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Abstract Multiple hypothesis tests is a topic which has recently shown a major
expansion, mainly due to the expansion of the methodology developed in connection
with genomics. These new methods allow scientists to handle simultaneously thou-
sands of null hypotheses. The frequentist approach to this problem consists of using
different error measures in testing so that to ensure the Type I error remains below a
desired level. This paper introduces a parametric Bayesian analysis to determine the
hypotheses to be considered as being significant (i.e., useful) for a posterior deeper
analysis. The results are to be compared with the frequentist methodology of the false
discovery rate (FDR). Differences between both approaches are shown by mezans of
simulation examples.

1 Introduction

This article is my memory to Pedro Gil Alvarez who was my professor circa 1970
at the Faculty of CC. Mathematics at the Complutense University.

I always thought Pedro was a very intelligent person. When I was in my 4th and
5th year of College he was in charge of the labs of the most diverse subjects in the field
of statistics. Later, I realized that Teaching Assistants were scarce in the department.
As a consequence, the professors who were at the beginning of their careers had to
perform a remarkable effort to deal with students who were just at the initial level of
statistics. This reinforced my feeling that he was very smart.

In the field of simultaneous inference, multiple hypothesis testing deals with the

testing of more than one hypothesis at time. A single hypothesis test can be describad
as follows

M. A. Gomez-Villegas (X) - B. Gonzalez-Pérez

Departamento de Estadistica e Investigacién Operativa I. Facultad de
Ciencias Mateméticas, Instituto de Matemdtica Interdisciplinar (IMI),
Universidad Complutense de Madrid, 28040 Madrid, Spain

e-mail: ma.gv@mat.ucm.es

B. Gonzilez-Pérez
e-mail: beatrizg@mat.ucm.es

© Springer International Publishing AG 2018 195
E. Gil et al. (eds.), The Mathematics of the Uncertain, Studies in Systems,
Decision and Control 142, https://doi.org/10.1007/978-3-319-73848-2_19




1967 M. A. Gémez-Villegas and B. Gonzilez-Pére,

H=0:6€6; versus H=1:0¢€ 6, (1)
with @ M @) = §. A statistic, 7 (X), is observed and a value T(x) =t is obtaineq.

From the frequentist point of view, the null hypothesis will be rejected if the
observed value, t, is over a certain threshold. This threshold, which is arbitrary,
settles a certain rejection region, I, in such a way that if £ € I" then H — 0 ,S
rejected while if t ¢ I', then H = 0 is accepted. The rejection region defines the
‘Type I error, that is to reject the null hypothesis when it is true, 8 € @ but 7 e /ol

When festing a single hypothesis as (1), an acceptable maximum Type 1 error
probability is specified and the conclusions are obtained based on a statistic which
meets this specification. Then, the maximum Type I error probability is fixed at g
certain level, which is known as significance level, o

SUPP/'(TEF&,@):PT(TEFUIH:(I):Q (2)
fedy

and a frequentist measure of the evidence against the null hypothesis is the p-value,
defined as the minimum false positive rate at which an observed statistic can be called
significant,

p —value(t) = sup PriT € I}|4 =0) 3)
BlH=0

where I is the critical region for 7 = ¢. Alternatively, the probability that, the
statistic is as or more extreme than the observed one, 7, under the null hypothesis,

p —value(t) = Pr(|T(X)| > |t||H = 0)

can be used as test statistics (see Lehmann and Romano [8, p- 63)).

But when many hypothesis are tested, to fix an individual Type I error probability
for each one may have consequences if the set of hypothesis are evaluated as a whole.
A review about multiple hypothesis testing can be seen in Shaffer [10].

The question is, basically, whether the probability of a false positive increases with
the number of tests. For example, if the significance level is fixed at 0.05 for each test
and a set of 100 tests are evaluated, the expected number of false positives is 5. Then,
3 hypothesis will be rejected simply by chance. The level 0.05 has been widely used
in the literature since Fisher proposed it, and its intense use has produced basically
correct scientific inferences. Otherwise it would not have remained as a reference
level so long. But the 0.05 level was applied to a single hypothesis, not to a great
aumber of simultaneous hypothesis; this is the reason for introducing measures of
evidence that take into account all the hypothesis which are tested simultaneously.

Multiple hypothesis testing has been widely used in the past in different fields as
Shaffer [10] pointed out. Recently, the field of genomics, and in particular the DNA
microarray experiments where thousands of hypothesis can be tested simultaneously,
have influenced the revitalization of the procedures of thz multiple hypothesis tests,
see Dudoit et al. [4] In this context, consider 71 hypothesis tests
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Table 1 Multiple hypothesis

H, =0 versus H; =1, i=15L....i 43

and we want to test the #2 null hypothesisbslimultanecusiy. Benjamini anZ Hechberg

e summerize the problem.
[Z]Iirgif.e;\izlh;g summarized sonlie of the frequentist proce:iur;s tn: 16[53:1?9;11:']
hypothesis simultaneously, as in (4). In Sect..3 we ba:y ?rﬁfci,;.::gm;f:d ‘f:,,
abproaches for testing {4) and we compare, for smulatei] ‘.Jata; : sﬂ[ryéﬂ : ‘_‘iﬁ :_.r:him[
these Bayesian methods with the frequentist rgsul;s. Section 2 mt. ades a ziererchic
model. Finally, Sect.4 contains some conclusions and commen:s.

2 Frequentist Procedures

2.1 Type I Error Rates

Shaffer [10] picked out the generalizatior}s of the Type | errlor des}?r:bed aﬂb»]lne S SlEx:
multiple testing problems: the family wise error rate. FWE.jR, ;;e pf,r—- ;w ; D ;2 y
error rate PCER, the per-family error rate, ‘PFEdRI:{am}i1 :];i’f?:e iscovery Tzle, .

i -as introduced by Benjamini and Hochoerg [£]. 4 ) :
ThllsnlZsrf\?tzsi?sm:[;iacedureyto c;rry out a mpltiple hypothefxs test :m;s:sifo?
commlli;xg a particular Type I error rate ata certain level E_aji plodum[r;a;n '1: E ‘_—he;,
rejected hypothests. If the level is fixed to control the Lyl?f: emc;r r.e'lh_e re::'c,ror,‘,
all the null hypothesis are true, o = /. 0ne speaks of weak uo_:ltro;i:\lh _l:n 33;‘
control referrers to the control of the Type I error rate under ax_xy pns - 1e c.ifnf L mor;
of the true and false null hypothesis. See Shaffer {10] and Dudoit et al. [4] 121 z
details about this setting.

2.2 p-Values

As defined above, the p-value p; (#;) for asingle h}’pothgsis H can VZB .fw:r:as l:.:(z
level of the test at which the hypothesis H; would be I(hJECtBG,‘glV::i'th, :»:2 o .:
statistic T; = f;. The smaller the p-value, p;{r,')..the.stronrger;he s:ldjm.; ?'C,a;n;
the null ;. With a fixed significance level, o, rejecting f; when pi = o assum
that the Type I error rate is controlled at level .
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The concept of the p-value can be extended 1o the multiple testing problem under
the concept of the adjusted p-value, see Dudoit et al. [4]. Given a test procedure, fo,
example a FDR procedure (see Benjamini and Hochberg [2]) defined as in (6), the
adjusted p-value for a single hypothesis H; is defined as

pi=infle€[0,1]: H, is rejected at nominal FDR = &) (5)
in words, the nominal level of the entire test procedure at which the hy
would be rejected, given the values of all the test statistics.

Westfall and Young [13] estimated the adjusted p-values by resampling methods.
A recert discussion about p-values can be seen in Wasserstein and Lazar [12].

pothesig H,

2.3 The False Discovery Rate

Benjamini and Hochberg 2] introduced this concept, less conservative than the oth-

ers, to centrol the expected proportion of Type Ierrors among the rejected hypothesis,
So, the FDR is defined as, from Table 1,

1%
FDR=E [7?-] Pr(R > 0). (6)

If R =0, then FDR = 0, Benjamini and Hochberg
strong control of the FDR for independent test statistics
of the FDR at level & can be resumed as follows:

[2] derived a procedure for
. This procedure for contro]

e The observed p-values are computed and ordered: py;,

e Compute Rpy = max{i : Py <a(i/m)).

e Reject null hypothesis corresponding o p(y,
no hypcthesis is rejected.

=< Po i Pimy-

s+ Pikg- 1T Rpy does not exist,

Benjamini and Yekutieli [3] showed that the procedure above controls the FDR at
level &, under certain conditions of dependency.

The adjusted p-values corresponding to this control are

o . . fm i
Puy =  min {mm (—.P(_m 1)} - ™
J=i.m /

In a microarray setting, Dudoit et al. [4] proposed the FDR controlling procedures as
alternatives to other approaches. They argue that in this context one may be willing

to bear a few false positives as long as their number is small in comparison to the
number of rejected hypothesis.

Multiple Hypothesis Tesis: A Bayesian Approach
3 A Bayesian Approach

Consider the problem of multiple hypothesis testing given m(_—1,‘|1 z‘-:.s—;anab: :n .a;'
denote by m; the unknown number of hypo.theses .x&“hefe H; = ,OL 4_: 44444
is section we propase two different Bayegan me‘.hods‘for t;.s.tm? & .
o be:esiin inference on multiple hypothesis has been widely studied. \jj.ﬂe study
inOBi'f in the same way as the approach prgp;sed ‘:}Eg]\faller and Duncan 11], Fobezt
T il : d Scott and Berger [¥].
b Barb{;:cfiig 2 izggirvili %[;yesian estimator for m,, for instance, Jne*naar orthe
(3: g?the posterior density of m;. We denote 95 by the/ prior IEII‘"Ot‘)aj).] lwn volle nlj
mO_ 0.6 = P(H; =0),and consequently | =8 = P(H; = 1},i =1 f,"’_m”‘f'_“
i <';n¢ that the m hypothesis are independent, then H;|6; ~ Beirn@uu!(_;—_t:;,
e - ™  H,. An initial Bayesian approach is to assume that all & arz -:T_ua‘:lp
an(’j[’])i:n_z_ﬂTézi Blinomial(m, 1—8) and we can estimate m, with % = m[lﬁ—t;_:,
i:here 5 is lan estimator of € (a locati;n pH{E;(meter of jt{he)p:(;s(ljetr::rr\:ednz:.'pgf:j .1‘ )
-h hypothesis H;, a vector T; = (X;, ..., X;s) 1s cbse L_ paie il
fori(l)lri?i:lder}fl; = 0 the density is f (£10), while um.ier H, = 1 thef d::::l.n: :':lfi]o]r
Thus, the observations 7; (assume i.i.d. random variables) come from -5

both densities:

fi’t‘;}@) == f(Z,'|H,~ = O}Pr(Hi =0|9) + f(_['i‘H_; =DPr{f;=146) (8
=87(110) + (1 — &) F(11)

and the likelihood can be written as

m

f o mle) =[] i) = [T0F @10 + A= B35l o

i=1 i=1

where t; = (X;1,..., 3 i) o |
The lp:rior distribution for the parameter ¢ can be thought of asa t-etj_c..:at{ b#mn,
Betala, b), because of its versatility to model a density over the interva {2, 1] Taen,

fla+d) ., b1 =4 0
= ———207 {1 -0V, 0<e< (1]
76l 0= Fare)
and the posterior density of &, given fy, ..., Iy, a. b, is given by
\ m(6la.0) [Ty BF 610 + A —O)FwI
I(9|7I‘~-wrlr1:aab): ERE

1 o Fr g
/ x(6la, b) [T107410) + (1 — ) FLu i 48
0

i=1

where, in the first step, @ and b are known and previously fixed.
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Then, we compute and order the posterior probabilities

o F:10 |
P(H; =0|T; =)= . =T...., 5 (
=0l =0 = e+ rama =6 | e 1)

These probabilities will be estimated using @, the estimated value of 6 obtained
through (11), then

fe|0)8

PH =0T =t)= ——t
F108 + fF@ID1 —8)

i=1,...,m. (13)

Really, the Bayesian method invoives computing P(E; = 0|7} =1, ..., Tn=t;),
but the approximation proposed by (12) and (13) simplifies the simulation’s task a
lot.

Finally, we will use 8 and the estimated posterior probabilities in multiple hypoth-
esis testing using the two following methods:

Method 1:  We estimate the percentage of hypothesis where H; = 0 by using the
mean @ of the posterior density (11) as an estimator of €. In this case, 71} = m(1—
8). Then, the 7 hypotheses with the lowest estimated posterior probabilities, see
(13), will be rejected (will be declared interesting).

Method 2:  We use the following Bayesian decision srocedure

e Given 3, the observed posterior probabilities are computed from (13) and ordered.

° Compute?: max{i : ﬁ[HU) =0|Ty = t[‘:)) < 0.5}. Thresholds other than 0.5
can be used.

* Reject the null hypothesis corresponding to 75, . . ., t7. If 7 does not exist, no
hypothesis is rejected. '

Then, the hypotheses with the estimated posterior probabilities lower than 0.5 will
be rejected.

From the Bayesian point of view, Method 2 is formally more correct than
Method 1. But, experimentally, when simulations with m; known are run, Method 1
adjusts the results better when the hypothesis are close and the sample size, », is
small which is usually the case in these kinds of problems. Whereas if the hypothesis
are not close both methods provide similar results.

The next example, used by the authors previously cited, shows how the method-
ology is applied to an example with 2 normal model.

Example 3.1 If under H; = 0 the model is N(0, 1) and under H; = 11is N(1, 1),
and n observations are taken foralli =1, ..., m, then

Fey=61] fixgio) + 1 =9 [T £
j=1

i=1
"
i

o (271:)—""'26%2";2:'2 =._.r‘,.3j 641 = g)er:(,i—l/’z))_
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Then the joint distribution of the #im observations is

Fitr .. ta10) = [ F010) )

m

_ (27)_”,”’,26_(1!42)Z::z:l Z:‘="‘, H((’ (1 - 9}2.-3(.6- ;:::_
i=1

And the posterior density of @ given #1, . ... fm, 2, b, 18
7[(9.!1« cestma @, b) X 7[('9‘:‘1: b)f(:th DELE | "r.-;‘g)

o811 =y [T 8+ (1 = 935772

i=1

whereas the posterior probabitity cf the null is estimated by

) 1 _§ n(&, —12) (
P{H; =0T, =)= 1+—2~—€ §

A
[

fori = 1, ..., m hypothesis, with 9 = EBlt, ...t a.,.b]A )
We use Montecarlo integration to estimate 4. For this, we simelatz 2 53_r,d:‘r
sample 91, . .., & from the prior distribution Beia{a,b). Then, we sstimalz ¥ as:

fol Gftrs - )T (B &, B)AO
fo flo,. .. tml8)w@la, bide

B=EBih....  tma,bl=

i B )
S f, - tml6)

Usually, in a multiple hypothesis setting, the' point .is to icentify a sznfl_ ‘Ir:ETl ui
of interesting cases that will be investigated in c{e.[all. :l"hen, the mm}r o :_1?; [:c;.:
hypothesis would be greater than 90% (se.e Efron [3])_. ]-BBFaLuf ”- th:_-_. lé R;T:e
appropriate to consider a Beta(a. D den51.ty as the pl‘lOl‘ d]s;n, Jltloll}[ ! :r_:y:ﬁhg
this prior gives a high probability to small 1nFe{\'als of 2 slosb el )rf‘_-‘,u i
prior includes a wide list of densities, the nonmtormany? [%6“_“_]_‘ 11J (_ie?:ufi-mﬁ—lt;tt
others even though we propose a > 9 to be coherent wm. the initial assuTEOC” at
10 more than 10% of null hypothesis would be declared interesting.
In this case, the posterior density is given by

m

. At =120 Hra
2@l ...t a) @[] (F+ -0, (R

i=1
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Table 2 Results with Method 1 with a prior density & ~ Bera(a, 1) (for different val

: ; UES 0f a) 4ng
for simulated data from (14) with & = 0.9, different values of m and n = 5 observati

m) hypothesis o7 Per (each
m=s0 ;“ = l:ﬁﬁz_f T Ta=1y F:hzs E;?o\
0801 josms Tomazomes

ooy (06067 06126 Jﬂ@ﬁgm_ L

% Type I error ; 4.835 4.615 4.396

% Typelemor 289 ‘"'58_5"""‘ml"zs“_?w*_“ 333

ﬂm:lOOO gl =T =11 a=23

g 0.8769 08884
A =100 123 e
probi 06s35 Toses T
BTypelemor 2927 lavos -
% Typellemor 126168 25165 26168 (27003 270035
m = 5000 i a= 50“‘“‘
B 0.8999

fﬁ] (I)l[ = sS04 _hqi _S_bgwﬁ—\
proby el
% Type Loror | ~ lies

G Typelemwor 34236 |3a336 (34236 (3429 T3asc
:;n:IOOOO éa:l @ =] ja=11 ja =25 ’I.:;‘gom VVVVVV
L (09057 05053 09057 09062
e =944) o3 943 ) % (98

probi lo.6722 10.6735 0.6721
LT E TN
el [R5 | 221

A simulation from a mixture of a N{0,1) (90%) and a N (1, 1) {10%) is carried out
for m = 500, 1000, 5000 and 10000 hypothesis, with n = 5 cbservations of each
hypothesis. A Beta(a, 1) prior density for 6 is taken where @ — 1,7, 11, 25, 50.

First, we use Method | and calculate 9, my=m(l — 5\ — the number of rejected
hypothesis with method 1—,

prob) = ﬁ(H('ﬁx) = OIT{;??I) = t(.mll)

~ the highest posterior probability rejecting null hypothesis with Method 1—, and
the percentage of Type I and Type IT errors. The results are shown in Table 2.

: i 23
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Table 3 Results with Method 2 with a prior density 8 ~ Bera(a. 13 (for different ve ves of 20 x
a
the same daia sets of Table2

- a=1 ia=7 a—-:l»l. a=
0.8901 10.8929 08942 08996
IR R ET 33w
whypeleror  [2418 EECT 2198 (1978
% Typellerror  |44.4 444 444 44
m = 1000 a=1 la=T a=1] ia=25
5 0.8759 0.8786 0.879% 0.882¢
Tmy = 167 96 95 95 |4 7
o Typelemor | 2.352 2352 2352 2352
% Typellzmor | 29.906 30.841 0841 3175
a=1 a=7 a=11 a=25
0.8984 0.8985 0.8983 08991
| 348 348 M9 M7
BREE T 1.851 1851 1851
% Type emor | 48.743 48.743 48549 48.936
m = 10000 ai=k =1 a=1I a=725
a3 0.9057 0.9057 09053 09057
Tom =944)  |654 654 656 65¢
"% Type I 2rror 1.557 1.557 1568 1557
% Typellerror | 45.657 45657 45531 45657

Then, with the same data sets and § from Method 1 used to compute lhf: 7 9:EterLf::
probabilities (13), we use Method 2 and calculate i, the number of hypothesiz rcpm»:d
with Method 2, and the percentage of Type I and Type [T errors. The results z== shawn
in Table 3. . .

Observe that these two testing Bayesian procedures are robust with raspect [f e
value of 2, in the sense that & does not strongly influence the results. This ew issue
is good because the known Bayesian methods for testing (4) deaends stronzly €11 he
Parii“;‘g;i 'to compare the two proposed Bayesian methods wilh. the FDR |:l-:»cedt:e
of Benjamini and Hochberg [2], Table4 shows, for the same cgta sets ada = ]:I
(an intermediate value of @), the number of null hypothesis rejected (Aep. 11, |,
respectively), and the percentage of Type I and T}'pe' 1T errors. .

Note that, with our Bayesian methods, simulations show that the fnumbe( O
rejected null'hypotheses is more adjusted to the true than the frequen_]:: me:find
of Benjamini and Hochberg [2] is. For comparisons, see Table 4, In this s=
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Table 4 Results with the procedure of Benjamini and Hochberg 2] and Method 1 and Methog 2
Eith a = 11, for the same daa sets of Tables2 and 3

@=005 =005 «=005 la=11 la=1l
BH Meth. | BH Meth. | BH Meth. | Meth. 1 Meth.1 |1

m ‘mx ‘Rpn % Typel |% Typell 1 % Type |

500 a5 9 0 80 53 162 28.90
1000 1107 | 36 022 6822 120 (453 |2617
5000 517 (106 ol 13046 s08 375  |3424
10000 1944 187 10.03 8051 947 341 (3242
=01 |e=01 [¢=01 la=11 ja=11 |a=11
'BH Meth. | BH Meth. | BH Meth.  Meth. 2 |Meth.2 | Meth, 2
m mi R % Typel % Typell |1 "% Typel | % Typell
500 45 18 0.44 64.40 35 2.20 44.40
1000  |107 59 0.56 14953 | 95 2.35 3084
75000 517 161 1029 7137 "'%"325 185 4855
10000 944 [307 [023 (6970 |65 {157 4555

procedure of Benjamini and Hochberg [2] is more conservative than each of the
Bayesian methods.

One of the problems in multiple hypothesis testing with frequentist procedures is
the fact that only a small number of interesting hypothesis are detected. In fact, if we
want that the frequentist method achieves similar results to Method 2, simulations
show that a value of o > 0.2 is needed, but this value is rot admissible.

Moreover, with our procedures the percentages of Type I errors are admissible —
it does not exceed 5%—, and Method 2 is more conservative than Method 1, and the

percentages of Type Il errors are less than the same percentages with the frequentist
procedure.

4 A Simple Hierarchical Model

Really, the parameters of the prior distribution are usually unknown and then asimple
hierarchical model must be used. If we want to take a ncn informative prior about
(a, b), Gelman et al. [6] suggests, in a different context, the use of

7(a.b)  (a + b))% aa7n

In Sect.2 we justified the choice of a Beta(a, 1) prior to model our initial cpinion
about 6. Then, we propose to use w{a) x {(a + 1)~3/2, Furthermore, if we suppose
(see Sect. 2) that under H; = 0 the model is N (0, 1) and under H; = 1is N(1, 1).
then the posterior density for (8, a) when nm observations are taken is

P
n

Multiple Hypothesis Tests: A Bayesian Approach .

7@, alty, ... 1) X TOlOT@ 1 tnlE)

n
6 @+ V[0 + 0 -9

i=1

1 a 3 p— =ararl
we use Montecarlo integration to estimaze &. Then, we s1mulatela Icl]',:lfjff— szrapie
7 ay from m(a) « (@ + 1)~5/2 and for each g;, a sample £, ... €, T 1%
o 1 3 1 ] W = ' x
p;ior distribution 7 (8 |a;) ga=! forl =1,..., R, is obtained. Finally, wezstmzte

@as:

f;“‘i f(}l Qf(_h,‘ cea Im‘;9)7r(9la):r:’1}£.; ol |
& . @) w @) (2l 2
?h Z};zl Q!f(t],.,.,z,,,wi’)

~ L=i=1

TS fl s tmlf])

&

Il

E[x @I, ... tna. D) =

The same data set as in Example 3.1 is used, v'vhere a simulation from & j;f:: .— ,
N (0, 1) (90%) and a N (1, 1) (10%) was carried out for m = 500, 10Co, 2203 :=-¢
10000 hypothesis. with n = 5 observations Ef each hypOthesxs. .
First, we use Method 1 to calculate 8. 7, the highest posterior ]:T-:.___:_,_nér i:
rejecting the null hypothesis and the percentage of Type I and Typz If eers. Tas
res m in Table5. _
Aebllilitsaﬁ; S\il'z\:;lslelMemod 2 with the same data set, and taking & ffom Y = ’ .::-:I"_l E
calculate the number of hypothesis rejected and the percentage of Tvoe _ and Tepe
11 errors. The results are shown in Table6.

TableS Results using Method 1 for the hi_eggrchical ase

Tm =500 [m = 1000 “m = 5000 L= IO
+ ]

| 'NCTs§
T@=09 10.8910 0L155
— e —

% Type l error

% Type 11 error _i-“ 8

Table 6 Results using Msthod 2 for Ehime_lzmc_hggl case

Tm =500 Tm = 1000 m = 5000 v =00

% Type 1 error

;c_'l:g)e 11 error 1 A4.4
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In Sect.3 it was shown that the results are not significantly affected by changeg
in the parameter a of the beta prior distribution for #. This is the reason that, for the
hierarchical case, we obtain similar results to those obtained in the previous section,
because in this case the different possible values of a are replaced by the mean of g
prior distribution. '

5 Conclusions

The proposed methodology in this paper involves to provide a Bayesian estimator
for & (the percentage of true null hypothesis in (4)), for instance, the mean or the
mode of the posterior density of 6. Posterior probabilities of H; = 0,7 = 1, ... ,m,
are calculated and estimated by using a prior density Bera(a, 1) for . Based on this
estimator of 6, we propose two different Bayesian approaches to test 4).

Simulations show that these two Bayesian procedures are robust with respect to
the value of a, in the sense that the parameter a does not strongly influence the results.
This new issue is good because the known Bayesian methods for testi ng (4) depends
strongly on the parameters.

It is well known that detecting a small number of interesting hypothesis is one of
the problems in multiple hypothesis testing with frequentist approaches. In this sense,
another important conclusion is that our Bayesian methods are less conservative than
the procedure of Benjamini and Hochberg [2], because it allows us to reject a higher
number of null hypothesis to test (4). In fact, with each of our Bayesian methods,
methods 1 and 2, computations show that the number of rejected null hypotheses is
more adjusted to the true than the frequentist is.

Moreover, the analyzed examples show that with our procedures the percentages
of Type I errors are admissible (they do not exceed 5%), Method 2 being more
conservative than Method 1, and the percentages of Type II errors are less than the
same percentages with the frequentist procedure.
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