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Abstract

In this work we study robustness in Bayesian models through ageneralization of the Normal distribution. We show new

appropriate techniques in order to deal with this distribution in Bayesian inference. Then we propose two approaches to

decide, in some applications, if we should replace the usual Normal model by this generalization. First, we pose this

dilemmaasamodel rejection problem, using diagnostic measures. In thesecond approach weevaluatemodel’spredictive

eff iciency. We illustratethoseperspectiveswith asimulation study, anon linear model and a longitudinal datamodel.

Keywords: Bayesian Inference, Bayesian robustness, Exponential Power distribution, Markov Chain MonteCarlo.

1 Introduction

Wewill use the form of theExponential Power distribution , .� Ewc jc q�c

RE+ � wc jc q� ' �Eq�j3� i T
%
3SEq�

����+ 3 w
j

����
2*E�nq�&

where3" 	 + 	 n", 3" 	 w 	 n", 3� 	 q $ �, j : fc
SEq� isapositiveand bounded function , and

�Eq� ' SEq� �nq2
2Kd �2 E�n q�o

It can beshown that themean of thedistribution isw and itsvariance,

T Et � ' Kd�2 E�n q�o
Kd �2 E� n q�oSEq��nq j
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The Exponential Power distribution (Box, Tiao,1973) is commonly used in Bayesian robustness studies. It is a family

of symmetric distributions that generalise Normal distribution, having more or less kurtosis than this distribution as

parameter q varies. In previousBayesian works, it isusual to takeq asa f ixed value, and observe, in aexploratory way,

theconsequencesof changingq values. In thiswork wewill alwaysconsider q asarandom variable from thebeginning.

Usually SEq� isf ixed inaway that leadstoT Et � ' j2 for every q�However, an interesting reparametrization tosimplify

the Bayesian treatment of this distribution is to take SEq� ' �
2 � In this particular case, when q ' f, T Et � ' j2 and

�.Ewc jc q� isa�Ewc j� distribution.

PosingSEq� ' constant makecomputationssimpler, sowewill usethat reparametrization in thiswork. A detailed study of

theExponential Power distribution can beseen in Marin (1998). A multivariategeneralization in the form RE) � �cPc q�
is shown in Gómez, Gómez-Villegasand Marín (1998).

In the f irst part of this paper we develop tools to work with this distribution in aBayesian frame. Then we study how to

determine, through theuseof discrepancy measures, whether weshould continuewith theusual Normal model or usethe

Exponential Power model. In the last part, wepropose an alternative way to validate the use of this distribution, and we

show itsusefulnessin applications likeanon linear model and a longitudinal datamodel.
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2 MonteCarlo treatment of EPdistribution

Following the Bayesian paradigm, we consider wc j and q as random variables, with prior distributions REw�, REj� and

REq�, considered independents through this work. We will take REwc jc q� x REw�REq� �j , where REq� is the Uniform

distribution over the E3�c�� interval, and REw� any continuousand bounded distribution over E3"cn"��
Having asample +�c ���c +? from an Exponential Power distribution, the posterior distribution of parameters will take the

form

REwc jc q � )� b REw�REq�d�Eq�o?j3E?n�� i T
%
3�
2

?[
�'�

����+�
3 w
j

����
2*E�nq�&

(1)

Wewill need to use numerical methods to deal with this distribution, if we want some information about the conditional

distributions REw � )�cREj � )� and REq � )�� We will show a way to get estimations of these distributions via Monte

Carlo, and next weproposesimulation methods to get samples from the full posterior distribution.

2.1 Posterior densitiesestimations

Posing REj� x �*jc we can obtain an analytical expression proportional to REwc q � )� through direct integration in j�
It can be shown that this expression is integrable with the stated REw� and REq� , hence it is a valid posterior density for

w and q , as is assumed in (Box, Tiao, (1973)). A proportional approximation of parameter posterior densities through

MonteCarlo integration is then obtained. Taking samplesof size6 from prior distributionsREq� and REw� gives:

	REw � )� b �
6
[6

�'� REwc q� � )�
	REq � )� b �

6
[6

�'� REw�c q � )�

	REj � )� b �
65
[65

�'� REjc w�c q� � )�
These estimations allow for graphical representations of the densities and the estimation of posterior mode . If we want

to calculate concrete probabilities we should use numerical integration to normalize the density. The precision of this

Monte Carlo approach depends on the particular application. In the cases we have worked on, stabilization of Monte

Carlo varianceestimator isobserved since6 ' �ff�
2.2 Obtaining samples from posterior distributions

The aim is to get samples from the full posterior REwc jc q � )�� Assuming we know how to generate random samples

from theExponential Power distribution aswell as from other known densities (Devroye(1984)).

2.2.1 Direct useof theGibbsSampler

In order to use theGibbssampler it isnecessary to develop methods to generatesamples from each posterior conditional

density.

� Generation of samples from s+� m �>�>|,

In thiscase, taking in (1) the transformation 5 ' j2*E�nq� then 5xUCE@c K�c where@ ' ?E� n q�
2 and
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K ' �
2

?S
�'�
�+� 3 ��2*E�nq� so a direct method to get samples j from REj � wc qc)� will consist in obtaining a sample

value% from aGammaKE@c K� and transform it through j ' %3E�nq�*2.

� Generation of samples from s+� m �>�>|,=

It can beshown that, for & D �c ?S
�'�
�w 3 +��& D ? �w 3 +�& then

REw� i T
%
3�
2

?[
�'�

����+� 3 �
j

����
2*E�nq�&

$ REw� i T
%
3?
2
����+ 3 �

j
����
2*E�nq�&

If REw� is Uniform or noninformative, the superior boundary has the form of an Exponential Power distribution, thus a

rejection method to obtain samples from w can be used. Else, if REw� is bounded, we can also use the same rejection

method. In other cases, ad-hoc methodsof generation could bedevelopped.

� Generation of samples from s+� m �> �>|,

In thiscase

REq � wc jc)� x23?E�nq�
2 K3?d �2E� n q�o i T

%
3�
2

?[
�'�

����+�
3 �
j

����
2*E�nq�&

Thisexpression can bebounded by

23�?*2K3?E�2� i TE3E
?
2 *L}E2��q�

so we can use again a rejection method to generate samples from REq � wc jc)�c taking samples from an exponential

distribution truncated in E3�c��, and rejecting samplesusing thebound proposed.

In our experiencewith thisapproach, for moderate?Gibbssampler seemsto convergebefore60 iterations, while in some

complicated applications it takes about 300. When posterior mode of q approaches the extreme value3�, the rejection

method proposed may take too long to converge. When in the initial runs the rejection algorithm does not accept at least

20% of the pointsgenerated, wereplace it by theSIR method (Rubin, (1987)), and in someextremecasesby trapezoidal

density estimation followed by rejection sampling.

2.2.2 Mixture representations

TheExponential Power distributioncanbeposedasacontinuousmixtureof GammaandUniform. (Walker and Gutiérrez-

Peña,(1999)). Thismixture representation of an.� Et � wc jc q� distribution takes the form

Et � wc jc qcL ' �� x L?�sJo6Ew3 jE2��qn�2 c wn jE2��qn�2 � with EL � q� x KE�2E� n q�c��
whereL is themixing parameter.

This representation allows to approach the obtention of samples from the posterior REwc qc j � )� from an Exponential

Power model, through the Gibbs sampler. We will use the prior distributions REw� any density in E3"cn"�c REq�
x UniformE3�c��c and REj� x UCE@c K�, an Inverse-Gamma distribution where @ is little enough so that the prior

distribution REj� isapproximately noninformative. Wesupposeall theseprior distributions independent.
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The likelihood of asample), given thevector of mixing parameters� ' E��c �2c ���c �?�, is

RE) � wc jc qc�� ' j3?23?Eqn��
2

?T
�'�

�3�� c with +� M dtw 3 jE2���qn�2 �ctw n jE2���qn�2 �o�
In this framework, wehave

REw � jc qc�c)� x RE) � wc jc qc��RE�� x REw�c w M d4@ t+� 3 jE2���qn�2 �c4�?t+� n jE2���qn�2 �o�

Wealso get, for the remainder parameters,

j � wc qc�c) 
 UCE@n ?c K�c j : 4@ t
� �
2��

�qn�
2 �+� 3 w��

q � wc jc�c) x 23?E�nq�
2 K3?d �2 E�n q�oc q such that E2���qn�2 :

�+� 3 w
j

�2
,��

�� � wc jc qc +� x .%RE��c 2�� :
� E+� 3 w�

j
� 2

�nq

Successive implementationsof theGibbssampler , given thesample)c result in samples from Ewc jc qc� � )��
In order to get samples from (q � wc jc�c)� truncated in its bounds it is easy f irst to calculate the boundary region for

qc and then use a variation of the rejection method presented in the previous section. Using Gibbs sampler also requires

generation of samples from known distributions truncated in some regions• there already exist techniques to deal with

them (Devroye, (1984)). A simplif ied version of this representation, taking q as a f ixed value and changing it in a

exploratory way, can beseen in (Choy, (1999)).

3 Applications to Normality checking

We areapproaching the problem of evaluating data departure from Normality, through the use of the Exponential Power

q parameter. Thisquestion may beapproached asan hypothesis testing problem withMf G q ' f facingM� G q �' f , as

weknow that for q ' f theExponential Power distribution agreeswith theNormal distribution.

Thisproblem can beseen asaModel Rejection problem. An approach introduced by Bernardo and Smith (1994) consists

in choosing a discrepancy measure BEqc wc j�cwhich measures the distance between likelihood functions RE) � qc wc j�
andRE) � fc wc j� . Then theposterior expectation of thismeasure,.qcwcj�)dBEqc wc j�ociscomputed. .qcwcj�)dBEqc wc j�o
can beseen as thedifferencebetween both modelsposterior utilities.

We will apply this idea using a range of discrepancy measures and investigate their behaviour through a simulation

study. In order to give the same prior probability for all the models we pose, as has been done in previous sections,

REq� 
 LE3�c���
3.1 Kullback-Leibler distance

If wewant to compareRE) � qc wc j� y RE) � fc wc j�, wecan use thewell-known Kullback-Leibler distance:

BguEqc wc j� '
]

RE) � qc wc j� *L} RE) � qc wc j�RE) � fc wc j� _)
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In the particular case of the Exponential Power distribution, we can get its analytical form, which does not depend on

Ewc j�:

BguEqc wc j� ' BguEq� ' E� n q�
2KE�2 E�n q��

5
7KE �nq2 � *L} KE �2 �

2q2 KE �2 E� n q��
3 KE �2 E� n q�� n 2qKE �2 E�n q��

6
8

In order to compute the posterior expectation of BguEqc wc j�, analytical integration does no exist in a simple form, but

wecan obtain aMonteCarlo estimator based on samplesgenerated from REqc wc j � )�, through:

.qcwcj�)dBguEqc wc j�o ' .qcwcj�)dBguEq�o s �
6

6[
�'�

BguEq��

wherethevector Eq�c w� c j�� isgenerated fromREqc wc j � )� by meansof themethodsintroduced in theprevioussection.

3.2 A discrepancy measure based on HPD regions

For thepoint null hypotheses testingMf G q ' f facingM� G q �' f, a testing procedure can bedevelopped constructing

theHighest Posterior Density region (Berger, 1985)- ' tq G REq � )� : &Ek��, where&Ek� is thelargest constant such

that �q�)Eq M -� D �3 kc k f ixed suff iciently small. Then weaccept Mf if thepoint q ' f falls into theHPD region

-c and rejectMf otherwise�
An evidencemeasureagainst dataNormality can becomputed f inding theposterior region

� ' tq � REq � )� D REf � )��

and then computing theposterior probability RE� � )�. AsRE� � )� decreases, theevidenceabout thehypothesesq ' f
arising from thedata increases.

TheHighest Probability Density region (HPD) �3 k test, isequivalent to rejectMf if RE� � )� : �3 k.

To • x thenotation for adiscrepancy measurebased on thisprobability, wewriteRE� � )� as

RE� � )� '
]

Wtq � REq � )� D REf � )��REqc wc j � )�_q_w_j

Then, if wedef ine

BM�(Eqc wc j� ' BM�(Eq� '

;AA?
AA=

� if

U RE) � qc wc j�REwc j�_w_jU RE) � fc wc j�REwc j�_w_j D �
f if

U RE) � qc wc j�REwc j�_w_jU RE) � fc wc j�REwc j�_w_j 	 �

wecan pose

.qcwcj�)dBM�(Eqc wc j�o ' .qcwcj�)dBM�(Eq�o ' RE� � )�

An interesting property of this method, apart from having a direct interpretation in terms of HPD regions, is that the

expectation.qcwcj�)dBM�(Eq�o isalready calibrated: since it isaposterior probability, it takesvalues in (0,1)�
In order to estimate.qcwcj�)dBM�(Eq�o wewill use theMonteCarlo approach of theposterior distribution. Wecompute
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REf � )�( then we search, by numerical methods, all points q� apart from q ' fc such that REf � )� ' REq� � )�, and

compute the according HPD interval probability .If no point q� exists , �E� � )� ' � or f depending on REq � )� :
REf � )� for all q or conversely.

3.3 A discrepancy measure based on predictive distribution

(Walker and Gutiérrez-Peña (1999)) poses asa measureof evidenceabout themodel RE) � qc wc j� facing RE) � fc wc j�
thedifferenceof posterior expectedutilities, basedon thepredictivedistribution . A MonteCarloestimationof itsposterior

expectation will be

.qcwcj�)dB� Eqc wc j�o s �
?

?[
�'�

*L}
6S
�'�

RE+� � q�c w�c j��
6S
�'�

RE+� � fc wW� c jW� �

Wherevectors EwW� c jW� � aregenerated from REfc wc j � )�cand vectors (q�c w�c j�� aregenerated from REqc wc j � )��
It would be useful to def inea calibration for this measure of evidence about Eqc wc j�, as it is the case for the Kullback-

Leibler measure.

3.4 Simulation study

A range of simulations has been carried out in order to compare the introduced evidence measures sensibility to data

kurtosisdeviance from normality.

Size ? ' �ff samples from an Exponential Power distribution with parameter q have been generated. We have com-

puted the introduced discrepancy measures to evaluate posterior evidenceagainst data Normality. This processhas been

replicated 30 times with 30 size ? ' �ff samples generated from Exponential Power distribution for each one of the

following valuesof q ' 3f�.Dc3f�Dc3f�2Dcfcf�2Dcf�Dcf�.D.

Weobtain, for each q f ixed in thedata original distribution, a sample from each normality testing measure. We show in

f igure1 Box plots for thesesamples, ordered by q, and having all measures resized to the (0,1) interval.

In order tohaveanother comparison referencewealso includeKolmogorov-Smirnov-Lillieforstest p-value, obtained over

the same samples. We resize this p-value to ”� 3 R3 �@,�e� because our discrepancy measures take higher values as

datamovesaway from Normality.

(f igure1 about here)

Discrepancy measures based on the frequentist Kolmogorov-Smirnov-Lilliefors test, posterior measureM�( and pre-

dictivedistribution based measuregivecorrect results, getting higher valuesas long asgenerated samplesgo further from

Normality (q ' f�. This happens whether data has a lower kurtosis than Normal distribution (q < 3��, or a higher

kurtosis than Normal distribution (q < ��� HPD seemsto bemoresensitive, and given it isalready calibrated in (0,1), it

will beused from now on as the referencemeasure.

In the case of Kullback-Leibler measure, we can see graphically the consequences of its asymmetry: this measure dis-
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criminate better samples with a higher kurtosis than Normal distribution, than samples with lower kurtosis than Normal

distribution.

4 Application to robustness and model comparison problems

In thissection weshall apply theExponential Power distribution to someBayesian models, replacing theusually Normal

errorswith Exponential Power distributed errors. In order to determinewhether thischoice isappropiate, weusetheHPD

evidencemeasureaswell asaof model’spredictiveeffectivity measure.

4.1 Model predictiveevaluation

Gelfand, Dey and Chang, (1992) propose the choice between two non linear models through the use of the predictive

distribution, in a cross validation perspective. Given )Eo� , the vector ) without the rth observation, we compute _o '
	.E�Eto�� )Eo��, where �Eto� is a diagnostic function which measures model f itting for each observation. An intuitive

possibility is to take�E+o� ' +o 3 tocso that _o ' +o 3 	.Eto � )Eo��. The sum
SE_o�2 may be seen as a measure of

model’spredictiveeffectivity.

If responsevariable+ and regression variables%� are related by somefunction named } :

+� ' }E �� ��n0�

where � ' Ew�c ���c wR� , y  � ' E%�c ��c %&��cand 0 is a vector of ? independent and �.Efc jc q� distributed random

errors cposterior parameter distribution takes the form

RE�c�c� � )� x d�Eq�o?j3E?n�� i T
%
3SEq�

?[
�'�

����+� 3 }E �� ��
j

����
2*E�nq�&

We can estimate posterior conditional densities for parameters �c�c� for every regular function }E �� ��. However,

specif ic functions }E �� �� are needed if we want to simulate samples from posterior distributions using direct Gibbs

sampler or theEP mixture representation, becausedevelopment of thesemethods depends on.the}E �� �� function used

in each particular case. Both procedureswill be applied in thenext sections. Weusedensity Monte Carlo estimations in

section 4.2 and Gibbssampler in section 4.3.

Computation of _o ' +o 3 e.Eto� )Eo�� can be done through MonteCarlo estimations. We also take prof it of the

integration over j property in order to makecomputationssimpler.

4.2 Applications to non linear models

Gelfand, Dey and Chang, (1992) compare in their work two models, the logistic one : + ' wfE� n w�w%2�3� n 0c and

the Gompertz model: + ' wfe3w4w{5 n 0 in an application, wheret represents onion bulbs weight measured over the

increasing timef, in a series of ? ' �D observations. In that paper, 0 were distributed as Normal. In this work we

suppose0 areExponential Power distributed.

In both logistic and Gompertz models, we use the reparametrizations: w�� ' *L}Ew�� y w�2 ' *L}Ew2*E�3 w2��� We take

all these prior distributions to be Uniform over large intervals, so they are approximately noninformative. We have then
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REwfc w��c w�2c jc q� x �*j�
4.2.1 Logistic model

Posterior distributions for theparameters related to the0 error term, j and qc areshown in f igure2.

(Figure2 about here)

Posterior distribución REq � )� has its mode at q ' � , far from q ' f value attached to Normality, and the introduced

measure HPD=0.87, so it seems appropiate to use theExponential Power model instead of theusual Normal model . We

have also considered the Bayesian analysis with q ' f f ixed, that is, taking the error term 0 as Normally distributed.

Table1 displaysparametersposterior meansand modes for both modelsEPand Normal:

(Table1 about here)

4.2.2 Gompertz model

In this model it looks also appropiate to use the Exponential Power model, since posterior distribution REq� )� mode is

far from theNormality valueq ' fcaswecan seein Table2. MeasureHPD=0.91 in thiscase.

(Table2 about here)

4.2.3 Comparison of predictive f itting for both models

We can assess predictive efectivity for both models through the estimator 	.Eto � )Eo��c obtaining results displayed in

Table3:

(Table3 about here)

We see that Exponential Power model seems to f it slightly better for both Logistic and Gompertz models , something

expected after thestudy of q posterior distribution in both cases. Logistic model f itsbetter than Gompertz model in both

Exponential Power errorsmodel and Normal errorsmodel .

4.3 Application to a longitudinal datamodel

Han and Carlin (2001) compare two models in an AIDS longitudinal data clinical trial. Data from this experiment has

also been studied in Carlin and Louis (2000) . CD4 lymphocite countst� were measured for each subject at the 0, 2, 6,

12 and 18 months visits. Two different treatments and two different baseline conditions (AIDS diagnostic or not) were

considered.
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We desire to compare models�� and �2, where�� G t� ' f�@ n`�M� n 0� and �2 G t� ' ��U n '�_� n D� ,

� ' �c ��c ?cwhere (f�c`�� in model �� and (��,'�� in model �2 areobservation matrices that represent, respectively,

treatments and baseline conditions, and timepoints (see Han and Carlin (2001) for details). In model ��c @ is a 9 terms

f ixed effects vector and M� are 3 terms random effects vectors. In model �2c U is a 6 terms f ixed effects vector and _�
are2 termsrandom effectsvectors. Model �� supposesachange in the slopeof t two monthsafter baseline timepoint,

whilemodel �2 assumes thesameslope from baseline timepoint, along all thestudy.

Following Zeger and Karim (1992) work, we choose an Uniform over a large region, (an approximately noninformative

prior) for @. For M� vectors we use aMultivariateNormal prior �EfcV�, whereV3� is Wishart `EE4-�3�c 4� and-
and 4 are thesamevaluessuggested by Carlin and Louis (2000) for thisdata.

As in the previous application, we use an Exponential Power distribution for the random errors, 0�� x �.Ef,j2Uc q�
independent and identically distributed. We have +�� '  ��@n���M� n 0�� for each patient � and time point �c where

� ' �c ���c ? and � ' �c ���c r�, with r� being the number of observations taken for the �|� patient.Usually r� ' Dc and

observations are taken at time points | '0,2„6,12,18 months from the beginning of the treatment, but there are many

missing observations at last timepoints. In order to compare both models�� and�2, we compute the predictive mean

MonteCarlo estimator

	.Et��� )E���� ' �
6

6[
&'�

E ��@E&�n���ME&�� �

For each observation, wecompute_�� ' +��3 	.Et��� )E���� .Then wecompute
S _2�� asameasureof predictivef itting.

We present the Bayesian development for model ��c taking into account there are no important variations with respect

to the�2 analysis, wherewe change matricesf� and`� for �� and'� respectively, and vectors@ and M� for U and_�
respectively.

4.3.1 Posterior distribution. Samplegeneration

We want to generate samples from REjc qc@cM � )E����. We use the Gibbs sampler, generating samples for each condi-

tional distribution.

� Samples from s+�m�> d>e>|,

Taking @ '
?S
�'�

r�E� n q�
2 and K ' �

2
?S
�'�

rlS
�'�

�+��3E ��@n���M���2*E�nq� , we generatea value^ wih gammaKE@c K�
distribution and wecomputej ' ^3E�nq�*2.
It can beshown that j isdistributed asREj�qc@cMc)� .

� Samples from s+�m �> d>e>|,

In thiscase, posterior q distribution isbounded by theexpression

23�Prl*2dKE�2�o
3Prl i TE3EPrl2 *L}E2��q� so weusearejection method as theone introduced in the f irst section..
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Samplesfrom RE@ � �cqcMc)�
In this case, @ ' E@�c ���c @b�, so we use theGibbs sampler taking samples from each conditional RE@&� �cqc@E&�cMc)�,
noting by @E&� the E@�c ���c @b� vector without itskth term.

To samplevaluesfrom RE@&� �cqc@E&�cMc)� , noting

5&�� '
5
97
+�� 3���M� 3 S

,�'&
%,��@,

%&��

6
:8

wehave

RE@&� �cqc@E&�cM�c)� x i T
5
73�

2
?[

�'�

rl[
�'�

�����
E@&35&���
j*%&��

�����
2*E�nq�6

8

Def ining

75& ' ?S
�'�

rlS
�'�

5&�� and j4@ ' j
��?t%&��� cwecan see that (2) isbounded by

i T
%
3Pr�

2
����@& 3 75&
j4@ 

����
2*E�nq�&

Applying then the rejection method introduced in Section 1 to get samples @&. We repeat this computations over the

@�c ���c @b asuff icient number of iterations, obtaining f inally asample from RE@ � �cqcMc)E�����

� Samples from s+elm�>�>d>Y>|,

WehaveREM��jcqc @cVc)� xRE) � �c�c@cM��REM� �V��
We need , for every � ' �c ���c ?, a sample from M� ' EK��c K�2c K���� We implement a method similar to the one used to

get samples from @c sinceREM� � V� is bounded. In this case a suff icient number of Gibbs sampler iterations with each

M� ' EK��c K�2c K��� for each observation isnecessary, taking a lot of computing time.

� Samples from s+Y�4m e,

Weknow thisposterior distribution isalso Wishart, so weusemethodsthat already exist to samplefrom it (seeCarlin and

Louis (2000)).

4.3.2 Results

Wedisplay theresultsfor model �� G t� ' f�@n`�M�n0�. Wehaverealized 500 iterationsof Gibbssampler, rejecting

thef irst 100. In f igure3 weshow posterior distribution histogramsfor @�c KHc�c j and q� q posterior distribution leads to

aHPD=0.93 value, rejecting error normality.

(f igure3 about here)
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In Table4 wepresent @�c ���c @b ,KHc�c j andq posterior modes . Wealso append Carlin and Louis (2000) resultsobtained

with Normal errorsmodel (q ' f).

(Table4 about here)

Results are generally similar for f ixed effects parameters @�c ���c @b and for the random effects parameters KHc�, in spite

of the difference between Exponential Power and Normal models, and having different computational approaches. As it

was thecase for themodelsshown in theprevioussection, j is theparameter moreaffected by the introduction of q asa

random variable�
In order to compare models�� G t� ' f�@ n`�M� n 0� and �2 G t� ' ��Un '�_� n D� , taking q ' f (Normal

errors model) and q random (Exponential Power model), we compute_�� ' +�� 3 	.Et��� )E���� for each +�� available

observation. Table5 displayspredicted values for the f irst 6 cases and the f itting measure
SS _2�� for each of the four

different models, based on the1405 availableobservations.

(Table5 about here)

Wesee that model �2 hasapredictive f it better than model ��. Theseresultsagreewith previouswork (seeCarlin and

Louis (2000) and Han and Carlin (2001)). For each of these two models using q as a random parameter leads to higher

predictiveprecision than using theNormal model q ' f. Thisdifference isclearly bigger in model �2�

5 Conclusions

The use of the Exponential Power distribution family leads to more robust models in many applications, at the expense

of technical and computational complications. In the models presented centralization parameters are less affected than

scaleparameter j when we introduceq asarandom parameter. In someapplications, theuseof this family will beworth

while depending on factors like data deviation from normality or model’s predictive effectivity ,aspects we can evaluate

using the techniques exposed in this work. From the computational point of view, many applications would need ad-hoc

methods in order to work with this distribution, while some of the tools introduced in this work can serve as a basis.

Sometimes , posterior distributions for w and q can havevery high kurtosisand low variability. In this few extremecases

wehavecorrected theexposed techniquesapplying SIR and trapezoidal rejection methods.
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Tables

Exponential Power model Normal model

Posterior mode
Posterior mean

wf w�� w�2 j q
699.75 4.37 0.0158 11.3 1
702.31 4.44 0.016 13.5 0.8

wf w�� w�2 j
697 4.35 0.015 25.6

702.30 4.39 0.016 27.3

Table1. Posterior meansand modes. Logistic model

Exponential Power model Normal model

Posterior mode
Posterior mean

wf w�� w�2 j q
726.5 2.55 0.55 15.8 0.8
723.8 2.567 0.543 19.5 0.75

wf w�� w�2 j
721.5 2.55 0.55 33
721.37 2.57 0.54 33.8

Table2. Posterior meansand modes. Gompertz model

Logistic model Gompertz model
Exponential Power Normal Exponential Power NormalS+gu,5 9593.30 9646.06 14632.62 14993.61S mgum 258.06 260.68 370.67 377.23

Table3. Predictive f it measures for both models

@� @2 @� @e @D @S @. @H @b KHc� j q
randomq 10.1 -1.25 -0.75 0.15 1.21 -0.22 -4.31 -0.60 0.50 -5.86 0.51 1
q=0. 9.93 -0.04 -0.16 0.004 0.309 -0.34 -4.29 -0.32 0.35 -7.5 1.83

Table4. Posterior modes for someparameters. M�model

Model ��c random q Model ��, q ' f
+�� 	.Et��� )E���� �_��� 	.Et��� )E���� �_�� �

10.67 1.72 8.94 1.68 8.99
8.42 11.82 3.4 12.87 4.44
9.43 -4.71 14.15 -1.86 11.30
6.32 11.91 5.59 2.13 4.18
8.12 12.04 3.91 13.07 4.95
4.58 5.93 1.35 6.50 1.92
... ... ... ... ...S _2�� 76010 77961

Model �2, random q Model �2, q ' f
+�� 	.Et��� )E���� �_��� 	.Et��� )E���� �_���

10.67 7.31 3.36 5.84 4.82
8.42 7.99 0.42 10.08 1.66
9.43 9.30 0.12 4.71 4.72
6.32 6.79 0.47 7.77 1.44
8.12 5.65 2.46 5.69 2.42
4.58 3.80 0.78 5.10 0.52

... ... ... ...S _2�� 5159 15865

Table5. Predictions for the6 f irst casesand predictive f it measure for both models
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FigureCaptions

f igure1. Box plotsof measuresof discrepancy obtained in �f size?' �ff samplesfrom Exponential Power distribution

with parametersq ' 3f�.Dc3f�Dc3f�2Dcfcf�2Dcf�Dcf�.D.

f igure2. Posterior distributions for j and q . Logistic model.

f igure3. Posterior distribution for parameters@�c KHc�c j and q� M� model
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Figure1

REj � )� REq � )�
Figure2
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Figure3
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