apply the previous results, let us suppose a prior distribution, 7(8), N(0,7?)

with o/7 = k < 1. In this case, the posterior probability is
-1
1 — mgle : t
plomle) {(%)W-r-c,o (—)} ] 1 (4.4)
ﬂ'g(é) r

The p-value, given by (4.1), can be numerically equal to the posterior probability of

P(Hglt, <) =

with r = (1 + k?/n)lﬂ_

Hy by choosing a suitable value of ¢ which, naturally, will depend on the observed value t.

Really, we just make (4.4) and (4.1) equal, and then the value £(¢) can be obtained from

. (2mn)'/2 1 - ,
mofe(t)} = {1 + T@((}:i] (E — 1)} (4.5)



where a = (1 + k*/ n)~Y? is, clearly, @ < 1. Now, we can prove that the solution of (4.5)
satisfies the following proposition

Proposition 4.1 The function g(t) = mo{c(t)} is a continuous and decreasing function and
limy e g(t) = 0 and limy_0 g(t) = 1.

Proof: In the expression (4.5) the part that depends on # is

L\ el el |
elat) (m”)— o0 21— ey Ao (46)

It is easy to see that p(at)/p(t) and —p(at) are increasing functions for ¢ > 0. Furthermore,
o(t)/{1 — ®(t)} is increasing too, since the normal distribution has increasing failure rate.
For the limits 1t may be pointed out, given o < 1, that

G0 N () NS 1)

s p(f) e 2T — (1)} © i 21 — B(1)}

and this last limit is infinite by the Mills’ ratio. Then, the proposition holds.o

As a consequence £(t), the value that equals the posterior probability of Hy and the
p—value, is decreasing since ¢(t) is decreasing. Then, if we have t; <t < t; we can get values
of ¢ such that z(t;) < ¢ < £(t;) for which the posterior probability and the p-value are alike.

For example, with n = 10 and k& = (1/2)"'2, if ¢, = 1.645 then p(t;) = 0.1 and, using
(4.5), g(t1) = 0.08 and similarly when ¢, = 3.291 is p(¢;) = 0.001 and g(t;) = 0.036. Then,
numerical calculus show that if we take a value of € in the interval (0.065, 0.143), the posterior
probability is similar to the p-value. It may be noted that these are the same values obtained
in the previous section.

Therefore it is clear that the answer raised above is affirmative and it is possible, in this
setup, to choose ¢ between two values so that the posterior probability is near to the p-value
when a prior distribution as in (1.4) is used.

On the other hand, if we use a mixed prior distribution as (1.3) with a fixed value
for 7y, but not the value given by (1.4), then the p-value is smaller than the posterior
probability of the null hypothesis. The following theorem gives an upper bound for the
posterior probability that makes clear what elements have an influence on the approximation

between this probability and the p-value.



Theorem 4.2 For fized t > 0, under the same conditions of theorem 4.1, we have

P(Hple,7) < {14+ C(rm,7,2)} " (4.7)
where
T ko2t p(t —u) ku
b )= —=-1 7 du 4.
C(m,1,¢) (25?]’(0) ) n\/2 Jo o(t) & (-‘n,'ﬂ au (4.8)
and  is the standard normal density.

Proof: The prior distribution is given by 7.(#) = w(8/7)/7, with 7(8) symmetric about

zero, then it follows

/T Ve
ro(c) = [ n(8) db < 7(0) =

Furthermore,

+oo . +oo Wi
ot —u) - ku du — o—ulu=26)/2_ ’I"i du
Jooo () n'/? J—o0 n'/?

but h(u) = e=““=20/2 has a maximum in u = ¢, h(t) = ¢”/? and h(u) < 1 for u < 0 and
w > 2t, so that the more significant values of this function are in the interval (0,2t). Then,

the last integral can be approached by

"2t . ku
—ul(u—2t)/2 A ;
](1 € T (n'ﬂ) du

and then we obtain expression (4.7) with C(7,7,¢) as in (4.8).0

It may be pointed out that: firstly, for 7 and 7 fixed, the bound {1 + C(w,7,¢)}""
decreases when ¢ decreases. Secondly, for fixed values of ¢ and 7 the posterior probability
decreases when m(2kt/\/n) increases and this happens if we use densities with heavier tails.
Thirdly, for ¢ and 7 fixed when the variance of the prior distribution increases, the bound
decreases. Therefore, in all of these cases, C(m,7,¢) increases and then the upper bound of
the posterior probability decreases and comes closer to the p-value.

Although theoretical proofs involve awkward integrals, we introduce a case where the
underlying distribution is non-normal using simulation tools. Consider independent obser-
rations from a Cauchy distribution, C(6,1), and suppose that the prior over € is C(fy,2).
Then, Table 4 shows the values of ¢ for which the p-value and the posterior probability of

the point null hypothesis are keep equal.
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Table 4: Values of ¢ matching the posterior probability and the p-value, with X ~ C'(6,1),
0~ C(0,2).

X € P(Hy|z) ~ p(x) P(Hy.|7)
1.0 4.84 0.500 0.988
1.5 3.67 0.374 0.966
3.0 2.7 0.205 0.638
6.3 1.64 0.100 0.185

12.7 0.87 0.050 0.092

5. DARWIN'S EXAMPLE

This Darwin’s example is studied by Fisher (21) in his classical book “The Design of
Experiments” and has also been studied by Dickey (16). This is a typical case in which
the point null hypothesis could be replaced by an interval one. The experiment tries to
determine whether cross-fertilized plants have a greater growing rate than self-fertilized
plants. Measurements of the differences in height of pairs of similarly grown plants were
taken on a certain date.

Then, 1f X,..., X, are the differences in height of n pairs of plants, it can be supposed
that they come from a population N(8,0?), with o unknown, so we want to test Hy : 6 =0
versus Hy, : # # 0. Fisher uses the statistic T = n'/?(X — 6;)/s, where s? is the sample
variance, and the critical region for a test with @ = 0.05 is RC = {|T| > 2.145} with
T =n'/ QY/ s given Hy. The n = 15 observed differences showed 7 = 2.6166 and s = 4.7188
in inches. Hence the statistic 1s #14 = 2.1476 and the test was barely significant.

As in Dickey (16), because o? is a nuisance parameter, we consider independent prior
distributions for the mean, 7(8|vo,8p = 0,8%) ~ t,, the Student-t density and for the

aariance, o, in the family s{/(x7, /v1). In this case

. 2 \ "2 L 1 1)/2)
7 (0o, 60 = 0,s5) = |1 . — , B!
(B0, 80 = 0, 5) ( +V03§) so (om)V2T (10 /2) €R
and
. 1 1 2 10002 . 1
(0?82 e /Q) 2l — 52 5,

) = I /2 F(V] /2) (0_2)_(!,1 /2+1)°
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A marginal, or mntegrated, likelihood function of # proportional to a Student—t density can

be obtained

and it results

f(@6) = [~ ¢(lb,0%)7(0*) do”

f(_|9) . F{(;g;—{—l)/?} o n (H_T)z —(m+1)/2 1/2
Jia = (-r'r.r.}'r)lﬁr(}'n/Q) m 2 -
the Student-t distribution with m = n — 1 4 1, degrees of freedom and 7% = {(n — 1)s? +

v181}/m. Hence, the marginal

m(T) =

o0

e
‘/_ " f(zl0)7(8) de.

Then, the posterior probability of the point null hypothesis is computed as in (1.6) with

By = 0 and mp, the mass assigned to the point null hypothesis, as in (1.4).

In this case, the prior scale for 0%, s7, is taken equal to the sample variance, s7 = 4.7188%.

Then, the parameters that we need to fix are vy, vy, s5 and &.

Table 4 shows the results

when 7y = 0.5 and different values of the parameters as in Dickey (16).

Table 5: P(Hy|T, 7o = 0.5) for the Darwin-Fisher-Dickey example

vy

S0 o 0 4 8 20 100
1 7 0.3549 0.3497 0.3461 0.3399 0.3308
100 0.3652 0.3601 0.3566 0.3505 0.3416

2.5 7 0.3031 72 0.2931 0.2861 0.2761
100 0.2934 0.2876 0.2836 0.2767 0.2668

10 7 0.5087 0.5018 0.4969 0.4885 0.4762
100 0.4992 0.4922 0.4874 0.4790 0.4667

125 7 0.9251 0.9231 0.9218 0.9193 0.9156
100 0.9227 0.9208 0.9193 0.9168 0.9130




For a fixed s, the posterior probabilities are robust with respect to the shape 14 of the
prior density of # and to the degree vy of the prior distribution of % Moreover, it can
be noted that the posterior probability of the point null hypothesis tends to one when the
conditional prior dispersion, sZ, of # increases. That is, we can get a posterior probability
close to one just increasing s2, but it means that if the prior distribution tends to give
less knowledge about # then the posterior probability of the point null hypothesis becomes
greater. It does not look reasonable.

This behavior does not happen with our methodology. For example, if we take ¢ = 0.2
and compute my as in (1.4), general robustness is apparent too, but now when sf increases
the posterior probability decreases as it is presented in Table 5, obviously this behaviour is

more intuitive.

Table 6: P(Hy|7,c = 0.2) for Darwin’s example

125}
So L 0 4 8 20 100
1 7 0.0903 0.0884 0.0872 0.0850 0.0819

100 0.0975 0.0956 0.0943 0.0920 0.0889

2.5 7 0.0277 0.0270 0.0265 0.0256 0.0244
100 0.0274 0.0267 0.0262 0.0253 0.0241
10 7 0.0139 0.0155 0.0152 0.0147 0.0140

100 0.0159 0.0154 0.0151 0.0147 0.0140

125 7 0.0149 0.0146 0.0143 0.0139 0.0132
100 0.0149 0.0146 0.0143 0.0139 0.0132

Although it 1s not included here, it can be checked that the posterior probability of the
interval hypothesis, computed as P(Ho2|T) = [Ui, 7(6|T) df where 7(8|T) is the posterior
distribution of # given T, is close to P(Hy|T) the posterior probability of the point null

hypothesis.
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As in previous sections and with our methodology, 1t i1s possible to get values of ¢ so that
the posterior probability and the p-value match. In Table 6 we can see that for s, = 2.5,

the choice of ¢ = 0.379 leads to a posterior probability of 0.05.

Table 7: Values of ¢ so that the posterior probability and the p—value match in Darwin’s example,

s1 = 4.7188.

S0 Vo 1 g p(t) ~ P(H,

£, T =2.6166) P(Ho.|t) P(Ho|mo=0.5)

1 7 20 0.121 0.05 0.0481 0.3399
25 7 20 0379 0.05 0.0489 0.2869
10 7 20 0.680 0.05 0.0579 0.4889
125 7 20 0.747 0.05 0.0625 0.9193

6. CONCLUDING REMARKS

In some situations, using our methodology, 1t is possible to get a better agreement between
the posterior probability of the point null hypothesis, as a measure of Bayesian evidence,
and the classical p-value, as it is shown in the examples we have studied.

Furthermore, if suitable values of ¢ are chosen, the differences between the posterior
probability of the point null hypothesis and the p-value are not so large as if the value for 7,
1s taken 0.5 directly. Really, 1f in testing a point null hypothesis, a mixed prior distribution
with 7o = 0.5 1s used, there will be a remarkable discrepancy between Bayesian and classical
evidence.

The ¢ choosen must be such that the posterior probabilities of the point and interval null
hypotheses are similar, to be coherent with the substitution of Hy by Hy.. For the cases we
have handled, these values of ¢ are within a limited range, see Tables 3 and 7, where the
corresponding p-values and posterior probabilities are also very similar. Also the comment
in Section 1 may be considered: the value of ¢ for mp = 0.5 can be used to get the upper
bound of e— however smaller values are recommended.

Using the Bayesian approach, this procedure gives a result close to the classical approach

in testing point null hypothesis as the situation observed in the one-sided testing problem.
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APPENDIX
There is a problem in using (1.5) as a measure of discrepancy between 7 and 7* because
7(#) is a density but 7%(#) is not a density. We can sort out the problem considering two

measures on (R, (B)g). For all A in the Borel o-field we define:

mo+ (1 —mo)pu(A) if 6y € A,

1(A) = .?Tﬁd)\f), and u(A) = bﬁ*ﬁd)\f):
p(A) = [ 7(6)ax). p(4) = [ 7 (6)dNe) o) e

The measure p(A) is originated by the density 7(8) and p*(A) by 7*(8), with my given by
(1.4) and A the Lebesgue measure.

It is easy to prove that p is absolutely continuous with respect to p* (p < p*), so it exits
dp/dp, the Radon Nikodym derivative of ¢ with respect to p*. Besides, it is straightforward

to see that
d‘u 0 lf 9 == 9[),

(0) = 1 6+ b, (A.1)

dp*

—
Now, using that y < p*, we can define the discrepancy between p and p* as 6(p*|p) =

Jo(In(dp/dp*))dpe. Then, by (A.1), we have é(p*|p) = —In(1 — mp).
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