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Abstract

In this work we study robustness in Bayesian model's through a generalization of the Normal distribution. We show new
appropriate techniques in order to deal with this digtribution in Bayesian inference. Then we propose two approaches to
decide, in some applications, if we should replace the usua Normal mode by this generalization. First, we pose this
dilemmaas amodel rejection problem, using diagnostic measures. In the second approach we eval uate model’s predictive

eff iciency. We illustrate those perspectives with a smulation study, a non linear model and alongitudinal data mode.
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1 Introduction

We will use the form of the Exponential Power distribution , EP(f, 0, 5),
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where —co < y < 400, —00 < 0 < 400, —1<g<1, 0 >0,

¢(6) isapositive and bounded function , and

c B)l_;é

2[3(3+ B)]

L~

w(B) =
It can be shown that the mean of the distribution is & and its variance,
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The Exponential Power distribution (Box, Tiao,1973) is commonly used in Bayesian robustness studies. It is a family

V) = o

of symmetric distributions that generalise Normal distribution, having more or less kurtosis than this distribution as
parameter G varies. In previous Bayesian works, it isusual to take 3 as af ixed value, and observe, in aexploratory way,

the consequences of changing & vaues. In thiswork wewill dways consider g as arandom variable from the beginning.

Usudly ¢(8) isfixedinaway that leadsto V(Y") = o2 for every 3. However, an interesting reparametri zation to simplify
the Bayesian treatment of this distribution is to take ¢(8) = % In this particular case, when 3 = 0, V(YY) = o2 and

PE(6,0,53)isaN(6,0) disribution.

Posing c(3) = constant make computations simpler, sowewill usethat reparametrizationinthiswork. A detailed study of
the Exponential Power distribution can be seen in Marin (1998). A multivariate generdization intheformp(y | 6,32, 5)

is shown in Gomez, Gémez-Villegas and Marin (1998).

Inthefirst part of this paper we develop tools to work with this distribution in a Bayesian frame. Then we study how to
determine, through the use of discrepancy measures, whether we should continue with the usual Normal model or usethe
Exponential Power modd. In the last part, we propose an dternative way to validate the use of this distribution, and we

show its usefulnessin applications like a non linear model and alongitudinal data model.



2 Monte Carlo treatment of EP distribution

Following the Bayesian paradigm, we consider #, 0 and 3 as random variables, with prior distributions p(#), p(c) and
(), considered independents through this work. We will take p(6, 0, 8) « p(e)p(ﬁ)%, where p(3) is the Uniform
distribution over the (—1, 1) interval, and p(#) any continuous and bounded distribution over (—co, +00).

Having asample y1, ..., ¥» from an Exponential Power digtribution, the posterior distribution of parameters will take the

form
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We will need to use numerical methods to deal with this distribution, if we want some information about the conditional
distributions p(# | y).p(c | y) andp(G | y). We will show away to get estimations of these distributions via Monte

Carlo, and next we propose simulation methods to get samples from the full posterior distribution.
2.1 Posterior densities estimations

Posing p(c) o 1/0, we can obtain an analytical expression proportional to p(6, 3 | y) through direct integration in o.
It can be shown that this expression is integrable with the stated p(#) and p(53) , hence it is avaid posterior density for
# and 3, asis assumed in (Box, Tiao, (1973)). A proportional approximation of parameter posterior densities through

Monte Carlo integration is then obtained. Taking samples of size m from prior distributions p(3) and p(#) gives:
BO|y) o> " p(60.5:]y)
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These estimations allow for graphical representations of the densities and the estimation of posterior mode . If we want
to calculate concrete probabilities we should use numerica integration to normalize the density. The precision of this
Monte Carlo approach depends on the particular application. In the cases we have worked on, stabilization of Monte

Carlo variance estimator is observed since m = 300.
2.2 Obtaining samples from posterior distributions

The aim is to get samples from the full posterior p(#,0, 3 | y). Assuming we know how to generate random samples

from the Exponential Power distribution as well asfrom other known densities (Devroye (1984)).
2.2.1 Direct use of the Gibbs Sampler

In order to use the Gibbs sampler it is necessary to develop methods to generate samples from each posterior conditional

density.

e Generation of samplesfrom p(c | 6, 3,y)

In this case, taking in (1) the transformation z = o2/3*#) then zocIG(a, b), where a = M and



Z lyi — 0]/ 50 adirect method to get samples o from p(o | 6, 3,y) will consist in obtaining a sample
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value x from aGammal'(a,b) and transform it through o = 2~ (1+2)/2,

e Generation of samplesfromp(0 | 0, 3,y).
It can be shown that, for k > 1, i |0 —v:|* >nl|6 — 7" then
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If p(8) is Uniform or noninformative, the superior boundary has the form of an Exponential Power distribution, thus a
rejection method to obtain samples from 6 can be used. Else, if p(#) is bounded, we can also use the same rejection

method. In other cases, ad-hoc methods of generation could be devel opped.

e Generation of samplesfrom p(3 | 8,0,y)

In this case
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This expression can be bounded by
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SO We can use again a reection method to generate samples from p(3 | 6,0,y), taking samples from an exponential

distribution truncated in (—1, 1), and rejecting samples using the bound proposed.

In our experience with this approach, for moderaten Gibbs sampler seems to converge before 60 iterations, while in some
complicated applications it takes about 300. When posterior mode of 3 approaches the extreme value —1, the rgjection
method proposed may take too long to converge. When in theinitial runs the rejection algorithm does not accept at least
20% of the points generated, we replace it by the SIR method (Rubin, (1987)), and in some extreme cases by trapezoidal
density estimation followed by rejection sampling.

2.2.2 Mixture representations

The Exponential Power distribution can be posed as a continuous mixture of Gammaand Uniform. (Walker and Gutiérrez-
Pefia, (1999)). This mixture representation of an EP(Y | 6,0, 8) distribution takes the form

Y 16,0,8,U=u) < Uniform(6 — U(Qu)% 0 +U(2u) > )Wlth U1]8) F( 3+8),1)

where U isthe mixing parameter.

This representation alows to approach the obtention of samples from the posterior p(6, 3,0 | y) from an Exponential
Power model, through the Gibbs sampler. We will use the prior distributions p(f) any density in (—oo, +00), p(3)

o< Uniform(—1,1), and p(o) o IG(a,b), an Inverse-Gamma distribution where « is little enough so that the prior

distribution p(o) is approximately noninformative. We suppose all these prior distributions independent.



The likelihood of asampley, given the vector of mixing parametersu = (u1, ug, ..., tn ), iS
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In this framework, we have
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Successive implementations of the Gibbs sampler, given the sasmpley, result in samplesfrom (9,0, 5, u | ¥).

In order to get samples from (G | 6,0, u,y) truncated in its bounds it is easy first to cal culate the boundary region for
3, and then use a variation of the rejection method presented in the previous section. Using Gibbs sampler also requires
generation of samples from known distributions truncated in some regions- there already exist techniques to deal with
them (Devroye, (1984)). A simplified version of this representation, taking 8 as a fixed value and changing it in a
exploratory way, can be seen in (Choy, (1999)).

3 Applications to Normality checking

We are approaching the problem of evaluating data departure from Normality, through the use of the Exponential Power
8 parameter. This question may be approached as an hypothesis testing problem with Hy : 3 =0facing H1 : 3 #0,as
we know that for 3 = 0 the Exponential Power distribution agrees with the Norma distribution.

This problem can be seen as aModel Rejection problem. An approach introduced by Bernardo and Smith (1994) consists
in choosing a discrepancy measure 6(3, 8, o ),which measures the distance between likelihood functions p(y | 3,0,0)
andp(y | 0,6,0) . Thenthe posterior expectation of thismeasure, £ 4 -1, [6(3, 8, 0)],iscomputed. Eg o -5 [6(5,6,0))]

can be seen as the difference between both models posterior utilities.

We will apply this idea using a range of discrepancy measures and investigate their behaviour through a simulation

study. In order to give the same prior probability for all the models we pose, as has been done in previous sections,
p(#) =U(-1,1).
3.1 Kullback-Leibler distance

If we want to comparep(y | 3,0,0) y p(y | 0, 8,0), we can use the well-known Kullback-Leibler distance:

p(y | 8.6,0)

bxr(3,0,0) = /p(y | 3,8,0)log p(y]0,0,0)



In the particular case of the Exponential Power distribution, we can get its analytical form, which does not depend on
0,0):
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In order to compute the posterior expectation of 6 .(3,8,0), analytical integration does no exist in asimple form, but

we can obtain aMonte Carlo estimator based on samples generated from p(3, 6,0 | y), through:
E@,@,a\y[éKL(ﬁy 970) Es .00y 5KL /5') Z 5KL

wherethe vector (3;,0;,0 ;) isgenerated fromp(3, 6, | y) by means of the methodsintroduced in the previous section.
3.2 A discrepancy measure based on HPD regions

For the point null hypothesestesting Ho : 3 = 0 facing H; : 8 £ 0, atesting procedure can be developped constructing
the Highest Posterior Density region (Berger, 1985) R = {3 : p(8 | ¥) > k(«)}, where k() isthe largest constant such
that Ps)y, (5 € R) > 1 — o, o fixed suff iciently small. Then we accept H, if the point 3 = 0 fallsinto the HPD region

R, and rgect Ho otherwise.

An evidence measure against data Normality can be computed f inding the posterior region

C={8|pBly)=p0]y)}

and then computing the posterior probability p(C | y). Asp(C' | y) decreases, the evidence about the hypotheses 5 = 0

arising from the data increases.
The Highest Probahility Density region (HPD) 1 — o test, isequivalent to rgject Ho if p(C' | y) > 1 — a.

To « x the notation for a discrepancy measure based on this probability, wewritep(C' | y) as

p(Cy) = / 1{3 | p(3 ] ¥) = p(0 | ¥)}p(8. 0,0 | y)dBdodo

Then, if we define

p(y | 8,0,0)p(0,0)d0do
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we can pose

Es.0.01y160pp(8,0,0)] = Es o0y [6npp(8)] =p(C | ¥)

An interesting property of this method, apart from having a direct interpretation in terms of HPD regions, is that the
expectation s o -y [6zpp ()] isdready calibrated: sinceitisaposterior probability, it takes vauesin (0,1).

In order to estimate Eg o |y [6 22 p(3)] wewill use the Monte Carlo approach of the posterior distribution. We compute



p(0 | ¥); then we search, by numerica methods, al points 3’ apart from 8 = 0, such that p(0 | y) = p(8' | ¥), and
compute the according HPD interval probability .If no point 3’ exists, P(C' | y) = 1 or 0 dependingonp(3 | y) >
p(0 | y) for al g or conversely.

3.3 A discrepancy measure based on predictive distribution

(Walker and Gutiérrez-Pefia (1999)) poses as a measure of evidence about themodel p(y | 8,6,0) facingp(y | 0,6,0)
thedifference of posterior expected utilities, based on the predictivedistribution. A Monte Carlo estimation of itsposterior
expectation will be

NE
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Where vectors (95,07 ) are generated from p(0, 6,0 | y),and vectors (3,, 65,0 ;) are generated fromp(3,0,0 | y).

It would be useful to define a calibration for this measure of evidence about (3, 0,0), asit is the case for the Kullback-

Leibler measure.
3.4 Simulation study

A range of smulations has been carried out in order to compare the introduced evidence measures senshility to data

kurtosis deviance from normality.

Size n = 100 samples from an Exponentiad Power distribution with parameter 5 have been generated. We have com-
puted the introduced discrepancy measures to eval uate posterior evidence against data Normadity. This process has been
replicated 30 times with 30 size n = 100 samples generated from Exponential Power distribution for each one of the
following values of 3 = —0.75, —0.5, —0.25,0,0.25,0.5,0.75.

We obtain, for each g fixed in the data origina distribution, a sample from each normality testing measure. We show in

figure 1 Box plots for these samples, ordered by 3, and having all measures resized to the (0,1) interval.

In order to have another comparison reference we also include Kolmogorov-Smirnov-Lilliefors test p-value, obtained over
the same samples. We resize this p-vdueto "1 — p — value” because our discrepancy measures take higher values as

data moves away from Normality.

(figure 1 about here)

Discrepancy measures based on the frequentist Kolmogorov-Smirnov-Lilliefors test, posterior measure P D and pre-
dictive distribution based measure give correct results, getting higher val ues as long as generated samples go further from
Normality (8 = 0). This happens whether data has a lower kurtosis than Norma distribution (3 — —1), or a higher
kurtosis than Normal distribution (8 — 1). HPD seemsto be more sensitive, and given it isadready calibrated in (0,1), it

will be used from now on as the reference measure.

In the case of Kullback-Leibler measure, we can see graphically the consequences of its asymmetry: this measure dis-



criminate better samples with a higher kurtosis than Normal distribution, than samples with lower kurtosis than Normal
ditribution.

4 Application to robustness and model comparison problems

In this section we shall apply the Exponentia Power distribution to some Bayesian models, replacing the usually Normal
errorswith Exponentia Power distributed errors. In order to determine whether this choice is appropiate, we use the HPD

evidence measure as well as aof model’s predictive effectivity measure.
4.1 Moddl predictive evaluation

Gelfand, Dey and Chang, (1992) propose the choice between two non linear models through the use of the predictive
distribution, in a cross vaidation perspective. Given y ., , the vector y without the rth observation, we compute d,, =
E(h(Y) ¥ (), Where h(Y;) is adiagnostic function which measures model f itting for each observation. An intuitive
possibility isto te&ke h(y,.) = y. — Y,.,sothat d,. = v, — E(YT| Y(T))- The sum E(dr)2 may be seen as a measure of

model’s predictive effectivity.

If response variable y and regression variables x; are related by some function named ¢ :

ys = g(xi] 0)+e;

where 8 = (61,...,0,) , Yy x; = (1, .., Zx)s,and € is a vector of n independent and PE(0, o, 8) distributed random

errors ,posterior parameter distribution takes the form

yi —g(xi| )
ag
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We can estimate posterior conditional densities for parameters 8, o, 3 for every regular function g(x;| ). However,
specif ic functions g(x;| &) are needed if we want to simulate samples from posterior distributions using direct Gibbs
sampler or the EP mixture representation, because development of these methods depends on.the g(x;| &) function used
in each particular case. Both procedures will be applied in the next sections. We use density Monte Carlo estimationsin
section 4.2 and Gibbs sampler in section 4.3.

Computation of d, = 4 — E(le ¥ () can be done through MonteCarlo estimations. We also take prof it of the

integration over o property in order to make computations simpler.

4.2 Applications to non linear models

Gelfand, Dey and Chang, (1992) compare in their work two models, the logisticone: v = 6o(1 + 6:10%)~! + &, and
the Gompertz model: ¥ = #oe~?1% +  in an application, where Y represents onion bulbs weight measured over the
increasing time X, in a series of n = 15 observations. In tha paper, £ were distributed as Normal. In this work we

suppose £ are Exponential Power distributed.

In both logistic and Gompertz models, we use the reparametrizations. #7 = log(61) y 05 = log(f2/(1 — 02)). We teke

all these prior distributions to be Uniform over large intervals, so they are approximately noninformative. We have then
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4.2.1 Logistic model

Posterior distributions for the parameters related to the £ error term, o and 3, are shown in figure2.

(Figure 2 about here)

Posterior distribucion p(5 | y) hasitsmodeat 8 = 1, far from @ = 0 value attached to Normality, and the introduced
measure HPD=0.87, so it seems appropiate to use the Exponential Power model instead of the usual Normal model . We
have aso considered the Bayesian analysis with 3 = 0 fixed, that is, taking the error term £ as Normally distributed.
Table 1 displays parameters posterior means and modes for both models EP and Normal:

(Table 1 about here)

4.2.2 Gompertz model

In this model it looks also appropiate to use the Exponential Power model, since posterior distribution p(3| y) modeis

far from the Normality value 8 = 0,as we can seein Table 2. Measure HPD=0.91 in this case.

(Table 2 about here)

4.2.3 Comparison of predictive f itting for both models

We can assess predictive efectivity for both models through the estimator E(le ¥ (), Obtaining results displayed in
Table 3:

(Table 3 about here)

We see that Exponential Power model seems to fit dightly better for both Logistic and Gompertz models , something
expected after the study of 5 posterior distribution in both cases. Logistic model f its better than Gompertz model in both

Exponential Power errors model and Normal errors model .

4.3 Application to alongitudinal data model

Han and Carlin (2001) compare two models in an AIDS longitudina data clinical trial. Data from this experiment has
a so been studied in Carlin and Louis (2000) . CD4 lymphocite counts Y; were measured for each subject a the 0, 2, 6,
12 and 18 months visits. Two different treatments and two different baseline conditions (AIDS diagnostic or not) were

considered.



We desire to compare models M; and M2, where My : Y; = Xsa+ Wibs + s and Ma : Y; = Pic+ Qids + v,
i=1,..,n, where (X;, W;) inmodel M; and (7;,Q:) inmode M- are observation matrices that represent, respectively,
treatments and baseline conditions, and timepoints (see Han and Carlin (2001) for details). In model A1, a isa9 terms
fixed effects vector and b; are 3 terms random effects vectors. In model M-, ¢ is a6 terms fixed effects vector and d;
are 2 terms random effects vectors. Model A1 supposes a change in the dope of Y two months after baseline timepoint,

while model A assumes the same slope from baseline timepoint, along al the study.

Following Zeger and Karim (1992) work, we choose an Uniform over alarge region, (an approximately noninformative
prior) for a. For b; vectors we use a Multivariate Normal prior N (0, V), where V! is Wishart W ((pR) ', p) and R
and p are the same val ues suggested by Carlin and Louis (2000) for this data

As in the previous application, we use an Exponential Power distribution for the random errors, =;; o« PE(0,021, 3)
independent and identically distributed. We have y;; = x;;a + w,;b; + &;; for each patient ¢ and time point j, where
i=1,..,nandj = 1,...,s;, with s; being the number of observations taken for the ** patient.Usualy s; = 5, and
observations are taken a time points t =0,2,6,12,18 months from the beginning of the treatment, but there are many
missing observations &t last time points. In order to compare both models M; and M-, we compute the predictive mean
Monte Carlo estimator

; 1\ . .
Bl yp) = 70> (xa®+wigb ()

k=1
For each observation, we computed,; = yi; — (Vi ¥ ij)) .Then we compute 3" d;; asameasure of predictivef itting.

We present the Bayesian devel opment for model A1, taking into account there are no important variations with respect
to the M- analysis, where we change matrices X; and W; for P; and Q; respectively, and vectorsa and b, for c and d;

respectively.
4.3.1 Pogterior distribution. Sample generation

We want to generate samples from p(o, 5,a,b | y ). We use the Gibbs sampler, generating samples for each condi-
tional distribution.

e Samplesfromp(c|3,a,b,y)

M=

‘ Si(1+/8) s
Takinga = =

IT andb = % i S yij— (xiza + wiibi)|*/ ) we generate avalue ¢ wih gammal'(a, b)
2o 2o

i=14=
distribution and we compute o = ¢~ 79)/2,

It can be shown that o is distributed asp(c| 3, a, b, y) .

e Samplesfromp(s| o,a,b,y)

In this case, posterior 8 distribution is bounded by the expression

Q3Vs:/2 [F(%)] P91 exp(—(Z2 log(2))5) so we use arejection method as the one introduced in the f irst section..
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Samplesfromp(a | 0,6, b,y)

Inthis case, a = (a1, ..., ag), SO we use the Gibbs sampler teking samples from each conditiona p(ax| &,8,a3,.b,y),

noting by a(x) the (a1, ..., ag) vector without its kth term.

To sample valuesfromp(ax| o,83,a),b,y) , noting

we have
1| (a ) 2/(1+6)
k2
plag| a3, a(k)ybhy) o« exp —522:: J
Defining
. é ; - and T max = —Mm‘f{xfj},we can see that (2) is bounded by
Y, |a, — z* 2/(1+8)
exp |i——z k ]
2 Umax

Applying then the rejection method introduced in Section 1 to get samples ax. We repeat this computations over the

a, ..., ag asuff icient number of iterations, obtaining findly asamplefromp(a | o,3, b, y ;) )-

e Samplesfrom p(b;|o.3,a,V,y)

We havep(b;|o.8,a,V,y) op(y | o,8,a,b,)p(b; | V).

We need , for every ¢ = 1, ..., n, asample from b; = (b:1, b2, biz). We implement a method similar to the one used to
get samples from a, since p(b; | V) is bounded. In this case a suff icient number of Gibbs sampler iterations with each

b; = (bi1, bio, bi3) for each observation is necessary, taking alot of computing time.

e Samplesfromp(V~1| b)

We know this pogterior distribution is also Wishart, so we use methodsthat already exist to sample from it (see Carlin and
Louis (2000)).

4.3.2 Results

Wedisplay theresultsfor model A : Y; = X;a+W;b; +e;. We havereaized 500 iterations of Gibbs sampler, rejecting
thefirst 100. Infigure 3 we show posterior distribution histogramsfor a1, bs,1,0 and 3. 5 posterior distribution leads to
aHPD=0.93 value, rejecting error normality.

(figure 3 about here)
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In Table4 wepresent a1, ..., as ,bs, 1,0 and 8 posterior modes . We also append Carlin and Louis (2000) results obtained
with Normal errors model (8 = 0).

(Table 4 about here)

Results are generally similar for fixed effects parameters as, ..., ag and for the random effects parameters bs 1, in spite
of the difference between Exponential Power and Normal models, and having different computational approaches. Asit
was the case for the model's shown in the previous section, o is the parameter more affected by the introduction of 3 asa

random variable.

In order to compare models M5 : Y; = X;a+ Wb, + ¢, and M, : Y, = P.c+ Q:d; + v, taking 5 = 0 (Normal
errors model) and @ random (Exponential Power model), we compute d,; = v;; — E(Yij| y(ij)) for each y,; available
observation. Table 5 displays predicted values for the first 6 cases and the fitting measure > > dfj for each of the four
different models, based on the 1405 available observations.

(Table 5 about here)

We see that model M- has a predictive f it better than model M. These results agree with previous work (see Carlin and
Louis (2000) and Han and Carlin (2001)). For each of these two mode s using 3 as a random parameter |eads to higher
predictive precision than using the Normal model 3 = 0. This differenceis clearly bigger in model M.

5 Conclusions

The use of the Exponential Power distribution family leads to more robust models in many applications, at the expense
of technical and computationa complications. In the modd s presented centrdization parameters are less affected than
scale parameter o when we introduce 3 as arandom parameter. In some applications, the use of thisfamily will be worth
while depending on factors like data deviation from normality or model’s predictive effectivity ,aspects we can evauate
using the techniques exposed in this work. From the computationa point of view, many applications would need ad-hoc
methods in order to work with this distribution, while some of the tools introduced in this work can serve as a basis.
Sometimes, posterior distributions for # and 8 can have very high kurtosis and low variability. In this few extreme cases

we have corrected the exposed techniques applying SIR and trapezoida rejection methods.
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Tables

Exponential Power model Norma model
0o 04 05 o Ié] 0o 04 05 o
Posterior mode 699.75 437 00158 113 1 697 435 0015 256
Posterior mean 70231 444 0016 135 08 70230 439 0.016 27.3
Table 1. Posterior means and modes. Logistic model
Exponential Power model Normal model
fo 01 05 o Ié] 6o 01 05 o
Posterior mode 7265 255 055 158 08 7215 255 055 33
Posterior mean 7238 2567 0543 195 0.75 72137 257 054 338

Table 2. Posterior means and modes. Gompertz model

Logistic model Gompertz model
Exponentia Power | Norma | Exponential Power | Normal
Z(dr)2 9593.30 9646.06 14632.62 14993.61
> dy] 258.06 260.68 370.67 377.23
Table 3. Predictive f it measures for both models
a1 as as as as as ar as ag bs 1 o B
random g3 | 10.1 | -1.25 | -0.75 | 0.15 121 | -022 | -431 | -060 [ 050 | -586 | 051 | 1
3=0. 993 | -004 | -0.16 | 0.004 | 0.309 | -0.34 | -429 | -0.32 | 0.35 | -75 | 1.83
Table 4. Posterior modes for some parameters. M model
Model M, random 3 Model M, 83=0

Yij E(Yi] Y(ij)) |dis E(Yi;] Y(ij)) |ds]

10.67 1.72 8.94 1.68 8.99

8.42 11.82 34 12.87 4.44

9.43 -4.71 14.15 -1.86 11.30

6.32 11.91 5.59 2.13 4.18

8.12 12.04 3.91 13.07 4.95

4.58 5.93 1.35 6.50 1.92
> dfj 76010 77961

Model M-, random 3 Modd M2, 3=0

Yij E(Yi] Y(ij)) |di;| | E(Yi] Y(ij)) |dis |

10.67 7.31 3.36 5.84 4.82

8.42 7.99 0.42 10.08 1.66

9.43 9.30 0.12 471 472

6.32 6.79 0.47 7.77 1.44

8.12 5.65 2.46 5.69 2.42

4.58 3.80 0.78 5.10 0.52
> dfj 5159 15865

Table 5. Predictionsfor the 6 f irst cases and predictive f it measure for both models
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Figure Captions

figure 1. Box plotsof measuresof discrepancy obtainedin 30 sizen = 100 samplesfrom Exponential Power distribution
with parameters 3 = —0.75, —0.5, —0.25, 0, 0.25, 0.5, 0.75.

figure 2. Posterior distributions for o and 3 . Logistic moddl.

figure 3. Posterior distribution for parameters a1, bs,1,0 and 3. M1 model
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