A Bayesian Analysis for the Multivariate Point Null Testing Problem

Miguel A. Gémez—Villegas™, Paloma Main, Luis Sanz

Dpto. Estadistica e 1. 0., Universidad Complutense de Madrid. 28040 Madrid, Spain.

Abstract

A Bayesian test for simple versus bilateral hypotheses, in the multivariate case, is deve-
loped. A procedure to get the mixed distribution, for the bilateral hypothesis, using the
prior density is suggested. For comparisons between the Bayesian and classical approaches,
lower bounds on posterior probabilities of the null hypothesis, over some reasonable classes
of prior distributions, are computed and compared with the p-value of the classical test.
A better approximation is obtained because the p-value is in the range of the Bayesian

measures of evidence.
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1. Introduction

Let X be a random variable having density f(z|@), with 8 € ® C RP and suppose
that we want to test

Hy: 0=6° versus H,;: 0+ 6°, (1)
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where 6" = (69, .. .,9‘;,) is a known vector and 6 # 6" means that at least one element of
@ is different from the corresponding element of 8°. For example, classical data set in Rao
(1948) gives cork deposits on trees. The thickness of cork deposits in four directions (North,
East, South, West) was measured by cork bearings on n = 28 trees. If the average cork
deposits (0,80, 0s, 0w ) are not equal, this might indicate that thickness of cork depends
on ecological circumstances, such as dominant wind direction. The corresponding null

N _HE:HE_HS:HS_HH’ :0_

Pt

hypothesis would be Hy : 6

There are many approaches for the univariate two-sided hypothesis test, both in clas-
sical and Bayesian tests, but not for the multivariate two-sided one. Some exceptions are
Oh (1998), who deals with the multivariate normal distribution, and Oh and DasGupta
(1999), who explore the relevance of 7y, the prior probability of the sharp null hypothesis,
in the difference between the infimum of the posterior probability and the p-value for

some classes of priors on the alternative hypothesis.

Let us suppose that our prior opinion about € is given by the density 7(@). Then, to

test (1) we need a mixed prior distribution
7(0) = mol go (0)+ (1— ﬂuj?r(f?)fg#go (6) (2)
with 7 the prior probability assigned to Hy.
Now, consider the more realistic precise hypothesis
Ho. : d(6°,0) <= versus Hj. : d((?”,@) > e (3)

with a proper metric d and £ “small”. What we propose is to use 7(8), our prior opinion



about 6, and compute 7y by means of

— /B(e“, (0 do. (4)

being B(6%,c) = {6 € RP,d(6°,8) < =}, a sphere of radius ¢ centered at 8. Thus, the

prior probabilities assigned to Hy and Hy., through 7(@), are equal.

There are several ways to specify d(6”,0). One way is to take an arbitrary value of ¢
and divide it in values ¢;, ¢ = 1,...,p —perhaps ¢; = £/p, for all i— so that the uncertainty is
shared among every coordinate, and then to built the distance starting from |6; —80,| < =,
i =1,...,p. Another way is to consider B(6", ) as the sphere of radius ¢, centered at 6°.

This last approach will be used in this paper because of its computational tractability and

intuitive appeal.

Several reasons can justify the choice of 7y as in (4), despite of the usual value taken
for mp is 0.5. Firstly, in one dimension, when using (2) and (4) with suitable small values
of £ — in case of normal likelihood = € (0.1,0.3) — and 7 (@) in the class of all unimodal
and symmetric distributions or in the class of e—contaminated distributions, a better ap-
proximation between the posterior probability and the p-value is obtained. These results
can be seen in Gémez-Villegas and Gémez (1992), Gémez-Villegas and Sanz (1998, 2000)

and in Gomez-Villegas, Main and Sanz (2002).

The second reason to use mg as in (4) is that if 7(8) reflects our prior opinion about
0, then the prior probability of 8" is zero, but if we use (2), the prior mass assigned to "

is m and this probability is obtained through 7(8).

The third reason arises because Hy is the limit hypothesis of Hy. as ¢ goes to zero,

then if 7(@) is our prior opinion to test (3) and 7*(8), given by (2), is our prior opinion



to test (1), it seems natural that both 7(8) and 7*(8) must satisfy
lim 8(7*|7) = 0 (5)

=—=0

for some suitable measure of discrepancy, 4.

One of the most popular measures of discrepancy is

§(7*|7) = ] 010 =9 49 (6)
®
see, by example, Bernardo and Smith (1994) pag. 76 and, for our problem, we have

S 7)) = Jor(0) 111{?:2—09)1 0(9)+(1_ﬂ0)19¢90(9)}_ 9

o

= —Jom(@)hn {ﬂ(ﬂ) Igo(0) + (1 - wu)rg;égn(e)} a0
- fgigo 7(0)In(1l — 7o) d6

= —In(1 - mg).

We think this is a desirable property. Usually in the literature, at least in the unidimen-
sional case, the expression (2) is used with mp = 0.5. However, for 7y = 0.5, (7) gives

d(m*|m) = 0.693 that seems a high discrepancy between these two distributions, 7* and 7.

The three reasons above are enough, in our opinion, given a prior density 7 (8), to
justify the construction of 7*(@) as in (2) with 7y as in(4) for the problem of testing a

multivariate point null hypothesis.

Anyhow, in this paper the results are obtained as a function of 7y and then they can
be specified for every mp as in (4). In particular, it is possible to compute the value of &,

for the precise hypothesis (3), that gives 7o = 0.5.

In Section 2, lower bounds on posterior probabilities over some reasonable classes of

prior distributions are given: unimodal and symmetric priors are analyzed in Subsection



2.1 and scale mixture of normal priors in Subsection 2.2. Finally, in Section 3 some

comments and concluding remarks are included.

2. Lower bounds on posterior probabilities

In order to make comparisons between the p-value and the posterior probabilities,
we will take wide classes of prior distributions and then we will compute the infimum of
the posterior probabilities over these classes. This is the usual procedure to compare the
Bayesian and classical approaches, because a classical might behave like a Bayesian using

a large class of priors.

2.1. Lower bounds for Unimodal and Symmetric priors

Because of the structure of the problem, it looks reasonable to deal first with the class

I'trs = {Unimodal and symmetric distributions about "}. (8)

Furthermore, if 7(8) is in [';yg it can be expressed as a mixture of uniform and symmetric
distributions over spheres of radius k centered at 8. Then, to find the infimum of the
posterior probability of the point null hypothesis over the class I'iy g, it is sufficient to find

it over the much smaller class, see Casella and Berger (1987),

Us = {Uniform and symmetric distributions over spheres of radius k centered at 8°}.

(9)

The following theorem gives the infimum of the posterior probability of the point null

hypothesis when the prior density #(8) is in I'tr5, using the previous result.



Theorem 1. If 7*(0) is given by (2) with 7y as in (4), then

- - 1 fzo) o\~
L P(Holz) = (Hv'(e”,s) ro f(x]6°) de) ‘ (10)

where V (0, €) is the volume of B(6°, <), the sphere of radius ¢ centered at 6°.
Proof: See the Appendix.
To check how this result works, we consider the multivariate normal distribution.

Example 1. Suppose X is N,(0,0%I) distributed, ¢ known, where X = (Xy,...,X,)’
and @ = (0y,...,0,). It is desired to test (1) with a sample of size n. The classical
significance test statistic is
T(X,6°) = —|X - 6°P%, (11)
%
with X = (Yh .. T'p) Under the null hypothesis, Hy, T(Y, 9”) has a f, distribution.

Therefore, the p—value of the observed data, @, is given by p(@) = P{x:f) >T(=, 9”)}.

Using Theorem 1, the infimum of the posterior probability of the point null over the

class T'irg is

, -1
1 exp | — 2|2 — 0|?
inf P(Ho|Z) = {1+ o7 f (-5 ) 6 (12)

melus 90?5) RP exp (_%IE_ GDP)
p

But, V' (8%, ) = 7P/2zP /T (p/2 + 1) and then

9P/20 (B 4 1 1 -
inf P(H{;|E):{1—{—#&!)@(;1"(5,6“))} , (13)

m€lys *

b

{

where £ = e\/n/o?. Fixed £*, the space dimension, p, and 8° = 0 for different values
of T(&, 6°) the infimum of the posterior probability can be obtained. Table 1 shows the
values of £ so that the p—value and the infimum of the posterior probability are close,

these values depend on the space dimension and they become greater as p increases.



Table 1 goes here

It can be observed, in Table 1, robustness with respect to the data for every dimension,
p. For instance, when the dimension is p = 5 if we choose =* € (2.9,3.5) the infimum of
the posterior probability of Hy is close to the different p-values. For different dimensions
p, Figure 1 shows the infimum of the posterior probability with suitable values of £*, the

p-value and the infimum of the posterior probability when 7y = 0.5.

Figure 1 goes here

For numerical comparisons with the p-value, Table 2 shows the infimum of the posterior
probability for p = 2 and some suitable values of £* chosen from Table 1. Moreover, Table

2 includes the values of the infimum when w5 = 0.5.

Table 2 goes here

It is clear, from Table 2, that our procedure permits a better approximation between
the infimum of the posterior probability and the p-value for a proper value of . This is

not the case if mgp = 0.5 is chosen, as the second line of Table 2 shows.

Next example explores the influence of the correlation between the variables in the
posterior probability. We consider that the variables have the same variance, 2, and a

common correlation coefficient, p.

Example 2: Suppose X ,..., X, a sample from a N,(8,X), a multivariate normal dis-

=1



1 p PR p
tribution with a special correlation structure, & = o2 P 1 - P 1., with o%known
pp o1

and being p the correlation coefficient. It is a permutation-symmetric multivariate nor-
mal distribution that gives exchangeable variables for p > 0 (Tong, 1990). Then, |Z| =

a?P(1 — p)P~Y (14 (p— 1)p) and

i P(HUW—{H”%%”(‘ (1—p)ﬁ—l(lﬂp—1)p))1’f"2exp(5)}_ ,

mel s £
with ¢ = nZ’S~'2. The graphics in Figure 2 show the p-values and the infimum of the
posterior probabilities for different values of p, ¢* = £y/n/o and the correlation coefficient,

p-
Figure 2 goes here

It can be also noted that if p increases then the posterior probability increases too,

being larger than the p-value with the same value of m.

2.2. Lower bounds for scale mixture of Normals

In this section we assume that (Xy,...,X,) is a random sample of a N,(8,0I)
distribution, o? known, where I is the p X p identity matrix. Then X is N,(8,02/nI)
distributed. It is desired to test (1) with 8” = 0, then the appropriate statistic is T(X) =
n/a?f’f. Now, the considered prior density 7(8) belongs to the class of scale mixture

of normals

I'n = {0]v* ~ N,(0,0°I), 7(v*)is a nondecreasing function on (0,oc)}. (14)



The reason to consider this class of priors is that it assigns higher mass to the neighbors of

a precise hypothesis than the class I';;¢ can assign (see Sellke, Bayarri and Berger, 2001).

To find the lower bound on the posterior probability over the class (14) is equivalent
to find it over the smaller class in which #(v?) is uniform on (0,r), r > 0 (see Casella and

Berger, 1987).

The following theorem shows the infimum of the posterior probability over this class
for dimensions p > 2. For notation, . (8) = [y (1/r)¢(0.v?) dv?, being ¢ the N,(0, v*I)
density.

Theorem 2. If the prior mass assigned to the null hypothesis is, from (4).
Tor = T (0) de,
JB(0,s)

being B(0, =) = {6,|6|* < =2}, then

-1
. . 1 ‘Ff?—'z?(t) <
s ramie = 1+ 570 ) )

with t = n/o*®'E, F,_y the chi-squared distribution function with p—2 degrees of freedom.

and f, the corresponding density with p d.f.
Proof: See the Appendix.

Then, fixed * and the space dimension p, the infimum of the posterior probability can
be obtained. Table 3 shows the values of =* making equal the infimum of the posterior

probabilities for the class of scale mixture priors and the p-value.

Table 3 goes here



In order to compare numerically the p-value with the infimum of the posterior proba-
bility, Table 4 shows for p = 15 this infimum for some suitable values of *, chosen from

Table 3, and the infimum of the posterior probability when my = 0.5.

Table 4 goes here

It can be pointed out the practical agreement between Bayesian and classical measures
for the different values of £*. In particular, for an intermediate value of ¢* = 1.95, the
infimun of the posterior probability and the p-value are nearly the same. However, for

mg = 0.5 these ones are significantly different.

Figure 3 shows the graphics of the lower bounds of the posterior null probability and
the p—value jointly with the posterior probability for my = 0.5. We have counsidered just a

value of £* for each dimension because of the robustness property.

Figure 3 goes here

3. Conclusions and comments

The most important conclusion is that the p-values and the posterior probabilities
can be matched for testing multivariate precise hypothesis. The difference between this
two measures increases when the prior mass assigned to the point null hypothesis for

dimensions p > 2 is wg = 0.5.

The proposal in this paper is to give a prior probability for 8° equal to the probability of

a sphere with a fixed radius < and centered at 8°, calculated from 7 (). This methodology

10



shows, for the considered examples, a better approximation between the p-value and some

infimum of the posterior probabilities, using further just one source of information 7 (8).

It can be also pointed out that an apparent robustness in £* is observed inside every
dimension p for the normal distribution and the class I'ys. But for the class of scale
mixtures, this robustness is observed not only inside every p but with respect to p. In
both cases, for a fixed dimension p, the value of =* = £y/n /o does not change significantly

for the different p-values.

Moreover, for a normal family with a common correlation coefficient it is observed that
the p-—value and the infimum of the posterior probability are closer as p, the correlation

coefficient, decreases.

APPENDIX

Proor or THEOREM 1. the posterior probability of the point null hypothesis, Hy, is

given by

~1

1—mg mg(a)

P(H, =11 —_—
( [)lﬁ?) ( + o f(wleﬂ))

where mq(z) = [g 7(0) f(2]|60) d0. Then, computing the infimum of the posterior prob-

ability of the point null hypothesis is just like computing the supremum of M(k) =

]_—?T(]

my(@) over the class (9).
o

Assuming ¢ < k and denoting by U(6", k) the uniform distribution over the sphere of

radius k centered at 8°, then



and

V(6° k) — (9”75]
V(60 5V (60 2) /B(Oﬂ,k)f(mje) de.

It is straightforward to check that M (k) is increasing in k, because M'(k) > 0, and then

M(k) =

the supremum is attained as k goes to infinity,

1
supM(k)= lim M(k)= ——— x,0)do
p M(K) = Jim M(K) = g [ F(e.6)
and from this we get (10). O
Proor or THEOREM 2. First, it can be easily checked that

L () a
ﬂ—[)r—r /[; r |7 at.

Then, the corresponding posterior probability, for a fixed dimension p and uniform U(0, r).

is

]_—?To,.]_ -1
P.(Hylt) =11 —
i = (1)

where the Bayes factor, B,, is

B f(t|6° =
"= T £(110) O®
and
1 _ ' '
B_r = ]Hﬂ][) 27) Pﬂti’ﬂ xp{ 9— 90— t@@} de dt

1 [T (nt —r/? 1 (nfo?)? _,_
= ?—[é (0_2 +1) exp{gmwm dt

1 n o? 1 . nTT
= —exp {—E’E} —] P22 oxpy {— z} dz
r o

202 2 ) a2, 202
) fol®)



Then, the posterior probability of the point null hypothesis, Hy, is given, for p > 2, by

o —1
— 1o 0% Fp2(t) = Fpoa (%)
rror n(p—2) Folt)

P, (Holt) =<1+ ! (16)

where F,

p—2 1s the chi-square distribution function with p — 2 degrees of freedom and f,

chi-squared density with p degrees of freedom.
Now, we look for the infimum in r, but P,(Hg|t) is decreasing in r and then
inf Pr(Hp|t) = lim P.(Hplt).
int Pr(Holt) = lim P (Holt)

As we get

O 52 52
Tlgglorrrur:]o Fp 7 dt = oy

finally (15) is obtained.
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Table 1: Values of £* so that the p—values and the infimum of the posterior probability

over ['prg are close

Dimension p

p-value 2 5 10 20

0.1 1.493 2.919 4.078 5.485
0.05 1.450 3.038 4.246 5.695
0.01 1.421 3.247 4.599 6.123
0.001 1.417 3.516 2.024 6.616

Table 2: P-values and infimum of the posterior probabilities for uniform and symmetric

priors

p(t) 0.1 0.05 0.01 0.001

Py (Holt, o = 0.5) 0.5401  0.3707  0.1053  0.0116
Pr(Holt,e* = 1.4) 0.0891  0.0467  0.0097  0.0010
Pr (Holt,e* = 1.45) 0.0949  0.0500  0.0104  0.0011
Pr (Holt,e* = 1.5) 0.1009  0.0533  0.0111  0.0011




Table 3: Values of £* such that the p—values and the infimum of the posterior probability

over 'y are close

Dimension p

p-value 5 10 15 20

0.1 1.71 1.93 2.07 2.18
0.05 1.64 1.83 1.95 2.06
0.01 1.56 1.71 1.81 1.90
0.001 1.52 1.63 1.74 1.78

Table 4: P-values and infimum of the posterior probabilities for scale mixture priors

p(t) 0.1 0.05 0.01 0.001
Pr (Holt, mo = 0.5) 0.365  0.27 0.1 0.017
Pr (Holt.e* = 2.07) 0.100  0.056  0.013  0.0014
Pr (Hylt.e* = 1.95) 0.000  0.050  0.011  0.0013
Pr (Hylt.e* = 1.81) 0.078  0.043  0.010  0.0011
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