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a b s t r a c t

We introduce a methodology for sensitivity analysis of evidence variables in Gaussian
Bayesian networks. Knowledge of the posterior probability distribution of the target vari-
able in a Bayesian network, given a set of evidence, is desirable. However, this evidence is
not always determined; in fact, additional information might be requested to improve the
solution in terms of reducing uncertainty. In this study we develop a procedure, based on
Shannon entropy and information theory measures, that allows us to prioritize information
according to its utility in yielding a better result. Some examples illustrate the concepts
and methods introduced.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

A Bayesian network is a probabilistic graphical model that represents the conditional dependencies among a set of ran-
dom variables through a directed acyclic graph (DAG). Bayesian networks have become an increasing popular representation
for reasoning under uncertainty and are widely applied to diverse fields, such as medical diagnosis, image recognition, and
decision-making systems, among many others.

Formally, a Bayesian network consists of qualitative and quantitative parts. The quantitative part is given by a DAG,
whose nodes represent random variables that may be observable, latent, or a target variable of interest. The qualitative part,
specifies the conditional probability distribution for each node given its parents; this allows us to compute the joint prob-
ability distribution of the model.

The aim of Bayesian network analysis is usually to obtain the conditional probability distribution of a target variable
when a set of observable variables (evidence values) is available. Sometimes the variables defined as evidence are fixed
in advance but other times they vary from model to model.

In this context, sensitivity analysis is a method for investigating the relationship between network inputs and the condi-
tional distribution of the target variable, for which inputs can be the parameters considered in the conditional probability
distribution or actual values taken by the observed variables. There is a large body of literature dealing with sensitivity anal-
ysis techniques for Bayesian networks. Most studies have addressed discrete Bayesian networks. For example, Malhas and Al
Aghbari [16] introduced a score based on mutual information increases to discover new interesting patterns. Chan and
Darwiche [4] presented a distance measure between the original distribution and a new one in which the parameters have
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been changed. Laskey [14] measured sensitivity by computing the partial derivatives of output probabilities with respect to
given parameters. Kostal et al. [13] proposed measures of statistical dispersion based on Shannon and Fisher information.
Castillo and Kjaerulff [3] developed a sensitivity analysis for Gaussian Bayesian networks (GBNs) using partial derivatives
and symbolic propagation. Gómez-Villegas et al. [7–10] used Kullback Leibler divergence as a measure of sensitivity in GBNs.

Here we focus on a different aspect of sensitivity analysis. As mentioned previously, the set of evidence variables is not
specified in advance in many real-life problems. In fact, it is usual practice to try to collect as much information as possible.
However, this information always has an associated cost, so it may be desirable to evaluate which of all the available vari-
ables are most informative and useful for obtaining the best results. A very important assumption made in this paper is that a
better result is achieved if the conditional probability distribution of the target variable has the lowest uncertainty, that is, the
lowest entropy. Thus, we use information theory to provide tools to prioritize the available information to reduce the uncer-
tainty of the target variable as far as possible.

The remainder of the article is structured as follows. In Section 2 we briefly review GBNs and show how propagation of
observable values can be performed in this case. We also introduce our working example. Section 3 presents some general
concepts of entropy, mutual information, and normalized measures. In Section 4, we first propose a procedure to study the
sensitivity to evidence in GBNs and then perform a sensitivity analysis on our working example. The second contribution of
the paper is presented in Section 5, which is an extension of the sensitivity analysis proposed above but incorporating nor-
malized measures. Results are presented for the working example and a supplementary example. Finally, in Section 6 we
draw conclusions.

2. Gaussian Bayesian networks

In this section we first recall the definition of a general Bayesian network and then the special case of a GBN. We also
present the methodology for evidence propagation in GBNs.

2.1. Definition: Bayesian network

A Bayesian network is a pair ðG;PÞ, where G is a directed acyclic graph (DAG) with one node for each random variable of
X ¼ fX1; . . . ;Xng and edges that represent probabilistic dependencies between them.
P ¼ fpðx1jpaðx1ÞÞ; . . . ; pðxnjpaðxnÞÞg is a set of conditional probability distributions and paðxiÞ is the set of parents of node

Xi in G. From P, the associated joint probability distribution for X is defined as

PðXÞ ¼ odn
i¼1PðXijpaðXiÞÞ: ð1Þ

The type of random variables, Xi, considered in the problem defines whether we are dealing with discrete, Gaussian, or
mixed Bayesian networks. In this paper we develop results for GBNs that are based on continuous variables; these have been
studied by Castillo et al. [2], Cowell et al. [6] and Gómez-Villegas et al. [7], among others.

2.2. Definition: GBN

GBNs are a subclass of Bayesian networks in which the joint probability density of X is a multivariate normal distribution
Nðl;RÞ, that is,

f ðxÞ ¼ ð2pÞ�n=2jRj�1=2exp �1
2

x� lð ÞTR�1 x� lð Þ
� �

;

where l is the n-dimensional mean vector, R is the positive definite n� n covariance matrix, jRj is the determinant of R, and
lT the transpose of l.

According to the normal distribution properties and the factorization presented in (1), in a GBN the joint probability den-
sity can be specified also as a product of conditional probability densities, each of which corresponds to a univariate normal
distribution.

2.3. Evidence propagation in a GBN

In real-life problems, information about the state of one or more variables of a Bayesian network, known as evidence vari-
ables, may be available. If so, probability distributions for the rest of the variables in the network can be updated given the
observed values. This process is called evidence propagation.

Different algorithms have been proposed for evidence propagation in GBNs. Here, we consider an incremental method
developed by Castillo et al. [2]. This consists of computing the conditional probability density of a normal distribution after
introducing one evidential variable at a time. We consider the set of non-evidential variables Y and the evidential variables E.
Then X can be written as the partition X ¼ ðY;EÞ, and the conditional distribution of Y given E ¼ e is a multivariate normal
distribution with parameters
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lYjE¼e ¼ lY þ RYER
�1
EE ðe� lEÞ ð2Þ

and

RYjE¼e ¼ RYY � RYER
�1
EE REY: ð3Þ

If we are interested in the posterior marginal density of just one variable considered as a target, Xi 2 Y, and one evidence
variable, E, after evidence propagation we have,

XijE ¼ e � N lYjE¼e
i ;rY jE¼e

ii

� �
¼ N li þ

rie

ree
ðe� leÞ;rii �

r2
ie

ree

� �
;

where li and le are the mean of Xi and E, rii and ree are the variance of Xi and E, respectively and rie is the covariance be-
tween Xi and E before evidence propagation.

To review the concepts presented in this section we now present an example introduced by Gómez-Villegas et al. [9].

2.4. Example

This problem is about the duration for which a machine is working. The machine is made up of seven elements, connected
according to the DAG in Fig. 1.

The target is the variable X7 and the joint probability distribution of X is a multivariate normal distribution, with the fol-
lowing parameters given by experts:

l ¼

1
3
2
1
4
5
8

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

B ¼

0 0 0 1 0 0 0
0 0 0 2 2 0 0
0 0 0 0 1 0 0
0 0 0 0 0 2 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

D ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

where l is the n-dimensional mean vector, D is a diagonal matrix with conditional variances v i;B is a strictly upper trian-
gular matrix with regression coefficients bji, and Xj is a parent of Xi, with j < i.

It is well known that the covariance matrix R can be computed as

R ¼ ðI� BÞ�1
h iT

D½ðI� BÞ�1�:

Thus, for this example we obtain that X has a multivariate normal distribution with the following parameters,

l ¼

1
3
2
1
4
5
8

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

R ¼

1 0 0 1 0 2 2
0 1 0 2 2 8 8
0 0 2 0 2 4 4
1 2 0 6 4 20 20
0 2 2 4 10 28 28
2 8 4 20 28 97 97
2 8 4 20 28 97 99

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

Assume that we know the values of X1;X2 and X3, say, E ¼ fX1 ¼ 2;X2 ¼ 2;X3 ¼ 1g. Then we can obtain the posterior
probability distribution of the non-evidential variables after performing evidence propagation. Thus, we obtain
YjE � NðlYjE¼e;RYjEÞ with

lYjE¼e ¼

0
1
�3
0

0
BBB@

1
CCCA RYjE ¼

1 0 2 2
0 4 8 8
2 8 21 21
2 8 21 23

0
BBB@

1
CCCA:

Note that the marginal distribution of the target variable X7 in the original network was X7 � Nð8;99Þ, which implies con-
siderable uncertainty owing to its high variability. However, after evidence propagation, the updated marginal distribution
for this variable is X7 � Nð0;23Þ. Thus, the uncertainty has decreased significantly due to actual observations. The question
still arises as to whether the variables E ¼ fX1 ¼ 2;X2 ¼ 2;X3 ¼ 1g are the best choice for reducing the variance of X7. In this
paper, we provide the necessary tools to answer this question.
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3. Entropy and mutual information

In this section, we present a brief review of information theory and Shannon entropy [18]. Because we are dealing with
normally distributed variables, the definitions are given for the case of continuous variables [5].

3.1. Definition: differential entropy

Differential entropy refers to the entropy of a continuous variable X with probability density function f ðxÞ and is given by

hðXÞ ¼ �
Z

S
f ðxÞ ln f ðxÞ dx;

where S is the support set (the set for which f ðxÞ > 0) of the random variable.
For the discrete case, entropy is a measure of uncertainty or randomness of a random variable. However, intuitively

speaking, uncertainty or randomness of a continuous variable is infinite [11]. Thus, for discrete variables, entropy measures
uncertainty in an absolute way, but for continuous variables the measurement is relative, and differences in entropy may be
compared between two or more variables or between values of the same variable under different models.

The joint differential entropy of a set of random variables X1; . . . ;Xn distributed according to the joint probability density
function f ðx1; . . . ; xnÞ is defined as

hðX1; . . . ;XnÞ ¼ �
Z

f ðx1; . . . ; xnÞ ln f ðx1; . . . ; xnÞ dx1 � � �dxn:

As we are working with GBNs, we need the differential entropy for univariate and multivariate normal distributions [5].
Entropy for a normal distribution
Let X � Nðl;r2Þ. Then,

hðXÞ ¼ 1
2

ln ð2per2Þ: ð4Þ

Entropy for a multivariate normal distribution
Let X1;X2; . . . ;Xn have a multivariate normal distribution Nðl;RÞ. Then,

hðX1;X2; . . . ;XnÞ ¼
1
2

ln ½ ð2peÞnjRj �; ð5Þ

The conditional differential entropy for two random variables X and Y with joint density function f ðx; yÞ can be computed as

hðXjYÞ ¼ hðX;YÞ � hðYÞ: ð6Þ

The joint entropy measures how much uncertainty there is in a set of random variables X1; . . . ;Xn taken together, and the
conditional entropy is a measure of how much uncertainty remains about the random variable X when Y is known.

Note that if we are working with a normal distribution, then the entropy, the joint entropy and therefore the conditional
entropy, all depend only on the covariance matrix of the random variables, which does not consider the evidence value (3).
This means that if the conditional entropy is computed, only the conditioning variable matters, and not the value taken by
the variable, that is, hðXjY ¼ yÞ ¼ hðXjYÞ.

Fig. 1. DAG for Example 2.4.
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3.2. Definition: mutual information

The mutual information between two continuous random variables X;Y with joint density f ðx; yÞ is defined as

IðX; YÞ ¼
Z

f ðx; yÞ ln
f ðx; yÞ

f ðxÞf ðyÞ dxdy:

From this definition, we have

IðX; YÞ ¼ hðXÞ � hðXjYÞ ¼ hðYÞ � hðYjXÞ ¼ hðXÞ þ hðYÞ � hðX;YÞ: ð7Þ

Mutual information measures the information shared by two random variables; this quantifies how much the uncertainty
of one variable is reduced provided that the other is known. It could be considered as a measure of dependence, because
IðX; YÞ ¼ 0 only if X and Y are independent. This measure will always be non-negative for both discrete and continuous
variables.

For a normal distribution, the mutual information can be specified in terms of the correlation between X and Y. Consider
two variables, X and Y, that follow a joint normal distribution with means l1 and l2, variances r2

1 and r2
2, and correlation

coefficient q. Then,

IðX; YÞ ¼ �1
2

lnð1� q2Þ:

The conditional mutual information measures the dependence between two random variables X and Y given a third vari-
able Z, and is defined by

IðX; YjZÞ ¼ hðX; ZÞ þ hðY ; ZÞ � hðX; Y; ZÞ � hðZÞ: ð8Þ

In general terms, if we obtain a small value of IðX;Y jZÞ in observing Z, this indicates that this variable decreases the depen-
dence between X and Y. In the limit, if IðX;YjZÞ ¼ 0, then X and Y are independent given Z.

3.3. Definition: normalized mutual information

Although all the results referred to in this section were given for discrete variables, we introduce them using the corre-
sponding notation for continuous variables.

The normalized mutual information between two variables X and Y was suggested by Strehl and Ghosh [19] as follows:

NIðX; YÞ ¼ IðX; YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXÞhðYÞ

p ; ð9Þ

where h(X) and h(Y) are the differential entropies for these variables.
Then NI is a measure that ranges from 0, for which X is independent of Y, to 1 in the limit of X ¼ Y (in this case, Cover and

Thomas [5] show that IðX;XÞ ¼ hðXÞ). Note that if both differential entropies of X and Y are positive or negative, then the
denominator will be a real number, but if only one of them is negative, then the result will be a complex number. In partic-
ular, in our specific case in which the random variables have normal distributions, the entropy defined by (4) and (5) will be
negative if

r2 <
1

2pe
ð� 0:0585Þ for a univariate normal distribution

and

jKj < 1
ð2peÞn

for a multivariate normal distribution:

This means that if we are comparing two variables X and Y and only one of them has a small variance, (0.0585 for uni-
variate normal distributions or 0.05852 for the bivariate case, and so on), then a complex number will be obtained for the
denominator, and it is better to use the procedure proposed in Section 4.1. However, in most cases this does not occur be-
cause the problem usually starts with high variances rather than great differences between the variables, and the aim is to
reduce this uncertainty.

For three random variables, Richiardi [17] proposed the normalized conditional mutual information as

NIðX; Y jZÞ ¼ IðX; YjZÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXjZÞhðYjZÞ

p ; ð10Þ

where NIðX; Y jZÞ is between 0 (X independent of Y given Z) and 1 (X = Y given Z). Similarly, for NIðX; YÞ, care is necessary to
satisfy properly the conditions required to obtain a real number.

Finally, we present the normalized difference proposed by Besson et al. [1], which aids interpretation of the results:

M.A. Gómez-Villegas et al. / Information Sciences 275 (2014) 115–126 119
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DIXYZ ¼
½NIðX; YÞ � NIðX; Y jZÞ�

NIðX; YÞ : ð11Þ

4. Sensitivity to evidence based on mutual information

For Bayesian networks it is desirable to know the posterior probability distribution of the target variable given a set of
evidence. However, this evidence is not always determined; in fact, additional information might be requested to improve
the solution in terms of reducing uncertainty. Because any collection of information has an associated cost, it is important to
prioritize which information will be of greatest utility.

In this section, we introduce a methodology based on information theory that allows us to measure the potential useful-
ness of incorporating additional information before the information source is consulted. To this end, Kjaerulff and Madsen
[12] developed a procedure for discrete Bayesian networks they called value of information analysis. We first present an
extension of their results to GBNs and then incorporate normalized measures into the analysis.

4.1. Procedure for prioritizing evidence

The principal aim of this procedure is to identify variables with the highest mutual information with the target variable,
since these potential evidence variables will further reduce its uncertainty.

Consider the set of non-evidential variables Y (initially we can assume that Y ¼ X, because E ¼ /) and the target variable
Xi 2 Y; we refer to Y�i as the set of non-evidential variables without considering the target variable Xi, that is, Y�i ¼ Y n Xi.
Then the procedure involves the following steps:

1. Calculate the entropy for the target variable hðXiÞ.
2. Compute the mutual information between the target variable Xi and each non-evidential variable Y different from Xi, that

is, IðXi; Y�iÞ.
3. Choose as the evidential variable the Xk from Y�i that has the highest non-zero mutual information with Xi.
4. Look at the decrease in uncertainty as hðXijEÞ � IðXi; XkjEÞ ¼ hðXijE;XkÞ.
5. Consider that Xk 2 E.
6. Compute the conditional mutual information between the target variable and the new set of non-evidential variables Y�i,

that is, IðXi; Y�ijEÞ.
7. Go back to 3.

Notes:

� Stop when the uncertainty of Xi is sufficiently small or when there are no more non-evidential variables available with
significant non-zero mutual information.
� If the variable with the highest mutual information score is not available, then proceed to observe the variable with the

second-highest score.
� Variables with mutual information of zero (or close to zero) should not be considered as evidence, because they will not

add any information to the analysis.

We use Example 2.4 to illustrate the procedure proposed in this section.

4.2. Example

Consider the GBN given in Example 2.4 and suppose that no evidential variables have been determined yet. We have de-
fined X7 as the target variable, so applying the specifications to the normal distributions given in (4) and (5) and the defini-
tion for mutual information (7), steps 1 and 2 are computed.

We obtained differential entropy for X7 of hðX7Þ ¼ 3:7165 and determined the mutual information scores for the rest of
the variables with the target. The results are shown in Table 1.

It is evident from Table 1 that an order of priority for reducing the uncertainty of the target is obtained. The most infor-
mative variable for X7 is X6, followed by X5.

To show how the decision on which variable to incorporate as evidence in the network affects the uncertainty of the tar-
get variable X7, Table 2 presents the posterior variance and conditional differential entropy of X7, computed using (3) and (6),
respectively, in the simulated case in which each of the non-evidential variables was observed. We have seen that these mea-
sures do not depend on the evidence value, so we consider only the set of evidence variables.

As we saw before, the initial distribution of X7 was Nð8;99Þ with differential entropy of hðX7Þ ¼ 3:7165, so now it is evi-
dent that X6 is the most important variable in decreasing the uncertainty of X7. In fact, if we could observe only this variable,
the problem would be solved with high accuracy. However, it is of worth noting that two variables that were considered as
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evidence when this example was introduced in Section 2.4, X1 and X3, had no significant individual contribution to the
reduction in variance of X7.

To continue with the proposed procedure, imagine that X6 is not available, but that X5 (the second most informative var-
iable) is observable. If we introduce this variable as evidence into the network and apply step 3, we obtain the result
VarðX7jX5Þ ¼ 20:6. Then, proceeding to step 4, the new differential entropy hðX7jX5Þ is calculated, giving a value of 2.9316,
which implies a significant reduction in uncertainty of X7.

According to steps 5 and 6, respectively, X5 2 E and all the conditional mutual information scores for the rest of the vari-
ables Y�i with X7 are calculated using definitions (6) and (8). Equivalently, if we calculate the conditional multivariate nor-
mal distribution of ðX1;X2;X3;X4;X6;X7jX5Þ, then, the corresponding measures can be obtained as in Table 1. The results for
this step are shown in Table 3.

From Table 3 it is evident that X6 is still the most informative variable for X7, but as we supposed that this variable was
not available, we observe the variable with the second highest mutual information, X4. Proceeding to step 3, after propagat-
ing X4 as the evidential variable, we get VarðX7jX5;X4Þ ¼ 3, which implies that high accuracy is obtained.

Finally, the conditional entropy for X7jX5;X4 is hðX7jX5;X4Þ ¼ 1:968 and Table 4 shows the new measures for entropy and
mutual information. Note that the entropy for the target has been reduced significantly, and that no other variable adds
much information to the target, not even X6. In fact, we obtain information values of zero for the first three variables, that
is, they are independent of X7 given X4 and X5, as shown in the DAG.

4.3. Example

To show how the proposed method works with larger variable sets, we consider now a GBN introduced by Castillo and
Kjaerulff [3] to assess the damage to reinforced concrete structures of buildings. This network consists of 24 nodes, where the
node of interest is X24; the qualitative part is the DAG reproduced in Fig. 2. The quantitative part of the network is given by a
Multivariate Normal distribution with mean vector l and covariance matrix R.

The covariance matrix R was calculated from D, the diagonal matrix of conditional variances v i and B, the upper trian-
gular matrix with regression coefficients bji. The values for entropy and mutual information are then calculated. For the tar-
get variable, X24, we obtained that X24 is Nð0;18:267Þ with an entropy of 2.8715. The results for the rest of the variables are
shown in Table 5.

Table 1
Example of step 2.

Y�i hðY�iÞ hðX7;Y�iÞ IðX7; Y�iÞ

X1 1.4189 5.1148 0.0206
X2 1.4989 4.6155 0.5199
X3 1.7655 5.4399 0.0421
X4 2.3148 5.4718 0.5595
X5 2.5702 5.5018 0.7849
X6 3.7063 5.4718 1.9509

Table 2
Example of the sensitivity of X7 to evidence.

Y�i VarðX7jY�iÞ hðX7jY�iÞ

X1 95 3.6959
X2 35 3.1966
X3 91 3.6743
X4 32.3 3.1564
X5 20.6 2.9316
X6 2 1.7655

Table 3
Example of step 6.

Y�i hðY�ijX5Þ hðX7;Y�ijX5Þ IðX7; Y�ijX5Þ

X1 1.4189 4.2426 0.1079
X2 1.1635 3.7814 0.3137
X3 1.6539 4.5451 0.0404
X4 2.1597 4.1279 0.9633
X6 2.8805 4.6460 1.1661
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It can be seen, that the variables that further contribute to entropy reduction of X24, considered as evidence, are first X21

and X20 and second X17 and X18.
In the works of Castillo and Kjaerulff [3] and Main and Navarro [15], the evidence E ¼ X1 ¼ 1; . . . ;X16 ¼ 1 is introduced in

the network. It is clear from the information given in Table 5, that none of these variables, contribute individually, and sig-
nificantly to reduce the variance and entropy of X24. However, we have added them to the network to adjust for its effect and
further evaluate the importance of other variables.

Table 4
Example of step 6.

Y�i hðY�ijX5;X4Þ hðX7;Y�ijX5;X4Þ IðX7; Y�ijX5;X4Þ

X1 1.2883 3.2565 0
X2 0.7643 2.7325 0
X3 1.6047 3.5729 0
X6 1.4189 3.1844 0.2027

Fig. 2. DAG for Example 4.3.

Table 5
Example of step 2.

Variable Y�i hðY�iÞ hðX24;Y�iÞ IðX24; Y�iÞ

X1 1.4189 4.2768 0.01359
X2 1.4189 4.2823 0.00804
X3 1.4189 4.2702 0.02017
X4 1.4189 4.2768 0.01359
X5 1.4189 4.1841 0.10629
X6 1.4189 4.1516 0.13879
X7 1.4189 4.2515 0.03888
X8 1.4189 4.2801 0.01035
X9 1.4189 4.2801 0.01035
X10 1.4189 4.2668 0.02361
X11 1.4189 4.2668 0.02361
X12 1.4189 4.2501 0.04034
X13 1.4189 4.2449 0.04546
X14 1.4189 4.2634 0.02700
X15 1.4189 4.2768 0.01359
X16 1.4189 4.2879 0.00247
X17 1.6843 4.2004 0.35538
X18 1.6699 4.1704 0.37103
X19 1.5245 4.2378 0.15815
X20 1.7847 4.1774 0.47882
X21 1.7387 4.0934 0.51679
X22 1.6851 4.3308 0.22583
X23 2.1622 3.3089 1.72483
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Thus, propagating the evidence through the network, a covariance matrix with values close to zero is obtained. In partic-
ular, the variable X24 is Nð15:42;0:0019Þ. This result has two main consequences. First, the values for entropies correspond-
ing to very small variances are negative, however, the value of the mutual information is positive and makes sense. Second,
such precise values for the distribution of X24, remove the need to perform further analysis to reduce uncertainty. However,
to complete the case study, the values of entropies and mutual information are shown in Table 6.

5. Extension to sensitivity analysis based on normalized measures

Now we extend our procedure according to the normalized measures presented in Section 3.3. The advantage of the mea-
sures used in this new procedure is that values range from 0 to 1 regardless of the unit of measurement of the variables con-
sidered, so we can compare the relative importance of evidence variables in a network or even between different networks.

5.1. New procedure for prioritizing evidence

This new procedure is based on the procedure presented in Section 4.1, but we replace the values for mutual information
with normalized measures and add a difference-normalized measure. The steps for the analysis are as follows:

1. Calculate the entropy for the target variable hðXiÞ.
2. Compute the normalized mutual information between the target variable Xi and each non-evidential variable Y different

from Xi, that is, NIðXi; Y�iÞ
3. Choose as the evidential variable the Xk from Y�i that has the highest non-zero normalized mutual information with Xi.
4. Look at the decrease in uncertainty as hðXijEÞ � IðXi; XkjEÞ ¼ hðXijE;XkÞ.
5. Consider that Xk 2 E.
6. Compute the normalized conditional mutual information between the target variable and the new set of non-evidential

variables Y�i, that is, NIðXi; Y�ijEÞ.
7. Calculate the normalized difference DIXiY�iE.
8. Go back to 3.

Notes for this procedure are analogous to those presented above.
We do not need new specifications to apply this procedure because the same definitions of entropy for a normal distri-

bution, given in (4) and (5), are adequate for calculations. Next, we show how the procedure works when applied to the same
example as before.

5.2. Example

Consider the GBN introduced in Example 2.4, where X7 is defined as the target variable. First we have to asses the validity
of the restrictions required to obtain a real number value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðXÞhðYÞ

p
. From the covariance matrix R, it is evident that all the

individual variances are greater than 0.0585. The determinant calculated for R is jRj ¼ 16 > 1=ð2peÞ7, so we can use this new
procedure with normalized measures.

We start by computing steps 1 and 2 using (4) and (9), respectively. The initial entropy for X7 does not change, that is,
hðX7Þ ¼ 3:7165; the normalized mutual information for the non-evidential variables is shown in Table 7.

Note that the results in Table 7 are consistent with those previously obtained: X6 is the most informative variable for X7,
followed by X5. For comparative purposes, consider X5 as an evidential variable, so the results in steps 3 and 4 match the
calculations we made in Example 4.2; we have VarðX7jX5Þ ¼ 20:6 and differential entropy hðX7jX5Þ ¼ 2:9316. Table 8 shows
the results for steps 6 and 7 obtained with (10) and (11), respectively.

Table 8 shows that X6 is still the most informative variable, followed by X4, as previously. The new result in Table 8 is the
calculation of the difference DIX7Y�iX5 ; it can be understood as a measure of the relative loss of influence for each variable on
the target after the evidence is incorporated into the network. A negative value indicates that the importance of the variable
has increased, and a positive value otherwise. It is interesting to see, for example, that variable X6 was initially the most

Table 6
Example of step 6.

Variable Y�i hðY�ijEÞ hðX24; Y�ijEÞ IðX24; Y�ijEÞ

X17 �3.186 �5.069 0.1694
X18 �3.032 �4.948 0.2022
X19 �3.074 �4.859 0.0706
X20 �2.815 �4.847 0.3185
X21 �2.864 �4.856 0.2793
X22 �3.143 �4.976 0.1198
X23 �2.434 �5.620 1.4727
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important. However, after X5 is incorporated as evidence, the contribution of X4 increases and that of X6 decreases, so after
this step we still have a very similar entropy reduction.

Continuing with the procedure, we return to step 3. After again checking the restrictions, we select variable X4 to be incor-
porated as evidence. The results, similar to those in Table 4, are shown in Table 9.

Finally, an important advantage of these normalized measures is illustrated by a transformed Bayesian network.

5.3. Example

Consider the same problem introduced in Example 2.4 on the duration for which a machine is working. Now imagine that
the machine is made up in part of two new elements that replace two of the former ones. They are connected as shown in the
DAG in Fig. 3.

The target is still variable X7 and the joint probability distribution of X ¼ fX1;X2;X3�;X4�;X5;X6;X7g (note that variables
X3� and X4� replace X3 and X4) is a multivariate normal distribution with the following parameters given by experts:

l� ¼

1
3
3
6
4
5
8

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

B� ¼

0 0 1 0 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 3 0
0 0 0 0 0 2 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

D� ¼

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

where l� is the n-dimensional mean vector, D� is a diagonal matrix with conditional variances v�i ;B
� is a strictly upper tri-

angular matrix with regression coefficients b�ji, and Xj is a parent of Xi.
Similar to the previous examples, we computed R� as

R� ¼ ½ðI� B�Þ�1�
T
D�½ðI� B�Þ�1�:

Thus, X has a multivariate normal distribution with the following parameters:

Table 7
Example of step 2.

Y�i hðY�iÞ NIðX7; Y�iÞ

X1 1.4189 0.0089
X2 1.4989 0.2263
X3 1.7655 0.0164
X4 2.3148 0.1907
X5 2.5702 0.2539
X6 3.7063 0.5257

Table 8
Example of steps 6 and 7.

Y�i hðY�ijX5Þ NIðX7; Y�ijX5Þ DIX7Y�i X5

X1 1.4189 0.0529 �4.9438
X2 1.1635 0.1698 0.2496
X3 1.6539 0.0183 �0.1158
X4 2.1597 0.3828 �1.0073
X6 2.8805 0.4013 0.2365

Table 9
Example of step 6.

Y�i hðY�ijX5;X4Þ NIðX7; Y�ijX5;X4Þ

X1 1.2882 0
X2 0.7643 0
X3 1.6047 0
X6 1.4189 0.1213
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l� ¼

1
3
3
6
4
5
8

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

R� ¼

1 0 1 0 0 3 3
0 1 0 0 2 4 4
1 0 4 0 0 12 12
0 0 0 2 0 4 4
0 2 0 0 7 14 14
3 4 12 4 14 74 74
3 4 12 4 14 74 75

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

Let hj; Ij, and NIj represent the entropy, mutual information, and normalized mutual information, respectively, of the jth GBN,
where j ¼ 1 is the problem in Example 2.4 and j ¼ 2 is the one introduced here.

Again, we start by checking the restrictions and find that the individual variances are greater than 0.0585 and
jR�j ¼ 36 > 1=ð2peÞ7.

As we have seen before, the entropy for the target variable of the network presented in Fig. 1 is h1ðX7Þ ¼ 3:7165, and now
we obtain h2ðX7Þ ¼ 3:5777 for Fig. 3. The results for both GBNs are compared in Table 10.

From Table 10 we can compare the relative influence of the common variables in both networks and draw some conclu-
sions. For example, note that in the presence of X3� and X4�, the importance of X2 and X5 decreases significantly. Further-
more, in the second GBN, assuming that X6 is still not an observable variable, it is better to introduce the variable X3� as
evidence rather than X5.

6. Conclusions

We proposed a new methodology to quantify numerically the contribution of each non-evidential variable to reduction in
uncertainty of a target variable. Then, the conditional distribution of the variable of interest is used to select the most infor-
mative variables.

The first method proposed is based on mutual information measures and allows us to obtain a prioritization to request
additional information. We showed that given a set of evidence variables, if there are some non-evidential variables with
mutual information close to zero, they should not be considered as evidence because they do not add any information to
the analysis. This is an important contribution, because it reduces the cost of modeling and data collection.

Fig. 3. DAG for Example 5.3.

Table 10
Comparison of the GBN results.

Y�i NI1ðX7; Y�iÞ NI2ðX7; Y�iÞ

X1 0.0089 0.0284
X2 0.2263 0.0532
X3 0.0164
X3� 0.1189
X4 0.1907
X4� 0.0224
X5 0.2539 0.0799
X6 0.5257 0.6039
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The second method proposed, which is an extension of the first, includes normalized measures of mutual information.
Under some restrictions, this procedure, as well as prioritizing unobserved variables, can compare the contribution of the
same variable to a different target or to the same target in different Bayesian networks. Therefore, with this method more
and better tools are provided for analysis, although the restrictions should be taken into account.

We introduced a Bayesian network as an example to show the results of the first procedure in our sensitivity analysis; we
then added a second Bayesian network to make comparisons using the second procedure.
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