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The problem

Let X = (X1, ...,Xn) be a random sample from a continuous
random variable X .

We have to choose among m different Bayesian models, Mi ,
i = 1, ...,m. Each Bayesian model consists of two components: a
sampling density, fi (x |θ) (where θ ∈ Θ), and a prior density, πi (θ).

The cumulative distribution function corresponding to fi (x |θ) will
be denoted by Fi (x |θ).

In short:

Mi = {fi (x |θ), πi (θ)}, i = 1, ...,m.



The problem

The problem of Bayesian model selection has been studied in many
papers. For instance:

Bayesian model selection based on Bayes factors:
O’Hagan (1995; J. Roy. Statist. Soc. B)
Berger and Pericchi (1996; J. Amer. Statist. Assoc.)

Bayesian model selection based on a predictive approach:
Gelfand, Dey, and Chang (1992; Bayesian Statistics 4)
Gutierrez-Peña and Walker (2001; J. Statist. Plan. Infer.)
De la Horra and Rodŕıguez-Bernal (2005; Statist. Probab. Lett.)
De la Horra and Rodŕıguez-Bernal (2006; Commun. Statist.
Theor. Meth.)



The method

Next, a different and easier method is proposed and analyzed [De
la Horra (2008; Commun. Statist. Theor. Meth.)]. The method is
based on the following idea:

Let us assume that X = (X1, ...,Xn) is a random sample from a
continuous random variable X with density function f (x) and
cumulative distribution function F (x).

Then, (F (X1), ...,F (Xn)) can be considered as a random sample
from a U(0, 1), because of F (X ) follows a U(0, 1) distribution.

As a consequence, we hope that (F (X1), ...,F (Xn)) will be well
fitted to the U(0, 1) distribution.



First step of the method

(1) First of all, we measure the discrepancy between the sample
we have obtained, x = (x1, ..., xn), and the distribution function
Fi (x |θ) (for a fixed θ), by measuring the χ2 discrepancy between
(Fi (x1|θ), ...,Fi (xn|θ)) and the U(0, 1) distribution; for doing that,
we partition the interval (0, 1) in k subintervals, (0, 1/k), (1/k,
2/k),...,((k-1)/k, 1). So, the χ2 discrepancy will be measured as
usual:

Di (x, θ) =
k∑

j=1

[Oij(θ)− n(1/k)]2

n(1/k)
=

k∑
j=1

[Oij(θ)− (n/k)]2

n/k
,

where Oij(θ) is the number of elements of (Fi (x1|θ), ...,Fi (xn|θ))
we have obtained in each subinterval.
The idea behind this discrepancy is simple: if Fi (x |θ) (for a fixed
θ) is a good model, Di (x, θ) will be close to zero; if Fi (x |θ) (for a
fixed θ) is not a good model, Di (x, θ) will be far from zero.



Second step of the method

(2) Of course, we are interested in evaluating the discrepancy
between the sample we have obtained, x = (x1, ..., xn), and the
whole Bayesian model, Mi , given by (1). The Bayesian solution is
easy; first of all, we compute the usual posterior density of the
parameter,

πi (θ|x) = πi (θ|x1, ..., xn) =
fi (x1, ..., xn|θ)πi (θ)∫

Θ fi (x1, ..., xn|θ)πi (θ)dθ

=
fi (x1|θ)...fi (xn|θ)πi (θ)∫

Θ fi (x1|θ)...fi (xn|θ)πi (θ)dθ
,

and then we evaluate the posterior expected discrepancy between
the sample x and the model Mi :

Di (x) =

∫
Θ

Di (x, θ)πi (θ|x)dθ.



Third step of the method

(3) Finally, we only have to compare D1(x),..., Dm(x), and choose
the Bayesian model having the smallest posterior expected
discrepancy.



Asymptotical properties of the method

It is obviously interesting to know something about the asymptotic
distribution of the posterior expected discrepancy, under the “true”
model M = {f (x |θ), π(θ)}.

In this case, we want to study:

lim
n

∫
Θ

D(x1, ..., xn, θ)π(θ|x1, ..., xn)dθ,

and so, we are looking for a result in the style of Helly’s theorems.

First problem we find: in Helly’s theorems, the function we
integrate is fixed, and here, D(x1, ..., xn, θ) depends on n. For
solving this problem we replace D(x1, ..., xn, θ) by D(x1, ..., xN , θ),
where N is fixed and large enough. For fixing ideas and showing
that this is a reasonable approximation, we give the following
lemma:



Asymptotical properties of the method

Lemma 1.- Let us assume that, for any fixed ε > 0, there exists N
such that for all n ≥ N:
(a) |D(x1, ..., xn, θ)− D(x1, ..., xN , θ)| < ε, for all θ in a subset
Θ0 ⊂ Θ such that Pr(Θ0|x1, ..., xn) ≥ 1− ε,
b) |D(x1, ..., xn, θ)− D(x1, ..., xN , θ)| < M for all θ in Θ−Θ0.

Then: ∣∣∣∣lim sup

∫
Θ

D(x1, ..., xn, θ)π(θ|x1, ..., xn)dθ

− lim sup

∫
Θ

D(x1, ..., xN , θ)π(θ|x1, ..., xn)

∣∣∣∣
≤ ε(M + 1).



Asymptotical properties of the method

Second problem we find: in Helly’s theorems, the function we
integrate is continuous, and here, D(x1, ..., xN , θ) is not continuous.
We next obtain a result, in the style of Helly’s theorems, making
use of two specific conditions we have in this problem:

(a) It is very reasonable to assume that the posterior distribution
converges to the degenerate distribution giving all the mass to the
true value of the parameter, θ0.

(b) The χ2 discrepancy, D(x1, ..., xN , θ), for a fixed N, is a simple
function of θ: the number of values it can take is, perhaps huge,
but finite. Therefore, we will denote

D(x1, ..., xN , θ) =
r∑

i=0

ai IΘi
(θ),

where IA(θ) is the usual indicator function of the set A, and Θ0 is
the subset of Θ containing θ0, the true value of the parameter.



Asymptotical properties of the method

Now, we can give the main result in this section.

Theorem.- Let us assume that, a.s.− θ0, the posterior distribution
converges to the degenerate distribution giving all the mass to the
true value of the parameter, θ0, in the precise sense that, for all
ε > 0, there exists n0 such that for all n ≥ n0,
Pr(Θ0|x1, ..., xn) ≥ 1− ε.
Then:

lim
n

∫
Θ

D(x1, ..., xN , θ)π(θ|x1, ..., xn)dθ = D(x1, ..., xN , θ0), a.s− θ0.



Asymptotical properties of the method

Remarks on the theorem:
(a) The theorem we have just proved may be seen like a Helly
theorem in which:
¶ The space of integration do not need to be the real line.
¶ The function we integrate needs to be a simple function.
¶ The distribution converges to a degenerate distribution.

(b) The result has been obtained for the χ2 discrepancy, but it is
equally well suited for any discrepancy taking a finite number of
values.

(c) It is well known that, under θ0, D(x1, ..., xN , θ0) has
(approximately) a χ2

k−1 distribution. Therefore, in practice, the
posterior expected χ2 discrepancy will have (approximately) a
χ2

k−1 distribution.



Evaluating the method

Now, we have to evaluate the method by simulation, because a
method may seems very natural and sensible (as this is, in my
opinion) but may have a poor performance.
We consider the three following Bayesian models:

M1 = {f1(x |θ) ∼ N(θ, σ = 1); π1(θ) ∝ 1}

M2 = {f2(x |θ) ∼ N(θ, σ = 2); π2(θ) ∝ 1}

M3 = {f3(x |θ) ∼ N(θ, σ = 3); π3(θ) ∝ 1}

We will generate random samples with 50 elements each.



Evaluating the method

100 random samples (with 50 elements each) are generated from a
N(0, 1) distribution (model M1).

For each random sample, we evaluate discrepancies D1(x), D2(x)
and D3(x) with the models M1, M2 and M3, respectively (these
discrepancies will be evaluated by partitioning the interval (0,1) in
k = 4 subintervals).

These discrepancies are evaluated (in an approximated way) by
simulation.

The performance of the method is excellent: the model M1 (the
true model) is chosen in the 100% of the cases.



Evaluating the method

On the other hand, theoretical results of Section 3 tell that D1(x)
(posterior expected discrepancies under the true model) will have
(approximately) a χ2

k−1 = χ2
3 distribution (because we partitioned

the interval (0,1) in k=4 subintervals). The histogram of the
values D1(x) is shown in the next figure; the histogram compares
quite well to the density of χ2

3 distribution. The differences we can
observe in the figure are easy to justify because theoretical results
of Section 3 are asymptotic.



Evaluating the method

Histogram of D1
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Figure: Histogram of D1 under the model M1



Possible extensions: other discrepancy measures

In the previous transparencies, the χ2 discrepancy has been used
for measuring the discrepancy between (Fi (x1|θ), ...,Fi (xn|θ)) and
the U(0, 1) distribution. Of course, this is a possible discrepancy
measure, but not the only one:

(1) χ2 discrepancy

D1
i (x, θ) =

k∑
j=1

[Oij(θ)− n(1/k)]2

n(1/k)
=

k∑
j=1

[Oij(θ)− (n/k)]2

n/k

(2) Kolmogorov-Smirnov discrepancy
Let G0(y) denote the cumulative distribution function of the
U(0, 1), and let Gi (y |θ) denote the empirical cumulative
distribution function corresponding to the sample
(Fi (x1|θ), ...,Fi (xn|θ)). The Kolmogorov-Smirnov discrepancy is
defined as usual:

D2
i (x, θ) = sup

y∈(0,1)
|Gi (y |θ)− G0(y)|.



Possible extensions: other discrepancy measures

(3) L1 discrepancy
Let g0(y) denote the density function of the U(0, 1), and let
gi (y |θ) denote some density estimator obtained from the sample
(Fi (x1|θ), ...,Fi (xn|θ)). The L1 discrepancy is defined as usual:

D3
i (x, θ) =

∫ 1

0
|gi (y |θ)− g0(y)|dy .

(4) Intrinsic discrepancy
Let us consider again g0(y) (defined over X0 = (0, 1)) and gi (y |θ)
(defined over Xi ⊂ (0, 1)). The intrinsic discrepancy is defined as
follows (see Bernardo (2005; Test)):

D4
i (x, θ) = min

{∫
Xi

gi (y |θ) log
gi (y |θ)
g0(y)

dy ,

∫
X0

g0(y) log
g0(y)

gi (y |θ)
dy

}
.



Possible extensions: comparing discrepancy measures

First of all, we must choose a discrepancy measure. For doing
that, we can proceed by simulation as follows:
(1) Fix m Bayesian models (for instance, the Bayesian models used
before; these Bayesian models are similar and it is more difficult to
choose the correct model).
(2) Simulate many samples (100, 1000, ...) from the Bayesian
model Mi . Apply to these samples the method described before,
for the four discrepancy measures we have just defined, recording
the percentage of correct classification with each discrepancy.
(3) Repeat Step (2) for each model Mi , i = 1, ...,m. Construct a
table of double entry with the percentages of correct classification
with each discrepancy measure and each model.
(4) Finally, look for the discrepancy measure having the best
performance.



Possible extensions: assessing the discrepancy

Once we have chosen the discrepancy measure we are going to use,
we can apply the method described in Section 2 for choosing the
Bayesian model we thing is more suitable for our data. It is
important to remark that the model we choose must not be
understood as the true model (nobody knows the true model), but
as the best representation we can find among several Bayesian
models.
Therefore, suppose we have decided to use a discrepancy measure
and, then, we have chosen a Bayesian model as the best
representation for our data. The posterior expected discrepancy
between our data x and the model Mi is just a number, D j

i (x). It
is important to decide if this number indicates a small discrepancy
or a large discrepancy:
If the discrepancy is small, the model we have chosen is a good
representation for our data.
If the discrepancy is large, the model we have chosen is not a very
good representation for our data.



Possible extensions: assessing the discrepancy

For deciding if the discrepancy between our data x and the model
Mi is large or small we may proceed as follows:

(1) Simulate many samples (100, 1000, ...) from the Bayesian
model we have chosen.
(2) Compute the posterior expected discrepancies between these
samples and the Bayesian model.
(3) Construct the histogram corresponding to these posterior
expected discrepancies.
(4) Compare D j

i (x) to this histogram.


