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distances for pdf’s

Distances/divergences for probability densities

applications:
@ goodness of fit
@ fitting distributions (e.g. kernel estimation)
@ information theory (e.g. Kullback-Leibler div.)
examples of distances/divergences:
@ from functional spaces: L', L2, L> applied to pdf’s or cdf’s
@ ad-hoc: Hellinger-Matusita; Chi-square;
@ from information theory: Kullback-Leibler, ...
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distances for pdf’s

What is lacking in these distances/divergences?

compatibility with probabilistic operations
two relevant operations:

@ convolution of pdf’s: associated with sum of random
variables.

@ Bayes updating: information acquisition

there is a need of a meaningful algebraic/geometric
structure associated with Bayes updating
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simplex

simplex and compositional data

composition: equivalent class of real vectors with
proportional positive components

@ components quantify parts of a whole
@ only ratios between components are informative

@ standard representative: a point in the simplex
(components adding to 1)

Euclidean structure of the simplex

@ interpretable operations: perturbation @, powering ®
@ Aitchison metrics: inner product, norm and distance
@ orthogonal bases, reference measure

perturbation in the simplex is the Bayes formula for
discrete probability vectors
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simplex

Coordinate representation

b2

. Hﬂjﬂﬁﬂﬂ

[[—PRIOR  —LIKELIHOOD —POSTERIOR |

simplex coordinates prior likelihood posterior

balance-coordinates

1/2
by = J5log g by = \/glog (o]~
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aim

leading ideas and goal

heuristic idea: a histogram is a composition and it is
equivalent to a simplex element

@ increasing the number of classes in a histogram it
approaches a pdf...

@ perturbation in the simplex is discrete Bayes formula, it can
be extended to the continuous case...

@ vector space structure with Bayes updating as addition
@ metric spaces of densities

@ Hilbert spaces of densities
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A-equivalent measures

assuring existence of densities
measurable space: (2,2)
sigma-additive measures: )\ equivalent to p (finite or infinite)

p=X VAU (MA) =0s u(A) =0)

@ )\ and p have the same support
@ the Radon-Nikodym derivative (density) exists

du
o
Examples of equivalent measures:
@ Q = R: normal, t-student, Lebesgue measure (improper uniform)
@ Q = R.: log-normal, gamma, Lebesgue measure in R
@ Q={0,1,2,3,...}: Poisson, geometric, counting measure

fu
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B-equivalence: proportional densities

reference measure \: pq, po = A
densities: fi = duq/d)\, o = dus/dA

1,10 are B-equivalent, pq =g o, iff
dec > 0, VA € A, L (A) =C- ,u,g(A), fi=c- f2, ()\ — a.e.)

Remarks

@ likelihood principle: proportional likelihood functions
convey identical information

@ normalization of probabilities: not essential
@ essential information: ratios of probabilities
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operations

perturbation and powering

Bayes space, reference \: elements of B(\) are classes of
B-equivalent measures/densities

perturbation (addition, group operation): f;, , € B(\)

dM1 duz

A d\ dXx dA

fiefbh=pgf-h ()\ — a.e.) , (#1 %) ,Uz)(A)

powering (multiplication): f € B(A), « € R

aof=pf*(\—ae) , (a@u)(A)z/A@’;)a d\
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operations

vector space and Bayes theorem

B()\)-space includes
@ prior densities, proper or improper
@ likelihood functions, integrable or not
@ posterior densities, proper or improper
Bayes theorem

n
p=glLom=p (EBM) o

i=1

perturbation/Bayes updating is an internal operation in B(\)
powering means (linear) weighting

iterate perturbation: group properties allow improper
intermediate steps
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operations

vector space and exponential families

exponential families, k-parametric, natural parameters
f(x|0) = C(0)g(x) exp {Ze Ti(x ]
B(\) expression
k
K(x) =g gr(x) © @D (6; © exp[T;(x)])
Jj=1

k-dimensional affine subspace

@ g, (x) origen of the affine subspace

@ exp[T;(x)] basis of the subspace

@ 0, coordinates of fy(x)
probability densities are a convex cone of the
k-dimensional affine subspace
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operations

example: distribution of a sample maximum

n-sample, distribution F, density f
density of sample maximum

fu(x) = nf(x) - [F()]™

reference f

(%) =5 ,’;((f()) (n—1) o [F()
W direction

the family is 1-parametric and follows a straight-line with n
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clr

centered log-ratio mapping

cir for compositions
|k K
clr(X) =log(x1, Xz, Xk) = & > logx; , Y clr(X)=0
j=1 j=1

clr in B(P) reference P probability measure; density fp
definition of clr, f € B(P)

clr(f) = log(f) /Iog x) dx

P prob. measure < P(Q2) =1

clr mapping is linear; scale and B(P)-reference invariant
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B9(P) spaces

B9(P) space of measures/densities, 1 < g <

BI(P) = {f € B(P) : /|Iog £(x)|9 fo(x)dx < +oo} ,

@ clr exists for densities in B'(P);

@ clr: B'(P) — L{(P) is one-to-one

® B'(P) 2 BA(P)2--- 2 BX(P)

@ B9(P) are Minkowsky metric spaces

1/q
qu(f1,f2) = qu(C/I'(f1), C/r(fg)) = |:/ (le'(f1) — C/f'(fg))q dP
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B-derivative

f(x|t) € B'(P); t external variable (time, space, sample values)

f:R— B'(P)

Definition of B-derivative
d—®f(x|t) =g lim 1 o [f(x|t+ h) © f(x]|t)]
dt B 0h

if it exists. © = ®(—1)o
@ describes change of densities with ¢

@ differential calculus and differential equations for
densities/measures

@ useful concept in applications (Bayesian, robust stats.)



inner, distance and norm

Hilbert space

B?(P) is a separable Hilbert space
clr : B3(P) « L3(P)
inner product, f;, f, € B?(P)
(fi, B)ge = (clr(fy), clr(f2)) 2
distance and norm

dge(fi, f2) = djz(clr(h), clr(f2)) . [Ifillge = llclr(fy)l.2
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Fourier coordinates

Hilbert basis and Fourier coordinates

Yo, 1,2, ... a Hilbert basis in L?(P)
1o(x) constant function
Hilbert basis of B?(P)

exp(v1), exp(v2), . . .

coordinates: Fourier coefficients, f ¢ B?(P)

f:B @ f eXp 1/]] B2 O eXp('(/}/)
Jj=1

@ Fourier coefficients are real orthogonal coordinates

@ if normalized, distances, norms, orthogonal projections,
..are computed as /2 sequences

@ they allow to use standard "real multivariate statistics”
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normals

the Normal family

reference P = N(0, 1) with Lebesgue density f,
P-density g corresponding to N(m, o?)
X —m)? — o?x?
(1) =8 (/) =g oxp (- =) =7

clr ) )
X< —1 1 —xc4+2mx
C/I’(g)(X) = 2 + 20_2

distance, g; ~ N(m;,0?)

1/1 1\%2 /m m\?
d2 = (= - = UL
(91, 92) 5 (012 a§> =+ <012 U§>
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normals

Fourier expansion of Normal family

orthonormal Hilbert basis in L2(N(0, 1)): Hermite
1 _ _ 2 _ /0, N
E/RH,(Q VXV He(272x) P dx = GpK TR, K =27 (jn) 1/
Hilbert basis in B>(N(0, 1))

exp[v(x)] = exp[KiH;(27/2x)], j=1,2, ...

Fourier expansion

9(x) =g c1 © exp[Y1(Xx)] ® c2 © exp[z(x)]

m 1 1 .
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normals

norms of normals

reference: N(0,1)
N(-2,1), N(-1,1.52), N(0,2?), N(1,2.52)
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conclusions

conclusions

results
@ proportional densities are considered equivalent (B(\))

e perturbation is the (extended) Bayes updating

@ proper and improper priors, likelihoods and posteriors are
in B(\)

e (B(\),®,®) is a vector space

o linear affine subspaces contain exponential families

@ g-log-integrable densities (B9(P)) are metric spaces
e cir: B'(P) — L}(P) is one-to-one (isometry)
@ 2-log-integrable densities in B2(P) are a separable
Hilbert space. Standard tools are then available:

e Hilbert basis and Fourier expansions
e distances, norm, orthogonal projections
o Aitchison geometry of the simplex is a particular case.
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conclusions

conclusions

consequences

@ the new framework allows to rephrase most standard
probabilistic models (Bayes theorem, exponential families,
...) in a simple and formal way

@ tools of vector, metric and Hilbert spaces are now available
for probabilistic/statistical modelling

a good deal of research is still pending...

@ the role of references in B?(P)

@ possible uses of Fourier transforms in B'(P) and B?(P)
@ asymptotic theory on B()\)
o

characteristics of well-known families (normal, gamma, beta,
t-student,...)

approximation of B2(P) spaces by the simplex geometry
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example: zero-inflated Poisson exponential family

reference measure: counting measure
v(x)=1,x=0,1,2,...

mixture expression

¢*e ¢
f(xlg.p) = (1 =p) - 3(x) +p- —

B(v) 2-parametric exponential family

’
f(x161,02) =g i (01 ® e~ ) ® (02 ® e‘S(X))
~~ basis; basis,

origin

61 =log ¢ , 6> = log [(1 —p)e? +p} , C(01,02) = [exp(62) + exp(exp(61)) — 1]~
3-parametric conjugate family

7(61,02) =g exp (folog C(64,02) + t161 + t202)
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