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Multiple Hypothesis Tests: A Bayesían
Approach

Miguel A. Gómez- Villegas and Beatriz González- Pérez

Abstract Multiple hypothesis tests is a topie whieh has reeently shown a majar
expansion, mainly due to the expansion of the methodology developed in conneetion
with genomics, These new methods aUow scientists to handle simultaneously thou-
sands of nuU hypotheses. The frequentist approach to this problem consists of using
different error measures in testing so that to ensure the Type 1error remains below a
desired level. This paper introduces a parametric Bayesian analysis to determine the
hypotheses to be considered as being significant (i,e" useful) for a posterior deeper
analysis. The results are to be compared with the frequentist methodology oí' the false
discovery rate (FDR), Differences between both approaehes are shown by means of
simulation examples,

1 Introduction

This article is my memory to Pedro Gil Álvarez who was my professor cirea 1970
at the Faculty of CC. Mathematics at the Complutense University.

1 always thought Pedro was a very inteUigent persono When 1 was in my 4th and
5th year ofCollege he was in charge of the labs ofthe most diverse subjects in the field
of statistics. Later, 1realized that Teaching Assistants were scaree in the department.
As a consequence, the professors who were at the beginning of their careers had lo
perform a remarkable effort to deal with students who were just al the initial level of
statistics. This reinforced my feeling that he was very smart,

In the field of simultaneous inference, multiple hypothesis testing deals with the
testing of more than one hypothesis at time. A single hypothesis test can be described
as follows
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H = O : e E ea versus H = 1 : e E e,

with 80 n el = 0_ A statistic, T(X), is observed and a value T(x) = t is obtained_
From the frequentist point of view, the null hypothesis will be rejected if lhe

observed value, 1, is over a certain threshold. This threshold, which is arbitrarv
settles a certain rejection region, F', in such a way rhat if tEr then H = O ¡~
rejected while if t rf- r, then H = O is accepted. The rejection region defines the
Type I error, that is to reject the null hypothesis when it is true, e E 80 but tEr.

When testing a single hypothesis as (1), an acceptable rnaximum Type 1 error
probability is specified and the conclusions are obtained based on a statistic whicn
meets chis specification. Then, the maximurn Type I error probability is fixed at a
certain level, which is known as significance level, a

sup Pr(T E rale) = Pr(T E ralH = O) = a
8Eeo

and a frequentist measure of the evidence against the ncll hypothesis is the p-value,
defined as the minimum false positive rate at which an observed statistic can be called
significant,

p - value(t) = sup Pr(T E f't¡H = O)
eIH=O

where I'r is the critical region for T = t. Alternatively, the probability that, the
statistic is as or more extreme than the observed one, 1, under the null hypothesis,

p - value(t) = Pr(lT(X)1 ~ ItllH = O)

can be used as test statistics (see Lehrnann and Romano [8, p. 63)).
Bu! when many hypothesis are tested, to fix an individual Type I error probability

for each one rnay have consequences if the set of hypothesis are evaluated as a whole.
A review about multiple hypothesis testing can be seen in Shaffer [10].

The question is, basically, whether the probability of a false positive increases with
the nurnber of tests. For exarnple, if the significance level is fixed at 0.05 for each test
and a set of I00 tests are evaluated, the expected number of false positives is 5. Then,
5 hypothesis will be rejected sirnply by chanceo The level 0.05 has be en widely used
in the literature since Fisher proposed it, and its intense use has produced basically
correct scientific inferences. Otherwise it would not have remained as a reference
level so long. But the 0.05 leve! was applied to a single hypothesis, nol to a great
number of simultaneous hypothesis; this is the reason for introducing measures of
evidence that take into account all the hypothesis which are tested sirnultaneously.

Múltiple hypothesis testing has been widely used in L'1epast in different fields as
Shaffer [10] pointed out. Recently, the field of genomics. and in particular the DNA
microarray experirnents where thousands ofhypothesis can be tested simultaneously,
have influenced the revitalization of the procedures of the rnultip1e hypothesis tests,
see Dudoit et al. [4] In this context, consider m hypothesis tests

(1)

(2)

(3)

¡~~
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ralJle 1 Multiple hypothesis --------- --·i.0-~;~jeraccepted Number ~eje:te:

H = O .u V "'-.-.----1---------.-.--- ..-;:------- -----__ e
H = I T .:> "'J1-------_·_- -~--------------- --..------_______~v: ~~__ . _'_~ _

(.:+:1H,- == O versus H,- == 1. i == 1, .. - , 111

and we want to test rhe m null hypothesis simultanecusly. Benjamini anc Hcchberg
[2] propose Table 1 10 summarize the problem.

In Sect. 2 we have summarized some of the frequentisr proced.ires te res: .'1¡ nul.
hypothesis simultaneously, as in (4). In Sect.3 we have propcsed two Bayes.an
approaches for testing (4) and we compare, for simulated data, the results obiained for
rhese Bayesian rnethods with the frequentist results. Section 3 includes a :::ieu_rchi:al
model. Finally, Se::[.4 contains some conclusions and cornmen:s.¡

I
\
!

2 Frequentist Procedures

2.1 Type 1 Error Rates

Shaffer [10] picked out the generalizations ofthe Type 1error described above :c the
múltiple testing problems: the family wise error rate, FWER, the ¡:er-:ompar~sJn
error rate PCER, the per-farnily error rate, PFER, and the false discovery rzre, FDR.
This last one was introduced by Benjamini and Hochberg [2].

In any case, the procedure to carry out a rnultiple hypothesis test consists 0:-
contro\l ing a particular Ty¡:e I error rate at a certain leve] o: and producing a lis: of Ti
rejected hypothesis. If the level a is fixed to control the Type 1 error rate on.y when
al! the null hypothesis are true, mo == m, one speaks of weak control. wherezs strong
control referrers to the control of the Type 1error rate under any posible cornbination
of the true and false null hypothesis. See Shaffer (10] and Dudoit el al. [4 J fJ: more

details about this setting.

2.2 p- Values

As defined above, the p-value p¡ (ti) for a single hypothesis H¡ can ce view E:' as the
level of the test a1 which [he hypothesis H,- would be rejected, give.i the value of a
statistic Ti == ti. The smaller the p-vaJue, p,-O,-). the stronger the e-•.idence against
the null H,-. With a fixed significance level, Ci, rejecüng H,- when ;;¡ S e: assumes
that the Type 1 error rate is controlled at level a.
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The concept ofthe p-value can he extended 10 the multiple tesring prohlcl1l under
the concepr of the adjusted p-value, sce Dudoit et al. [4]. Given a test procedure, fO

rexample a FDR procedure (see Benjarnini and Hochberg [2]) defined as in (6), lhe
adjusied p-vallle for a single hypothesis H¡ is defined as

íJ¡ = infla E [O, 1] : H¡ is rejected at nominal FDR = al (5)

in words, the nominal level of the entire test procedure at which the hypothesis H,
would be rejected, given the values of al! the test statistics.

Westfall and Young [13] estimated the adjusted p-vaJues by resampling methods.
A recert discussion about p-values can be seen in Wasserstein and Lazar [12J.

2.3 The Fa/se Discovery Rafe

Benjamín¡ and Hochberg [2] introduced this concept, les s conservative than the oth
ers, to control the expected proportion of Type 1errors among the rejected hYPOlhesis.
So, the FDR is defined as, from Table 1,

FDR = E [i]Pr(R > O).

If R = O, then F D R = O. Benjamini and Hochberg [2] derived a procedure for
strong control ofthe FDR for independem test statistics. This procedure for control
of the FDR at level a can be resumed as follows:

• The observed p-values are computed and ordered: P(I) ::s P(2) ::s ... ::s P(m).

• Compute RSH = max(i : PUl ::s (X(i/m)}.

• Reject null hypothesis corresponding to P(I', ... , P(R
8

/1)' If RBH does not exist,
no hypothesis is rejected.

Benjamini and Yekutieli [3J showed that the procedure above controls (he FDR at
level a, under certain conditions of dependency,

The adjusted p-values corresponding (o this control are

- . {. (m )}PUl = . mm rrun ---:-PUJ, 1 .
j =l •... ,m J

In a microarray setting, Dudoit et al. [4] proposed the FDR controlling procedures as
alternatives lo other approaches. They argue that in this context one may be willing
lo bear a few false positives as long as their nurnber is smalJ in comparison to the
number of rejected hypothesis.

(6)

(7)

Mulliple Hypotbesis Tests: A Bayesian Approach I~

3 A Bayesian Approach

Consider [he problem ofmultiple hypothesis testing given in (4). As _::1 T<Jb:~1, we
denote by ni I the unknown nu mber of hypotheses where H¡ = 1, " = l .. - .. in In
this section we propase two differerít Bayesian rnethods for testing :4l.

Bayesi.ln inference on múltiple hypothesis has been widely studied. \':;:. are Hu,:I:;-
ing ir in the same way as the approach proposed by Waller and Duncan :J 1], Eobert
[7]. Barbieri and Berger [1] and Scottand Berger [9].

Our objective is to give a Bayesian estimator for m ¡, for instance, the mear or the
mode of the posterior density of m l. We denote e; by the prior probabi lil~ of he m.ll
H¡ = O,e = Pt H, = O), and consequently l - 9i = P(H¡ = 1), i = 1 .. , 'TI, me
supposing that the m hypothesis are independent, then H..¡e; ~ Be-r.cu.li e - 6:;
and mi = ¿:r=1 Hi. An initial Bayesian approach is to assume that all e, are ecua, Le,
e. Then, ¡-'¡!le ~ Binomial(m, 1-el and we can estímate m I w~th~¡~ = mc:t -t),
where {) is an estimator of e (a location parameter of the posterior dens.r ••of ti).

For each hypothesis H¡, a vector Ti = (Xi:, _ .. , Xi") 1Sobserved. Srppose .bat
for all i, under H¡ = Othe density is f (t 10), whi1eunder H¡ = 1 the densuv is [(.Il)·
Thus, the observations T, (assume i.i.d. random variables) co.ne frorn a mixture of
bolh densities:

f({¡\e) = f(t,IHi = O)Pr(Hi = Ole) + f(ti IH, = l)Pr(H, = ] ;a)

= ef(;;\O) + (1- e)f(t;\l)

...~~.,~.

and the likelihood can be written as

m ni

f(tl. tl, _.. , t'l1le) = TIf(t;\e) = n[ef(t, 10) + (1 - elfU,II)]. WI
i=1 ;=1

where ti = (Xii, ... , Xin)'
The prior distribution for the parameter e can be thought of as a beta cistr.bution,

Beta(a, b), beca use ofits versatility to model a density over the interva. ID, II Tnen,

n(FJla. b) = rea + b) ea-I (1 _ e' b-I. O < () <
. r(a)r(b) ). --

r;o:

and the posterior density of e, given ti, .. _, t." a, b, is given by

;r(elrl, " . ,tm., a, b) =
n(ela, b) n7~1[ef(t¡\O) + (1 -8)j(!dtJ

(11)
I ni1 n(ela, b) TI ¡8f{l¡ 10) + (1 - e) f~l, 11:1de

o ;=1

where, in the first step, a and b are known and previously fixed,
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Then, we compute and order the posterior probabilities

f(l;lO)a i = 1. ... , m.
P(H¡=OIT;=t¡)= f(tilO)8 + f(t;lI)(1 6)' .

These probabilities will be estimated using e, the estirnated value of 8 obtained
through (11). then

P(H, = 01T; = ti) = ~f(tilO)8 .
f(t¡IOW+f(t;ll)(l-B)' 1 = l ,...,m. (13)

~eally, (he Bayesian method involves computing P(Hi = OITI = ti, ...• T;n = tm),
but the approximation proposed by (12) and (3) simplities the simulation's task a
lot.

Pinally, we will use (jand the estimated posterior probabilities in multiple hypoth-
esis testing using the two following methods:

Method 1: \Ve estimate the percentage of hypothesis where H¡ = O by using the
mean (jof the posterior density (11) as an estimator of e. In this case. mI = m(l-
8). Then, the mi hypotheses with the Iowest estimated posterior probabilities, see
(13), will be rejected (wili be dec1ared interesting).

Method 2: \Ve use the foIlowing Bayesian decision prccedure

• Given 9. the observed posterior probabilities are computed from (13) and ordered.
• Compute T = max{i : P(H(i) = OiT(i) = tU)) ::: 0.5}. Thresholds otherthan 0.5

can be used.
• Reject the null hypothesis corresponding 10 t(1), ... , tlT¡. 1fT does not existo no

hypothesis is rejected.

Then, the hypotheses with the estimated posterior probabilities lower than 0.5 wil!
be rejected.

From the Bayesian point of view, Method 2 is formally more correct than
Method 1_But, experirnentally, when simulations with mI known are run, Method 1
adjusts the results better when the hypothesis are close and the sarnple size, n, is
small which is usually the case in these kinds of problems. Whereas if the hypothesis
are not close both methods provide similar results,

The next exampLe, used by the authors previously cited, shows how the method-
ology is applied to an example with a normal model.

Example 3.1 If under H¡ = O the model is N (O, l) and under H¡
and n observaticns are taken fOI aIl i = 1, ... , m. then

1 is N (1,1).

f(t¡le) = 8 TI f(XijiO) + (l - 8) TI f(xiiI1)
j~ j=l

= (27r)-n.'2e-(;/2)¿~~!xt(B + (1 _ 8)e"(.i,-1/2).

(2)

'·l
I1;
\

.-·:1
I,·~"l

:..\
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Then the joiru distribution of the 11m observatians is

ni

f(tl •... ,1.,,18) = TI f(t¡ le)
¡=1

'J ..:..,

m
'? (110) "." 'C" 2 rr - .-~-= (2:rr)-n"';-e- r » L..i=1 L..f=:X;j (9 +- (1 - éJ:,~"(J:,,- .--:.

¡=I

And the posterior density of 8 given 11, .... tll" a, b, is

ll'(8,!I, .. " t",. a. b) o: ll'(8¡a, b)f(tl' _. -, tr,¡18)
ni

o: eo-I (l - 8)b-1 rr (8 + (1 - 8)<:-,,(.(;-1/,,:,

¡=I

whereas the posterior probability of the null is estimated by

• ( 1 - 8 (- 1"'\-P(H¡ = OIT¡ = ti) = 1 + ---=--e" X,- ¡L! )e ..
(' ,,-_t-J

for i = 1, ... ,In hypothesis. with 8= E[e Itl' ...• [",.a. b].
We use Montecarlo integration to estímate 8. For this, we si.nutate a ~lTId'J.,T,

sample e
1

, ...• ek from the prior distribution Befa (a, b). Then, we sstirr are§as:

rl ef' .(}, '.- - b: dLl~ Jo ,t1,"" lit: \ p'[(,i:! '" ).(."
8=E[8Itl, __·.t",.a,b]= 1 - -Io f(t1'" - , 1m18)rr(~I~;,b.:de

,kL..I-I BIf(tl, ...• 1mle{)
~ Li=1 f(l], ... e t.; 16'/)

Usually, in a multiple hypothesis setting, the point is to identify 2 smal. ?r.:¡:xton
of interesting cases that will be investigated in detaiL Then, the m.rroer e: a; e =-p:ed
hypothesis would be greater than 90% (see Efron [5))_ Because of this. i: seems
appropriate to consider a Betaia. 1) density as the prior distrib.rtion f:r e. since
this prior gives a high probability to small intervals of e close te 1 Moreover Jus
prior inc1udes a wide list of densities, the noninforrn::o.!ÍveBe!a(l. 1) densuy ariong
others even though we propase a :::9 to be coherent with (he initial assu r.ptic . 11'.3:

no more than 10% of null hypothesis would be declared interesnng.
In this case. the posterior density is given by

m

(ell t) f)"-I rr (il + (1 (J) 1I(.i:,-lr"2-·ir ¡, ...• m.a ex [1 _- e- -J.
;=1

(!tJ
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Table 2. Results with Merhod 1 with a prior density e ~ Be/a(a_ 1) (for different values of a) and
for sirnulated data from (14) with fI = 0.9, different values of l1J and 11 = 5 observalions per (each
In) hyporhesis

~1 =~oa------I a-=-'---:F-:-7--~~~-ja-:lJ--Ta;;'-i~---~--
fj :0.8901 iQ.8929 10.8942 ·08996 J' 0.9091 ---------- ---.._-.- ---~ ---------·'1- ------ -.~----- --..- .._-_ ----- -.--. .

-~2.~I~L_=.__~ ~s.~--.-j5~ .-5-3 . js_~ J-45-- .,
prob i : 0.6067 .0.6126 ¡ 0.6080 0.6097 r:.6080

-q;;-TypeI~~or ¡5.035 -----4-.83S---J4!1j ----- 4-_3-9-6------·-3.5]6---·----

·~~~;---128.9 ---==J28:9----128.9 - 33.3 ~ 3~ --

111 =1000 I a =1 ! a = 7 a =11 a = 25 a =50 -
---- I ~--_e 108769 0.8786 E.8798 0.8826 0_8884-----------_._-----¡--:----_.- ---_ ..- ._._--- -------_. --_._-----
íñ¡ (m¡ = 107) 1123 121 120 117 112
----.-------j---- I -'-- -.------- _
prob¡ ¡ 0.6635 , 0.6663 10.6632 ,0.6387 0.6273

q;~--T-y-p~I~~~~~-=~~~-~~-t~703 --~-._-4.59i=-_-_-1-4.-367 --·--~-~0-2=----

%TypelIerror ¡26.168 26.168 26.168 27.103 ¡27.103

lit = 5000 I a = 1 a = 7 ¡a = 11 a = 25 j a = 50--

~--- __ ~~~~_~__ !0.8985 ~~_ !0.8991 I 0.89~=

m~~~~.""_~2_)__ L?~8 --..0~8 /508_.-~-==m--------
{i;~¡;~_jl:~8_-li::'-- :i*'--i:~:7-f~::~~-~----
%-Yy-p-;-iierror , 34.236 =E--23-6-- 34236--- !34429--·- 34~8-16-------

~n '= 1O~=E=1 - ia-:? 1 Q ~ 1 1 ¡;:25--F~
{~;~~--94-4)-~_~E-7__ i1~."L_- !~;;s-'--'943_ ,""-_. __.
.!!.':!!.._bl J~~!_~ j~._67_2_2 0.67~~__ _0_.6_7~___ 0.6715

_;_:-_~~_:=:=:1-~~~__ =lli3:~l--=_ib~-~~-1 --- :~~;=-__-..__:~_~_:i~I_-_-~=_-=1.335

A simulation frorn a mixture of a N(O, 1) (90%) and a N (1, 1) 00%) is carried out
for m = 500, 1000, 5000 and 10000 hypothesis, with n = 5 observations of each
bypothesis. A B et aia, 1) prior density for e is taken where a = 1,7, 11,25,50.

First, we use Method 1and caJcu1ate e, mi = m(] - B), - the number of rejected
hypothesis wiih method 1-,

prob, = P (HUñ,) = O/T(ml) = ((mil)

- the highest posterior probability rejecting null hypothesis with Method 1_, and
the percentage of Type I and Type II errors, The results are shown in Table 2.

MultipIeHypothesis Tests: .6. Bayesian Approach !a

TabIe3 Results with Method 2 with a prior density e ~ Bet aia. 1) (for differcm VLL~ of s f.•
~~~':..da¡a se::_~Ta~~~ 1 _ ~ _

1M =' 500 a = J , a = 7 a = 11 . a = 2: ,1 = :5J____- ' ---4-----.--
B 0.8901 10-8929 0.8942 108996 C_~ I

----_. __ .-- o • .••••.••••.•••• _ ~____ _ _

j(II1¡=45) 36 136 35 34 ·3::=---------.- --------T.---- ------·-r---- .j- -- -
% Type 1error 2418 ,2418 2.198 1l.978 1.75:------- -+---- ----·---1---- ------

~ T}pe JI error \-;:: ! 44~ :44~ 144~ ! 40~4_
In = 1000 a - I ;a - 7 . a - 11 la - 25 ; G - _~

1 ~.8769 i 0.8786 ~ 0.8í9~ l.: O.882E (.~g:.- --¡------ --~-_. -------
7(m¡ = lü7) 96 ! 95 95 ! 94 SJ~;':::::~:6..rt'::,-=f,:::,-~~l:13~~,=,:;:'--~-=
In == 5000 ¡ a = 1 I a = 7 I a = 11 I a = 25 ¡(! = S)

e t!0.8984---¡0:898S--- 10.8983] 0.8991 Io.sxs
IJ'.n¡ = Sr7]__ 348__ ~ 348 '--=''349 ~~=-;-~~7_==--T:>.;.5-----
-0/0 Type1 error 1~~__1 __ 11.851 1~ __ i1.8~-n~---

% Type ll ,rro< 48.743 148.7;;==f*,,, !48936 iH9lO
m=,10000~l ¡a=7 la=JI :a=25 ~ •• =_)(]

·----g='----3---------·-·-·----·· ---tí(m I ~~~__ 6~~---12.~--.-~~_~~~ ~-~=----_
% Type [ error 1.557 l.557 1.568 i 1.557 ¡I.x,
~':.~?~I!.:.~~-=_145.657 i 45_657 -! 45.551 - : 45.6~'C=l:.~ .•~:>-=

Then, with the same data sets and (j from Method 1used to compute ths posrerto;
probabilities (13), we use Method 2 and calculate i, (he number of'hypothesis rejecied
with Method 2, and the percentage ofType 1and Type Il errors, The resuus are shoi; o
in Table3.

Observe that these 11'.'0 testing Bayesian procedures are robusr with respect to .ae
value of a, in the sense that a does not strongly influence the results. Th is ::C\<" issue
is good because the known Bayesian methods for testing (4) depends su-::·n~0·C1 :he
pararneters.

In order to compare the two proposed Bayesian methods with. the FDR I'Bce(lt:e
of Benjamini and Hochberg [2], Table4 shows, for the same cata sets ni a = 11
(an intermediate value of a), the nurnber of null hypothesis rejected (;¡~~. ";~J,:,

respecnveíy), and the percentage of Type Iand Type II errors.
Note that, with our Bayesian methods, simulations show that the ollml::cr ):

rejected null hyporheses is more adjusted 10 the true than the freq ue.ras; me.hod
of Benjamini and Hochberg [2] is. For cornparisons, see Table4. In tbis ser.se the
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Table 4 Results with the procedure of Benjamini and Hochberg :2] and Method I and Method 2
wi th a = 11, for the same da:a sets of Tables 2 and 3----o -----~ -.-- ...--------.-------r-----~-~-_.-----L---~-:~~eO~.-J;;;~~i~:~~;=_~~~~!~-+~1:t~b--t~~:~1-=
m Im¡ RnH j%TypeI ¡%Type1l1m¡ ¡%TypeI j%TypeI!-
500 ! 45 ¡ 9 O 180 53 i 4.62 128.90~

~~~ __ ¡ ~~7--------L36_~=rü.22-'-~8722 LI20---=~·j-Ú9---~I~:12-=-·
5000 151~~ 10.JI 180.46 :508 3.75 34.24"--- ..--+-~.----~----_:_--.---i_-.- ....-- ..--- .. -.----..E::::::-.--
10000 ¡ 944 : 187 10.03 i SO.51 i 947 ¡ 3.41 132.42

! ~~~~=O.l la =0.1 la=11~~ II la~~_=-
! BH Meth. !BH Meth. i BH Meth. : Meth. 2 1Me~eth. 2 -

-;;;----: m-~' I Rlif¡ 1% Type 1 i % TyPeTITi ,% Ty~ I~ % Type Il
1 I ,! I -~ ! 45 -------1 18 ! 0.44 _.! 64.40 . I 35 i 2.20 144.40

.~~~_U07 1_59 •.c0_6 J..495~ L?5d~-5 ...-- i30..:~-:__._
5000 ! 517 161 _~ . 71.37 ~~ . L85 !4S.55

2?~~~_.__19~ __ ._1307 L~~.J~~:7~ __.L~_ í L57 L~~~~_

procedure of Benjamini and Hochberg [2] is more conservative (han each of the
Bayesian methods.

One of the problems in multiple hypothesis testing with frequentist procedures is
the fact that only a small number of interesting hypothesis are detected. In fact, if we
want that the frequentist method achieves similar results to Method 2, simulations
show that a value of a > 0.2 is needed, but this value is r.ot adrnissible,

Moreover, with our procedures the percentages of Type I errors are admissible -
it does not exceed 5%-, and Method 2 is more conservative than Method 1, and the
percentages of Type II errors are less than the same percentages with the frequentist
procedure.

4 A Simple Hierarchical Model

RealIy, the parameters of the prior distribution are usually unknown and then a simple
hierarchical model must be used. If we want to take a ncn informative prior about
(a, b), Gelman et al. [6] suggests, in a different context, the use of

n:(a, b) ex (a + b)-Si2,

In Sect. 2 we justified the choice of a Beta(a, 1) prior lo model our initial opinion
about e. Then, we propose to use rr(a) ex (a + 1) -5j2. Ftrthermore, if we suppose
(see Sect. 2) that under H¡ = O the model is N (0, 1) and under H¡ = 1 is N (1, 1),
then the posterior density for (e. a) when nm observations are taken is
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~
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n:(8. 01/1,"" [m) ex rr(8Ia)n:(a)j(t¡ ..... t",18)

'"
ex ea-¡ (a + 1)-5/2 TI (e + (1 - 9)e"(·i'·-·;:":

;=1

\Ve me Montecarlo integration to estima:e e. Then, we simulate a rar.dcr: ;;::ru¡:k
al •. ' ., a" from n:(a) o: (a + 1)-5/2 and for each tu, a sample eL·· .. iJ. f-::lL f~e
prior distribution n (e lal) o: ea,-I , forl = 1, ... , h, is obtained. Finally, "=:: ;CT01e

e as:

~ ft folej(t1, ... ,tm!g)Jí(ela);r::!~~';::1
e = E[rr(eltl"'" Im,a. b)] = ""'-,-'.=:-1-----------'---lo"" lo j(tl, .... tnl 18);r(8¡a)r. :iÚ::2t:!a

~ 'Li-I L~=Ie! j(/I' ... , 1/IIleJ)
~ ",,1: """ f( le') .L..I=I L..i=1 _ t¡, ... , tm í

The same data set as in Example 3.1 is used, where a simulation from a :ufiT~":= =
."1(0,1) (90%) and a N(1, 1) (10%) was carried out for m = 500, ¡OCV. :~')J=~'::
10000 hypothesis, with n = S observations of each hypothesis.

First, we use Method 1 to ca\culate e, íñ!, the highest posterior prc; =.':.i1y c'
rejecting the null hypothesis and the percentage of Type I and Type ~I EITCf: TtL::

results are shown in TableS.
Finally, we use Method 2 with the same data set, and taking e froro ¡.J:~~.:d 1 ::.

calculate the number of hypothesis rejected and the percentage of T~;X =- 2.::"1T~.
Il errors. The results are shown in Table6.

Table 5 Results using Me:hod 1 for the hierarchical case--------¡ ;;= 500 --Tn = iOOO"--!111 = 5000 j 0-. = 1(0}:

Ala =0.9) \0.8910 ~~-S-1---J~8982 10.<;':55
mi! 55 1122 i 509 94~
--¡;,;~- i 0.6089 -n.6659 0.6655 (l.~-:-;:-. ---
%·Typ;Ie-;.;.-;,-;:-""15~ol----·- I4:82--·---·-···~3.77-'- ----~-.4-J--- -- ..-

=~:rii~II;~or_ \2~~~_=~126. \=?__ ~ __ .J?~:24-~=- 1.3?~~ ==
Table 6 Results using Method 2 for the hierarchica\ case
----- \ m = 500 F; = 10OO·---./~~-50D{) --.--;;;;, - :O:<)J -
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In Sect. 3 it was shown that the results are nor significantly affected by changes
in the pararneter a of the beta prior distribution for e. This is the reason that, for the
hierarchicaJ case, we obtain similar results to those obtained in the previous section,
because in this case the different possible values of a are replaced by the mean of its
prior distribution.

5 Conclusíons

The proposed methodology in this paper involves lO provide a Bayesian estimator
for e (the percentage of true nulJ hypothesis in (4)), for instance, the mean or the
mode of the posterior density of e. Posterior probabilities of H¡ = O, i = 1, ... , m,
are calculated and estimated by using a prior density Beta(a, 1) for e. Based on this
estirnator of e, we propose two different Bayesian approaches to test (4).

Simulations show that these two Bayesian procedures are robust with respect to
the value of a, in the sense that the para meter a does not strongly influence the results,
This new issue is good because the known Bayesian methods for testing (4) depends
strongly on the parameters.

It is welJ known that detecting a srnall nurnber of interesting hypothesis is one of
the problems in multiple hypothesis testing with frequentist approaches. In this sense,
another important conclusion is that our Bayesian methods are less conservative than
the procedure ofBenjamini and Hochberg [2], because ir allows us to reject a higher
number of null hypothesis to test (4). In fact, with each of our Bayesian rnethods,
methods 1 and 2, cornputations show that the number of rejected nul! hypotheses is
more adjusted to the true than the frequentist is.

Moreover, the analyzed examples show that with our procedures the percentages
of Type 1 errors are admissible (they do not exceed 5%), Method 2 being more
conservative than Method 1, and the percentages of Type Ir errors are les s than the
same percentages with the frequentist procedure.
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